Book REVIEWS 227

style over imperative programming is illustrated by
comparing Standard ML code and ANSI C code for
implementing a function which swaps two integers. For
readers acquainted with ANSI C, this is a clear illustra-
tion of the variable-oriented approach of imperative
programming; however, for readers who are unfamiliar
with any programming language and are using the text
as an introduction to programming, this comparison is
likely to be meaningless. The profusion of footnotes also
suggests difficulties in this dual-audience approach.

For those new to programming this book provides a
good introduction to the discipline, using the functional
style to illustrate sound design technique, supported by
a good range of examples and some intelligent exercises.
This text would also be useful for experienced program-
mers, perhaps already familiar with functional program-
ming, who wish to learn to use Standard ML. However,
for experienced programmers who wish to learn software
engineering in the functional style, this is not an appro-
priate text.

P. MUKHERJEE
University of Birmingham

R. J. MITCHELL
C+ + Object-Oriented Programming. Macmillan, 1993,
£15.99, 255 pp softbound, ISBN 0-333-58937-8

The main aim of this book is to teach object-oriented
programming methodology and to show how it can be
used in the development of large programs. C+ + is
used as the language for all the example code. No
previous knowledge of C+ + is necessary, but the book
assumes familiarity with either C, or a language similar
to Pascal, Ada or Modula-2. C programmers could jump
straight into this book, but for fans of other languages,
Appendix 1 gives a concise introduction to C.

The introduction is a good description of the basics
of object-oriented techniques, using examples in C+ +
and contrasting the object-oriented method with more
traditional approaches. It sets the high standards of
explanation and informal but clear tone found through-
out the rest of the book.

The whole of the remaining text is centred around the
development of a single example project, a drawing
package. The choice of a graphically-based example does
of course mean that a some of the code is compiler-
specific. The compiler chosen is the Borland C+ +
compiler, available only to the IBM-compatible PC
platform. For anyone without a PC, there are a few
parts of the program that would have to be altered if
the code is actually to work.

If all the code in the book were put together as the
reader progressed it would take little extra work to
produce a well-featured drawing package. I believe that
this is one of the best ways to learn the ins and outs of
object-oriented programming and C+ 4, and where
several other C+ + books I have read fall down: isolated
and incomplete examples lead to a lack of motivation

and understanding in many students. A disk is available
containing the finished package and answers to exercises.

Language features are introduced a few at a time in
a sensible order, all clearly explained. First come classes,
then inheritance, objects and pointers and finally stre-
ams. Motivation for the use of all these features is well-
provided, with examples from text and graphics window
classes, through the traditional linked list and tree
structures to the development of a context-sensitive help
system. Virtual funtions, operator overloading and
input/output are dealt with thoroughly.

For some reason, possibly because the compiler chosen
does not support it, templating is not covered. As
templating is one of the most powerful tools available
in C+ + I found this to be an unfortunate omission.

For people who have experience in other languages
and want a good introduction to both object-oriented
programming and C + +, especially as it is implemented
on the PC, I would recommend this book. Its few
drawbacks are outweighed by the clarity and thor-
oughness of its explanations.

M. B. M. GiBsON
Warwick University

P. J. PLAUGER
Programming on Purpose 1I. PTR Prentice Hall, 1993,
£21.25, 204 pp, softbound, ISBN 0-13-328105-1

This is the middle of three volumes of essays written by
the author for his column ‘Programming on Purpose’ in
the Computer Language magazine over a period of six
and a half years. Each volume has a theme, and the
subtitle of this one is Essays on Software People. As you
would expect, therefore, it is not a really technical book,
and it contains less technical detail than either of the
other two volumes, on Software Design and Software
Technology. Plauger has been involved in the software
industry over many years, first as a programmer, then
as the founder and manager of a software company, and
now as a consumer. This gives considerable authority
to his comments on any aspect of the industry. There is
a great deal of common sense and good humour, mixed
in with some obviously heart-felt advice. The 26 essays
make easy and entertaining reading, though I would
recommend they be read one at a time for best effect.
Each essay is followed by an afterword to complete
what were ongoing stories at the time of writing the
essay, or to report on the response to the original.
Although they are often very brief, these afterwords
definitely enhance the essays.

In spite of the subtitle, these are not essays about
individuals. They cover a wide range of issues related to
people, such as ethics, intellectual property, the duties
of reviewers and how not to antagonize customers. In
one or two of the essays the reader is reminded that
Plauger writes in an American context, but in the
software world no one can ignore the USA. His remarks
in three essays on language standardization, the result

THE COMPUTER JOURNAL,

VoL. 37, No.3, 1993

202 11V 0 uo 3sanb Aq ¥£6€0¥/.22/€/LE/9191KE/|uliod/woo dno"olwapede//:sdiy Woly papeojumoq



228 BooK REVIEWS

of his close involvement with the standard for C, are
both entertaining and instructive—and should be
required reading for all who argue about language
standards.

If T have any complaint about this book, it is just that
the price seems a little high. Maybe the intended audi-
ence has become accustomed to paying this sort of price
for more technical books and the publisher does not
expect large sales. Perhaps the strongest recommenda-
tion I can make, therefore, is to say that I went out and
bought volumes I and IIT on the strength of this volume,
and I look forward to further hours of educational
entertainment.

C. C. KiRkHAM
Manchester University

MARK NORRIS, PETER RIGBY AND MALCOLM PAYNE
The Healthy Software Project. John Wiley & Sons, 1993,
£24.95, 198 pp hardbound, ISBN 0-471-94042-9

The authors of The Healthy Software Project are
employees of British Telecom and have extensive experi-
ence of project management using process quality stand-
ards, principally ISO9001. They present some valuable
learning points, gleaned from their experience and schol-
arship. Readers that have worked in software develop-
ment may suffer, as your reviewer did, the aching of
old scars.

The book, as its title indicates, is structured around a
medical analogy: the authors have, mercifully, resisted
the temptation to call it a ‘paradigm’. Its eight chapters
introduce projects and the analogy; discuss the special
characteristics of software projects; describe some pro-
jects (good, bad and average); and cover symptoms of
project ‘disease’, therapy (including euthanasia), recovery
and health maintenance. Three appendices treat of qual-
ity management systems, product metrics, and a process
applicable to project recovery. The analogy is strained
at times, even to the inadvertent black humour of: ‘As
with people, it is the quality of life ... that is important
not mere survival. An invalid software project can cost
a fortune to keep.’

However, the most important message of the book—
often ignored in both theory and practice—is that
projects can be, and sometimes should be, recovered.
Project management is not merely about adequate plan-
ning and monitoring; it must also encompass recognition
of when things go wrong (they usually do), and what to
do to put them right. Starting with a clean sheet is as
rare a privilege for a project manager as it is for a
software designer.

The authors’ attempt to present their learning points
as an ordered collection is not entirely successful. We
find a number of radical remarks that are made once
and then ignored: ‘A QMS ... provides a basic level of
project control, but no more’. Yet the ‘therapies’ pro-
posed all seem to be process (‘management’) therapies:

for ‘sick’ projects, we need ‘the necessary control mechan-
isms to recover them’. Most radical (and very true): ‘the
production of software is a creative process and is
usually done on the roll’ (i.e. in a sustained, enthusiastic
burst by skilled and committed software writers). Quite:
the authors give lip service to ‘people’ (along with process
and product): but in none of their case histories do they
mention any of those extraordinary, talented, and often
wild people that write the best software, and recover
failing projects, technically. This is unquestionably a
book by and for project managers: it won’t fool your
techies any more than you do.

On metrics, the authors quote Professor Dijkstra
(‘Metrics is crap.’) but decline to engage with his argu-
ments. However, they remark that ‘many product meas-
ures ... are currently offered by the Snake Oil
Salesmen ... the consultants and the tool vendors, with
very little evidence that what can be measured is ...
useful to measure’. Would that we could make the right
judgement about metrics merely on the basis of who
promotes them: depend on those recommended by
employees of large corporations who get no commission
on sales?

Finally, a plea to the publisher: proof reading is as
important in your trade as testing is in ours. The reader
should be spared, at least, poor spelling (‘euthenasia’,
‘committment’) and punctuation (‘the customers aspira-
tions’); although the correct placement of ‘only’ is now-
adays perhaps more than we could hope (‘that will only
be achieved through projects ...”). Even more construct-
ive editing might have clarified, for instance, the ambigu-
ous ‘key drivers does ‘key’ mean ‘major’, ‘important’ or
‘essential’? does ‘drivers’ mean ‘resources’, ‘character-
istics’, or merely ‘factors? Perhaps the authors could
advise on TAM (Total Quality Management—neither
in the glossary; indeed—and for shame—there are no
acronyms in the glossary, and not all are in the index).

A. LARNER
De Montfort University

BONNIE A. NARDI
A Small Matter of Programming. MIT Press, 1993,
162 pp, hardbound, £29.95 ISBN 0-262-14053-5

In 1979, Bonnie Nardi tells us, she spent several months
in Papua New Guinea and came back with an account
of how its villagers communicated with slit-gongs. This
book is her account of what she has learned in several
years of studying the communications of another exotic
folk: users of application software packages. The burden
of Nardi’s account concerns the amazing ability of these
people to master formal systems and notations, and the
ways in which they co-operate with each other in their
spreadsheeting and computer assisted design.

These topics are—or ought to be—of vital interest to
the designers of software packages. However, plenty of
advice on usability has already been proffered to the

THE COMPUTER JOURNAL,

Vor. 37, No.3, 1993

202 11V 0 uo 3sanb Aq ¥£6€0¥/.22/€/LE/9191KE/|uliod/woo dno"olwapede//:sdiy Woly papeojumoq





