224 Book REVIEWS

calculus. Chapters 3 and 5 systematically confirm our
expectations about the higher order extension, working
out exactly as much detail as required for that.

The real ‘meat’ of the book lies in Chapter 4. The
author first proves the completeness of a procedure for
equational unification of CTT terms and shows that the
problem is undecidable. He then considers higher order
unifiability and pre-unifiability; these are again undecid-
able, but he discusses heuristics. He moves on to higher
order matching (given two terms ¢ and ¢’ of the same
type, is there a substitution y such that ¢’ =y¢?). This has
been conjectured by G. Huet to be decidable, but the
problem remains open. The author presents extensive
evidence which suggests a positive result for CTT terms:
he presents a terminating procedure for matching conjec-
tured to be complete; he also discusses other approaches
like the Plotkin—Statman conjecture (relating this prob-
lem to that of deciding A-definability), some NP-hard
third order matching problems, Zaionc’s (1985) idea of
regular unification and second-order monadic unifica-
tion. Thus this chapter also constitutes an excellent
survey on this subject.

The bibliography, containing 204 reference items, is
quite comprehensive and ought to be of great value to
researchers in this area. But excessive referencing can
also be obtrusive: do we need a reference to Huet’s thesis
(written in French) to support a claim that composition
of substitutions is associative (page 25)?

My major criticism of the book is that it is not self-
contained. While every definition needed in any proof
can be found in the book, other books and papers are
needed to make sense of the material here. Andrews’
book (Andrew, 1986) is a pre-requisite for understanding
Chapters 2 and 3, and the important ideas of Chapter 4
need recourse to Huet’s papers and Statman (1982) for
a complete understanding. Material from these sources
could easily have been included to add substance to this
slim volume.

Further, there are very few examples. The book has
145 definitions as opposed to 24 examples, most of
which highlight specific definitions used in proofs rather
than illustrate concepts. Given that the book is about
extending results from first order logic to a higher order
one, we can reasonably expect examples of CTT formulas
with specific higher order features and instances of
reasoning in this logic. Indeed, in the entire book there
is only one example giving a CTT formula (example
3.27, showing its conversion to normal form). All the
rest illustrate local technical details (subsets of ~ relation,
applying the MATCH procedure to nodes, etc.). Such a
purely formal treatment, and the lack of proofs of base
material (strong normalization theorem for A-calculus,
the many theorems of Huet and Statman quoted in the
book) do not make for pedagogic use. This book is more
in the nature of an extended research article on CTT
meant for researchers in automated theorem proving
and logic programming, rather than a textbook for a
graduate course (as claimed on the back cover).

The production of the book is excellent. There are
very few mistakes. (Page 55, line 5 from bottom, ‘equa-
tional unification’ should be ‘pre-unification’.)

REFERENCES

Andrews, P. B. (1986) An Introduction to Mathematical Logic
and Type Theory: To Truth Through Proof. Academic
Press, Orlando.

Statman, R. (1982) Completeness, invariance. and -
definability. J. Symbolic Logic, 47, 17-26.

Zaionc, M. (1985) The set of unifiers in typed Z-calculus as
regular expression. In Rewriting Techniques and Applications,
Lecture Notes in Computer Science 202. Springer, Berlin.

R. RaMaNuiam
The Institute of Mathematical Sciences. Madras

GERARD HUET AND GORDON PLOTKIN (editors)
Logical Environments. Cambridge University Press, 1993,
£35.00. 338 pp hardbound, ISBN 0-521-43312-6

This book is a collection of papers about computer
systems that provide facilities for the development of
formal (i.e. mathematical) proofs about hardware and
software, as well as about mathematical systems proper.
The concept of a logical environment can be construed
in the above sense (i.e. as a software system composed
of algorithms and representations) or as a formal
(logical) theory within which such reasoning can take
place. When implemented, the environment contains, in
addition to theorem-proving software, databases of
axioms and of theorems: typically, users can add to the
collection of theorems available within a system.

The book reflects many of the issues raised by logical
environments. It contains a section on the general con-
cept of a logical framework and the issues raised by
them, a section on the algorithms needed to support
environments, a section on foundational issues, and a
final section describing experiments that have been per-
formed using two such environments (LEGO from
Edinburgh and ALF from Goéteborg).

The general theoretical viewpoint of logical environ-
ments is constructive logic. That is, the logics typically
used and/or researched are of a constructive nature: a
proof of a property is interpreted as a construction of
an (abstract) object with the required property. This
interpretation is clearly very close to the concept of an
algorithm: proofs are ways of building things. The theory
of constructive systems is an active research area, and
this collection contains chapters on the foundations of
such logics.

The field may be dominated by the constructivist
approach, but the chapter by Matthews, Smaill and
Basin outlines their work of a classical system due to
Feferman called FS,. In common with other work in
this area (that of Constable er al., and the work on the
Edinburgh LF), work on FS, is aimed at producing a
framework within which to construct other logics. The
kinds of logic used to provide a framework are examples

THE COMPUTER JOURNAL,

VoL. 37, No.3, 1993

20z Iudy 60 U0 189n6 Aq 088E0H/72Z/E/LE/I0ME/|UfLOS/WOY"dNO" IS PEDE//:SARY WO, PAPEOIUMOQ



Book REVIEWS 225

of meta logics—logics that describe other logics. It would
appear that constructive meta logics, particularly within
a computational setting, offer significant advantages over
classical ones, especially as far as effective computation
is concerned. However, the classical interpretation of
logic may still have some relevance to the process, and
the chapter on FS, is exciting and interesting.

The chapter by Matthews, Smaill and Basin appears
in the first section of the collection. The section is
concerned with logical frameworks in general and the
issue of representation within them. The introductory
chapter of this section, by Basin and Constable, serves
as an introduction to the issues raised by the framework
concept. It is worth emphasizing that logical frameworks
view the logic they directly implement and manipulate
as a meta logic: the logic used by, for example, software
engineers while specifying software may have a totally
different characterisation.

The second section is concerned with the development
of algorithms that can be used in logical environments.
For example, there is de Bruijn’s chapter which contains
the complete type-checking algorithm for a variant of
the lambda calculus. This is, apparently, the first time
such an algorithm has been presented in detail; it is
important because of the close connection between type
checking and deduction. In the following chapter, Bertot
presents a general method for determining the justifica-
tion of every part of a proof term: this allows the
automated explanation of why a proof succeeds or fails.

The third section deals with foundational issues in
logic, whereas the final section contains two papers on
experiments with logical environments. The inclusion of
reports of experiments is particularly welcome because
logical environments are intended to be tools that can
be used every day by working software and hardware
engineers (amongst others). The experiments in this
section of the book are, perhaps, a little abstract for
many software or hardware people (completion of the
rations and metric spaces and a proof that Ackermann’s
function is not Primitive Recursive), but they are long
proofs and show that many representational details must
be considered before proof can be attempted. The experi-
ments were conducted using different environments, so
comparisons can be made.

The book is aimed at the logically highly literate.
Some may well find the material forbidding (especially
the chapters that comprise section three) because of its
mathematical nature. It should be remembered, though,
that the collection represents the state of the art as
presented at a EU ESPRIT funded workshop and repres-
ents work in progress rather than completed products
and methodologies. As a consequence, the audience for
this book may be a little restricted to those involved in
theoretical computer science and formal methods. The
various chapters of the book are, nevertheless, clear in
exposition and treatment, although sometimes one
would like a little more detail. For those acquainted
with the concept of a logical environment and who are

aware of the work in this area, the appearance of this
book will be welcomed, even if the price is somewhat
high.

I. CraIG
Warwick University

PETER PADAWITZ

Deduction and Declarative Programming. Cambridge
University Press, 1992, £22.95, vi+279 pp hardbound,
ISBN 0-521-41723-6

To begin with declarative programming, the author
argues (in Chapter 2) that both functional and logic
programs can be described in the framework of Horn
formulas with equality. Each ‘clause’ in these programs
has premises which can be divided into a guard and a
generator which has recursive function calls or predic-
ates. The functional program returns a function value,
whereas the logic program computes solutions.

A set of such guarded Horn clauses can (under speci-
fied conditions) be converted into a Gentzen clause.
Computing in the declarative program now becomes
trying to prove the Gentzen clause and the emphasis
shifts to goal-directed techniques for doing this.

The solving expansion technique builds up a sequence
of pairs of a goal and a substitution, leading up to a
solution. Alternately, one can use a proving expansion,
where one builds a sequence of goal sets (regarded as
disjunctions). Thus one can work on several lemmas in
parallel. Chapters 4 and 5 deal with this.

To allow proofs which use an induction hypothesis,
one can work with an inductive expansion. Here, when
working on y<>d, the expansion heads towards another
instance of y, and eventually ends up with J. Clearly,
dividing premises into guards and generators is of great
help here. Most of Chapter 5 is concerned with inductive
expansion.

A different idea is to set up a rewriting system from
the specification and perform reduction. The author
generalizes this to a sub-p-reductive expansion and shows
how this relates to inductive expansion. (However, this
is different from rewriting-based semantics, as the author
is careful to point out.) This is dealt with in Chapters 6
and 7.

As can be seen from this summary, the book is an
impressive compendium on the subject of proving
Gentzen clauses which are relevant to functional and
logic programming. Some examples are presented,
including how to use EXPANDER, a Standard ML
implementation of inductive expansion. The logical
background required is built up in Chapters 1 and 3.

However, the book is far from being a ready reference
for the practitioner. A background in algebraic speci-
fication techniques and the rudiments of theorem prov-
ing is necessary for the reader. The examples are not
worked into the main theory but appear only as pages
of deduction (or records of program sessions). I would

THE COMPUTER JOURNAL,

Vor. 37, No.3, 1993

20z Iudy 60 U0 189n6 Aq 088E0H/72Z/E/LE/I0ME/|UfLOS/WOY"dNO" IS PEDE//:SARY WO, PAPEOIUMOQ





