Book REVIEWS 149

deterministic choice between x and y, subsequently
skip.x + skip.y is used for that (as might be expected from
other notations). The inexperienced reader is left with
the wrong impression for at least four pages and, if he
believed the earlier explanation, possibly for the rest of
the book.]

Chapter 3 contains PSF descriptions of three simple
protocols:

® An alternating-bit protocol in which the channels
cannot lose or invent data but can, like a one-place
buffer, either transmit each datum exactly or corrupt
it (in which case that fact is recorded with the datum).

® A positive-acknowledgement-with-retransmission pro-
tocol in which channels can now lose data, so a
timer is required to avoid deadlock; only a single
acknowledgement value is used.

® A concurrent alternating-bit protocol whose channels
can lose data and in which transmission and receipt
are loosely coupled.

Chapter 4 contains PSF descriptions of three sliding-
window protocols from Tanenbaum’s Computer
Networks:

® A sliding-window protocol with both sending and
receiving windows of unit size.

® A sliding-window protocol with sending window of
arbitrary size but receiving window of unit size.

® A sliding-window protocol with arbitrary window
sizes.

Chapter 5 contains a PSF description of the Amoeba
Transaction Protocol, developed by Mullender in his
1985 PhD thesis in Amsterdam. It is designed for quick
interactions between a client and a server and incorpor-
ates features that make it efficient when bursts of transac-
tions occur. It is of interest partly because it does not
conform to the ISO model.

Chapter 6 contains PSF descriptions of two simple
protocols for local-area networks which are chosen to
be simple but representative:

® A simple token-ring protocol (unidirectional with a
single token).

® A simple ethernet protocol (with carrier sensing and
collision detection).

Chapter 7 contains PSF description of the IEEE
token-ring protocol, with time abstracted (since PSF
abstracts real time). It makes no reference to the previous
chapter, but is included as an example of how a realistic
case study can be coded in PSF.

Finally appendices contain a library of PSF data
modules (based on the types introduced in Chapter 2)
and the syntax of PSF.

Each chapter starts with a clear introduction and ends
with very brief summary and bibliographical notes.

This book, then, contains a collection of programs
with brief explanations of the systems they simulate. At
whom is such a collection aimed? Not at the expert in

communications protocols; nor the novice, for whom
little discussion of design properties and trade-offs
appears. Not at the reader interested in the application
of formal methods to communications protocols. For
such a reader would presumably be interested in: the
structuring of complex protocols in terms of simpler
ones; correctness of the designs; the stepwise develop-
ment of a protocol from its specification; and in a
discussion of modelling, assumptions and alternative
approaches. None of those appears in this book.

The fact that the alternating-bit protocol forms a
buffer, for example, is just subtle enough to require
proof. Here is one way to proceed. Define the simplest
flow-control protocol with a single value for acknow-
ledgement; it clearly forms a one-place buffer. Now refine
that so the single acknowledgement value is replaced by
natural numbers (initially O then incremented on each
successive acknowledgement); by the preceding design,
that too forms a one-place buffer. Again refine, this time
by reducing the index modulo 2, to gain the alternating-
bit protocol; again a simple argument yields correctness
from that of the preceding design. Each stage in that
hierarchical development isolates a feature of the final
design. Yet because the concerns are separated each may
be verified, and understood, independently and simply.

Such conceptual expression of complex systems in
terms of simpler ones is not used at all in this book,
though in almost every case some such consideration is
possible. Thus the most powerful weapon in the armoury
of formal methods, the control of abstraction, is ignored.

It thus appears that the authors have traded all for
executability of their descriptions. The outcome of
executing a PSF program is a trace, or history, of the
system being simulated. It must be left for the reader to
decide how helpful is a listing of traces of a complex
(usually non-deterministic) system in understanding its
behaviour.

J. W. SANDERS
University of Oxford

DEeRrRICK MORRIS and Boris Tamm (EDs)

Concise Encyclopaedia of Software Engineering.
Pergamon Press. 1993, £150, xiv+400 pp. hardbound,
ISBN 0 08 036214 1

There is a popular myth that encyclopaedias exist so
that people can look things up. In fact their prime
purpose is to provide browsing fodder for ruminants
like me. The Concise Encyclopaedia of Software
Engineering consists of almost a hundred articles, aver-
aging four pages apiece. It certainly passed the browsing
test—I spent several happy hours dipping in here and
there, reading sequences of unrelated entries, following
the ‘See also ...’ pointers to related articles, making
occasional serendipitous discoveries and, from time to
time, feeling irked at omissions or misrepresentations of
pet topics.

THE COMPUTER JOURNAL,

VoL. 37, No.2, 1994

¥20Z Iudy 01 uo 1senb Ag 0981 61/61L/2/LE/81o1e/|ulWwoo/wod dnorojwepeoe//:sdiy wolj pepeojumoq

150

Book REVIEwWS

What about the other tests? Is it concise? Is it encyclo-
paedic? Is it software engineering? It is certainly con-
cises—for an encyclopaedia. The articles are generally
pithy, well organized and well written. They are reason-
ably consistent in style. Given the large number of
contributors (almost 80), credit is due to the editors,
Derrick Morris and Boris Tamm, for bringing them all
into line.

It is also encyclopaedic—for a concise work.
Sometimes I wish the articles were not so concise. For
instance the five pages on Graphics conjure up a picture
of the late 1970s and early 1980s; there is no hint of ray
tracing, which has been in routine use for decades by
the US Army or even solid modelling, which is a
necessary complement to three-dimensional graphics. If
graphics is a proper subject why are animation and
virtual reality not treated? However, perhaps a better
question to ask is whether graphics is a proper subject
for discussion in an encyclopaedia on software engineer-
ing. Is it because the editors wanted at least one entry
under the letter G? Hardly, because there is nothing
under B, J, Q (Query Languages feature under Databases;
perhaps there is a place here for Queuing Theory?), U
(Unix makes an appearance in several articles), W (no
Windows?), X (no XWindows?), Y and Z (Abrial’s Z
notation is treated in the article on Specification and
Verification of Software).

No, if G is to have an article, it should be on Graphical
User Interfaces (GUIs): despite their disadvantages
(expense, in space and time, and inadequate standards),
GUIs and GUI builders play a substantial part in the
development of big software systems—their use in proto-
typing and building user interfaces is important because
the interface, being the visible part of a software system,
is often the deciding factor in whether or not the system
is acceptable. At least GUI makes it into the list of
acronyms at the back of the book; HCI (Human-
Computer Interaction) and MMI (Man-Machine
Interface) do not.

The article on Graphics and the lack of an article on
GUIs exemplify one of my concerns: the encyclopaedia
looks dated. Yes, I know encyclopaedias should record
eternal truths rather than fashionable ephemera, but ...
. Cynics would say that software engineering has precious
few of the former but plenty of the latter. Each article
ends with a bibliography which, rightly, includes early
seminal publications but often gives the impression that
nothing much has happened for many years. Perhaps it
hasn’t. Or perhaps the book was a long time in the
making.

The last of my tests asked whether the subject was
indeed software engineering. Many of the articles clearly
are: Software Engineering Environments, Lifecycles,
Software Project Management, Specification and
Verification of Software, Prototyping, Requirements
Capture, Portability of Software and many others. Some
are on the borders of the subject or are concerned with
specific application areas that present unusual or unusu-

ally difficult software engineering problems: the main
example is real-time software which merits several art-
icles. Some are, to my mind, out of place: I have already
mentioned Graphics and there are others including Code
Generation and Systolic Algorithms for VLSI.

Each reader will have some pet topics that are missing;
one of mine is GUIs. Another is the costing of big
software projects: estimating costs and performing
cost/benefit analyses are notoriously difficult. A little is
said about the former in the article on Software Project
Management but 1 could find nothing on the latter; an
article on each seems sensible as these are central to
whether a project goes ahead. The article on Design
Methodologies makes very brief mention of SSADM,
Jackson’s System Development (JSD) and several other
design methods; again, these are central to a software
engineer’s life and each, while not perfect, at least
contributes some useful ideas and thus merits rather
more space in this work. JSD also receives an honourable
mention in Specification Languages and a less than
honourable one in Maintenance of Software. In the latter
it is dismissed as contributing little to the problem of
software maintenance—this is curious as ease of main-
tenance is one of the principal features of Jackson’s
method.

Despite this carping, the reader will have noticed that,
by and large, the encyclopaedia has passed my four
tests. The price, though, is horrific.

Perhaps the most illuminating article is Cronhjort’s
on Validation and Verification of Software—after giving
a good overview of the problem of how to do software
engineering it shows that we still don’t know the answer.

R. M. McKEaG
The Queen’s University of Belfast

ALISON CAWSEY

Explanation and Interaction: The Computer Generation
of Explanatory Dialogues. The MIT Press. 1993, £24.95,
232 pp. hardbound, ISBN 0 262 03202 3

Explanation and Interaction presents a system for analys-
ing and creating human-human and human-computer
dialogues. The dialogues discussed are those of a studen-
t—expert type, with the user able to ask questions, prompt
further explanations and ask for more detail in the areas
and the expert responding with appropriate levels of
information. The system used throughout the book is
called EDGE.

The book begins by exploring the various possibilities
involved in human-human interactions and attempts to
describe them in a standardized form that can be applied
to modelling them on a computer. The chosen domain
is that of an expert explaining ‘something’ to a novice.
In the examples in the book these are ‘simple’ electronic
circuits involving transducers, resistors, etc. The fact that
these circuits appear so simple belies the complexity of
designing a conversational system to explain them.

THE COMPUTER JOURNAL,

VoLr. 37, No.2, 1994

¥20Z Iudy 01 uo 1senb Ag 0981 61/61L/2/LE/81o1e/|ulWwoo/wod dnorojwepeoe//:sdiy wolj pepeojumoq

