Basic Process Algebra with Iteration:
Completeness of its Equational Axioms

WAN FOKKINK* AND HANS ZANTEMA'

*CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
t Utrecht University, Padualaan 14, 3508 TB Utrecht, The Netherlands

Bergstra, Bethke and Ponse proposed an axiomatization for Basic Process Algebra
extended with (binary) iteration. In this paper, we prove that this axiomatization is
complete with respect to strong bisimulation equivalence. To obtain this result, we
will set up a term rewriting system, based on the axioms, and prove that this term
rewriting system is terminating, and that bisimilar normal forms are syntactically
equal modulo commutativity and associativity of the +.

1. INTRODUCTION

Kleene [8] defined a binary operator *y in the context
of finite automata, which denotes the iterate of x and
y. He formulated some algebraic laws for this operator,
notably (in our notation) z*y = z-z*y +y. Copi, Elgot
and Wright [6] proposed a simplification of Kleene’s set-
ting, e.g. they defined a unary version of Kleene’s star
in the presence of an empty word. The unary Kleene
star has been studied extensively ever since.

Redko [13] (see also [5]) proved for the unary Kleene
star that a complete finite axiomatization for language
equality does not exist. Salomaa [14] presented a
complete finite axiomatization which incorporates one
conditional axiom, namely (translated to our setting):
T =y -+ z implies x = y*z if y does not incorporate
the empty word €, or in other words if y + € is not equiv-
alent to y. According to Kozen [9] this last property is
not algebraic, in the sense that it is not preserved under
substitution of terms for actions. He has proposed two
alternative conditional axioms which do not have this
drawback. However, these axioms are not sound in the
setting of (strong) bisimulation equivalence.

Milner [10] studied the Kleene star in the setting
of bisimulation equivalence, and raised the question
whether there exists a complete axiomatization for it.
Bergstra, Bethke and Ponse [3] incorporated the binary
Kleene star into Basic Process Algebra (BPA). They
suggested three axioms BKS1-3 for BPA*, where axiom
BKS1 is the one from Kleene, while their most advanced
axiom BKS3 originates from [16]:

(Y- (z+y)z+2) = (x+y)z

In this paper we will prove that BKS1-3, together
with the axioms A1-5 for BPA, form a complete axiom-
atization for BPA* with respect to bisimulation equiv-
alence. For this purpose, we will replace iteration by
proper iteration x ®y. This construct executes x at

least one time, or in other words, = ®y is equivalent
to x - z*y. The axioms BKS1-3 are adapted to this
new setting, and we will define a term rewriting system
based on the axioms of BPA®. Deducing termination
of this TRS is a key step in this paper; we will apply
the strategy of semantic labelling from [17]. Finally, we
will show that bisimilar normal forms are syntactically
equal modulo commutativity and associativity of the +.
These results together imply that the axiomatization for
BPA* from (3] is complete with respect to bisimulation
equivalence. Moreover, the applied method yields an
algorithm to decide in finite time whether or not two
terms are bisimilar.

Sewell [15] has proved that if the deadlock é is added
to our syntax, then a complete finite equational axioma-
tization does not exist. In [7], however, it is shown that
if sequential composition and iteration are replaced by
their prefix counterparts, then six simple equational ax-
ioms are complete for this algebra.

2. BPA WITH BINARY KLEENE STAR

This section introduces the basic notions. For more de-
tails see [3]. BPA* assumes an alphabet A of atomic
actions, together with three binary operators: alterna-
tive composition +, sequential composition -, and bi-
nary Kleene star *. Table 1 presents an operational
semantics for BPA* in Plotkin style [12]. The special
symbol / in this table represents (successful) termina-
tion.

Our model for BPA* consists of all the closed terms
that can be constructed from the atomic actions and
the three binary operators. That is, the BNF grammar
for the collection of process terms is as follows, where
a € A:

p == al|p+plp-p|pp

In the sequel the operator - will often be omitted, so pq

THE COMPUTER JOURNAL,

VoLr. 37, No. 4, 1994

¥20z Iudy 01 uo 1senb Aq 621G /£/652/v/LE/e101e/|Uulwoo/wod dno-ojwepeoe//:sdiy wolj papeojumoq

260 W. J. FOKKINK AND H. ZANTEMA

TABLE 1. Action rules for BPA*

a2/
r -/ r 2

T+y——y+r T+y—z —y+zx

a a
x— x—
a a 7
Ty -S>y Ty -y
a a
T — z—

a a
x*y_}x*y x*y_)x/.w*y

y—y

y =/
z*yi»y'

Ty —— /

denotes p - q. As binding convention, * binds stronger
than -, which in turn binds stronger than +.

Process terms are considered modulo (strong) bisim-
ulation equivalence [11]. Intuitively, two process terms
are bisimilar if they have the same branching structure.

Definition 2.1 Two processes pg and qg are called
bisimilar, denoted by py <« qo, if there exists a symmet-
ric relation R between processes such that:

1. R(po; 9o),

2. if R(p,q) and p - p', then there is a transition
q — ¢ such that R(p',q’),

3. if R(p,q) and p = /, then ¢ = /.

Since the action rules in Table 1 are in path format [2],
it follows that bisimulation equivalence is a congruence
with respect to all the operators, which means that if
peop andgo ¢, thenp+g o p' +¢ and pg & p'q’
and p*q = p'*q'.

Table 2 contains an axiom system for BPA*. It con-
sists of the standard axioms A1l-5 for BPA, together
with three axioms BKS1-3 for iteration from [3]. Ax-
iom BKS3 stems from [16]. In the sequel, p = ¢ will
mean that this equality can be derived from the axioms
for BPA*.

The axiomatization for BPA* is sound with respect
to bisimulation equivalence, i.e. if p = ¢ then p < q.
Since bisimulation equivalence is a congruence, this can
be verified by checking soundness for each axiom sepa-
rately, which is left to the reader. The purpose of this
paper is to prove that the axiomatization is complete
with respect to bisimulation, i.e. if p & ¢ then p = q.

3. A CONDITIONAL TRS FOR BPA®

Our aim is to define a Term Rewriting System (TRS)
for process terms in BPA* that reduces each term to a

TABLE 2. Axioms for BPA*

Al x+y = y+«zx

A2 (z+y)+z = z+(y+2)
A3 T+ = T

A4 (z+y)z = zz+yz
A5 (zy)z = z(yz)
BKS1 z-ry+y = 'y

BKS2 *y-z = x*(yz2)
BKS3 z*(y-(z+y)'2+2) = (z+y)*=z

unique normal form, such that if two terms are bisimi-
lar, then they have the same normal form. However, we
shall see that one cannot hope to find such a TRS for
iteration. Therefore, we will replace it by a new, equiv-
alent operator p®q, representing the behaviour of p-p*q,
and we will develop a TRS for the algebra BPA®. From
now on, process terms are considered modulo commu-
tativity and associativity of the +.

3.1. Turning round two rules for BPA

The axiom A3 yields the expected rewrite rule
X+x — X

Usually, in BPA, the axiom A4 as a rewrite rule aims
from left to right. However, in BPA* we need this
rewrite rule in the opposite direction. Because for ex-
ample, in order to reduce the term a- (a+b)*c+b-(a+
b)*c + ¢ to the term (a + b)*c we need the reduction

a-(a+b)c+b-(a+b)*c — (a+b) - (a+b)ec
Hence, we define the rewrite rule for A4 the other way
round.
xz+yz — (x+Yy)z

In BPA the axiom A5 aims from left to right too, but
since we have reversed A4, we must do the same for A5.
Because otherwise the TRS would not be confluent. For
example, the term (ab)d+ (ac)d would have two different
normal forms:

a(bd) + a(cd) and (ab+ ac)d.
So we opt for the rule

x(yz) — (xy)z

3.2. Proper iteration

Although we have already defined part of a TRS that
should reduce terms that are bisimilar to the same nor-
mal form, we shall see now that such a TRS does not
exist at all.

THE COMPUTER JOURNAL,

VoL. 37, No. 4, 1994

¥20z Iudy 01 uo 1senb Aq 621G /£/652/v/LE/e101e/|Uulwoo/wod dno-ojwepeoe//:sdiy wolj papeojumoq

BAsic PROCESS ALGEBRA WITH ITERATION: COMPLETENESS OF ITS EQUATIONAL AXIOMS 261

Since z*y + z « z*y if y + 2z & y, such terms should
have the same normal form. Therefore, one would ex-
pect a rule:

'y+z—2x'y fy+z—y

However, this rule does not yield unique normal forms,
because we have turned round the rule for A4. For
example, the term a*(b + ce) + ce + de would have two
different normal forms:

a*(b+ ce) +de and a*(b+ ce)+ (c+ d)e.

To avoid this complication, we replace iteration by an
operator x ®y, called proper iteration, which has the
behaviour of z - z*y. (The standard notation for this
construct would be zty, but we want to avoid am-
biguous use of the +.) The operational semantics and
the axiomatization for proper iteration are given in Ta-
bles 3 and 4. They are obtained from the action rules
and axioms for iteration, using the obvious equivalence
z*y « 2%y + y. The axiomatization in Table 4 is com-
plete for BPA® if and only if the axiomatization in Table
2 is complete for BPA*.

TABLE 3. Action rules for proper iteration

r =z T/

=y — &' (2% + y) z®y =y +y

TABLE 4. Axioms for proper iteration

8 8

PIl z(z®y +y) ®y
PI2 (z%y)z = 2%(yz)
PI3 2®(y((z +9)®2+2) + 2) (z+y)°z+2)

Il
8

3.3. One rule for axiom PI2

Now that we have replaced iteration by proper itera-
tion, we can continue to define rewrite rules for this
new operator. We start with the one for axiom PI2.
The question is whether it should rewrite from left to
right or vice versa. If it would rewrite from left to right,
it would clash with the rule for A4. Because then the
term (a®b)c+ dc would have two different normal forms:

a®(bc) +dc and (a®b + d)c.
Hence, PI2 yields the rule

x®(yz) — (x%y)z

3.4. Four rules for axiom PI1
The next rule stems from axiom PI1.
x(x®y +y) — x®y

This rewrite rule causes serious complications concern-
ing confluence; it turns out that we need three extra
rules to obtain this property.

1. Firstly, a term z(y®z + 2) + y(y® 2z + z) has two
different reductions.

2(y®2 +2) +y°2 and (z+y)(y°2 +2)

So for the sake of confluence, one of these two reducts
should reduce to the other. If we would add the rule
(z+)%z +2) — z(¥®z + 2) + y®2 to the TRS,
then the term (ac + bc)((bc)®d + d) would have two
different normal forms:

(ac)((bc)®d +d) + (bc)®d and ((a+b)c)((bc)®d +d).
Hence, we opt for the rule
x(y’z+2) +y°z2 — (x+y)(y°z+2)

2. Secondly, a term z(y(y® 2z + 2)) has two different
reductions:

z(y®2) and (2y)(y®z + 2)

A rule (zy)(y®z+2) — z(y®z) clashes with the rule
for A5, because then the term (a(bc))((bc)®d + d))
would get two different normal forms:

a((bc)®d) and ((ab)c)((bc)®d + d)).
Therefore, we define
x(y®z) — (xy)(y®z+2)

3. Finally, a term z® (y(y® z + 2)) has two different
reductions.

z%(y%2) and (2%))(y¥®z + 2)

Since a rule (z%y)(y®z + z) — z®(y®2) would clash
with the rule for P12, we opt for

x*(y°z) — (x°y)(y"z+2)

3.5. Two conditional rules for axiom PI3

The obvious interpretation of axiom PI3 as a rewrite
rule,

(@ ((z +2)°2+2) +2) — a((@+2)°2+2)

obstructs confluence. Because if z and z’ are normal
forms, while the expression z + z’ is not, then after re-
ducing z + =’ we can no longer apply this rule. There-
fore, we translate PI3 to a conditional rule:

xX°(x'(y®’z+2)+2z) — x(y°z+z)ifx+x —»y

Again, this rule leads to a TRS that is not confluent;
a term z®(y(y®z + z) + 2) with 2 + y —» y has two
reductions:

22(y®2z+2) and z(y®z+ 2)

THE COMPUTER JOURNAL,

VoL. 37, No. 4, 1994

¥20z Iudy 01 uo 1senb Aq 621G /£/652/v/LE/e101e/|Uulwoo/wod dno-ojwepeoe//:sdiy wolj papeojumoq

262 W. J. FOKKINK AND H. ZANTEMA

So in order to obtain confluence, we add one last con-
ditional rule to the TRS.

xX°(y’z+2) — x(y°z+2z)ifx+y —>y

3.6. The entire TRS

The entire TRS is given once again in Table 5. It is easy
to see that all rules can be deduced from BPA®. As
usual, the rules are considered modulo commutativity
and associativity of the +.

TABLE 5. Rewrite rules for BPA®

1 T+ — T

2 zz+yz — (z+y)z

3 z(yz) — (2y)2

4 ¥(y2) — (%)

5. z(z®y+y) — 2%

6. r(®z+2)+1v%2 — (z+y) %2 +2)

7. a(y®z) — (zy) ¥z +2)

8. 2®(y°2) — (@Y (T2 +2)

9. %' (y¥2+2)+2) — z(¥®z+2)
fz+a —y

10. 2°(y®2+2) — z(y®2+2)

ife+y—y

The usual strategy for deducing that each term has
a unique normal form, is to prove that the TRS is both
weakly confluent (i.e. if some term has reductions p”
and p’, then there exists a term ¢ that reduces both to
p” and to p’), and terminating (i.e. there are no infinite
reductions). Because then Newman’s Lemma says that
the TRS is confluent, so that the TRS yields unique
normal forms.

Although our choice of rewrite rules has been moti-
vated by the wish for a confluent TRS, it is not so easy
to deduce this property yet, due to the presence of con-
ditional rules. The next example shows that the usual
method for checking weak confluence of a TRS, namely
to verify this property for all overlapping redexes, does
not work in a conditional setting.

Ezxample 3.1 Consider the TRS consisting of the
rules

flz) — b

a — ¢C

ifx —»a
There are no overlapping redexes, but this TRS is not
weakly confluent: f(c) «— f(a) — b.

However, it will turn out that the confluence prop-
erty is not needed in the proof of the main theorem,

which states that bisimilar normal forms are syntacti-
cally equal modulo commutativity and associativity of
the +. Hence, confluence will simply be a consequence
of this main theorem, together with the property of ter-
mination for the TRS.

3.7. Termination

Proving termination of the TRS in Table 5, modulo
commutativity and associativity of the +, is a compli-
cated matter. This is mainly due to the presence of
Rule 7, in which the right-hand side can be obtained
from the left-hand side by substituting terms for vari-
ables. A powerful technique for proving termination of
TRSs that incorporate such rules is the one of semantic
labelling [17], where operation symbols that occur in the
rewrite rules are supplied with labels, which depend on
the semantics of the arguments. Then two TRSs are
involved: the original system and the labelled system.
The main theorem of [17] states that the labelled system
terminates if and only if the original system terminates.
The theory of semantic labelling has been developed
for unconditional TRSs. Therefore, we adapt the TRS
in Table 5 to an unconditional TRS R, simply by re-
moving the conditions from the last two rules. We shall
prove that R is terminating, which immediately implies
termination of the conditional TRS in Table 5.

THEOREM 3.1 The TRS in Table 5 is terminating.

Proof The method from [17] starts with choosing a
model, which consists of a set M, and for each function
symbol f in the original signature with arity n a map-
ping fam : M™ — M, such that for every rewrite rule,
and for all possible values for its variables in the model,
the left-hand side and the right-hand side are equal in
the model. Here we choose the model to be the positive
natural numbers. Each process p is interpreted by its
norm |p|, being the least number of steps in which it
can terminate. This norm can be defined inductively as
follows:

la] = 1
lp+4q| = min{|pl,|q|}
lpgl = Ipl+1q|
Ip®ql = |pl+lq|

Note that norm is commutative and associative with re-
spect to the choice operator, which is essential in order
to obtain the termination result modulo commutativity
and associativity of this operator. Clearly norm is pre-
served under bisimulation equivalence. Since the Rules
1-8 of R are sound with respect to bisimulation, it fol-
lows that norm is preserved under application of these
rewrite rules. And it is easy to verify that Rules 9 and
10 of R, which are not sound because they lack their
original conditions, preserve norm too.

As labels for the operators sequential composition
and proper iteration we choose the positive natural
numbers. The atoms and the choice operator remain

THE COMPUTER JOURNAL,

Vor. 37, No. 4, 1994

¥20z Iudy 01 uo 1senb Aq 621G /£/652/v/LE/e101e/|Uulwoo/wod dno-ojwepeoe//:sdiy wolj papeojumoq

BAsiCc PROCESS ALGEBRA WITH ITERATION

: COMPLETENESS OF ITS EQUATIONAL AXIOMS 263

unchanged. In each ground term, the occurrences of se-
quential composition and proper iteration are labelled
as follows: we replace p- ¢ by p(|q|)q and p®q by p[|qllq.

Finally, for each rule in the TRS we construct a col-
lection of labelled rules. This is done by replacing the
variables in the original rule by all possible values in
the model, and computing the resulting labels for the
operators. This results in the following TRS R, where
the rules are defined for all positive natural numbers i
and j.

r+xr — I
z(i)z+yli)z — (z+y)i)z
z(i+) (y()z) — (z()y)()z

zli+Jlw()2) — (2liy)()2

(i) (zfily+y) — z[iy
z(i)(yli]z + 2) +ylilz — (

i+) (ylilz) — (x())y) () (yli]z + 2)

z[i +jl(ylilz) —

zli](2' () (yli)z + 2) + 2) — x(@)(yli]z + 2)
z[i)(ylilz +2) — z(i)(yli]z + 2)

The claim is that termination of R implies termination
of R. Because suppose that R admits an infinite re-
duction. Replace the variables in this reduction by a
constant a to obtain an infinite ground reduction in R.
For each symbol ‘-’ and ‘®’ that occurs in this reduc-
tion, compute its corresponding label. This way the
infinite ground reduction in R transforms into an infi-
nite ground reduction in R.

It remains to prove termination of R. Although R is a
TRS with infinitely many rules, this is much easier than
proving termination of R. Define a weight function w:

w(a) = 1
w(p+q) = wp)+w(q)
w(p(i)g) = w(p)+iw(q)
w(plilg) = w(p)+ (i + Hw(q)

It is easy to verify that for any choice of values for
variables in any rule, the weight of the left-hand side is
strictly greater than the weight of the right-hand side.
For example, in the case of Rule 7 these weights are

w(p) + (i+7)w(g) + (i+7)[+ Dw(r)
and w(p) + (1+5)w(q) + j(U +2)w(r)

respectively. And (i +7)(j +1) > j(j + 2) for 4,5 > 1.

Due to the strict monotonic behaviour of w (here it
is essential that ¢ > 0) we conclude that each reduction
step yields a strict decrease of weight. Hence the system
R is terminating, and so R is terminating. []

4. NORMAL FORMS DECIDE BISIMULA-
TION EQUIVALENCE

In the previous section we have developed a TRS for
BPA® that reduces terms to a normal form. Since

all rewrite rules are sound with respect to bisimulation
equivalence, it follows that each term is bisimilar with
its normal forms. So in order to determine complete-
ness of the axiomatization for BPA® with respect to
bisimulation equivalence, it is sufficient to prove that if
two normal forms are bisimilar, then they are provably
equal by the axioms A1,2.

4.1. An ordering on process terms

As induction base in the proof of our main theorem, we
will need a well-founded ordering on process terms that
should preferably have the following properties:

1. p<p+gq p < pq p < p%q
g<p+gq q <pgq q < pq

2. The ordering is preserved under bisimulation.

However, an ordering combining these properties is
never well-founded, because for such an ordering we
have

p°q <p°q+q <p(p°q+q)
Since p(p®q + q) < p%q, it follows that p®q < p®q.

The norm, indicating the least number of steps a
process must make before it can terminate, induces
an ordering that almost satisfies all desired proper-
ties. The only serious drawback of this ordering is that
Ip| > |p + q|- Therefore we adapt it to an ordering
induced by L-value, which is defined as follows:

L(p) = max{|p’| | p’ is a proper substate of p}

where ‘proper substate’ means that p can evolve into
p’ by one or more transitions. Since norm is preserved
under bisimulation equivalence, the same holds for L.

LEMMA 4.1 Ifp < q, then L(p) = L(q).

Proof Ifp' isaproper substate of p, then bisimilarity
of p and q implies that there is a proper substate ¢’ of
q such that p’ & ¢, and so |p'| = |¢’|. Hence, L(p) <
L(q), and by symmetry L(q) < L(p). [|

Let us deduce the inductive definition for L. Since
L(p + q) is the maximum of the collection

{|p'| | p’ proper substate of p}
U {|¢'| | ¢ proper substate of ¢}

we have L(p + q) = max{L(p), L(q)}. And L(pq) is the
maximum of the collection

{Ip'ql | P’ proper substate of p}
U {lgl} U {|¢| | ¢ proper substate of ¢}

so L(pg) = max{L(p)+|ql, L(q)}. Finally, L(p®q) is the
maximum of the collection

{lp'(p®q + q)| | p’ proper substate of p}
U {Ip°¢+4ql} U {l¢'| | ¢’ proper substate of ¢}

THE COMPUTER JOURNAL,

VoL. 37, No. 4, 1994

¥20z Iudy 01 uo 1senb Aq 621G /£/652/v/LE/e101e/|Uulwoo/wod dno-ojwepeoe//:sdiy wolj papeojumoq

264 W. J. FOKKINK AND H. ZANTEMA

so [p®q| = max{L(p) + |q|, L(q)}. Recapitulating, we
have found:

L@ = 0
L(p+q) max{L(p), L(q)}
L(pq) max{L(p) + |q|, L(q)}
L(p®q) = max{L(p)+lql, L(q)}

Hence, L-value too satisfies almost all the requirements
formulated above; only, we have inequalities L(q) <
L(pq) and L(q) < L(p®q), instead of the desired strict
inequalities. Therefore, we introduce a second weight
function g on process terms, defined by:

gla) = 0
glp+q) = max{g(p),9(q)}
glrg) = g(g)+1
9% = g(g)+1

Note that g-value is not preserved under bisimulation
equivalence. However, the following lemma holds.

LEMMA 4.2 Ifp — q, then g(p) > g(q).

Proof For each rewrite rule it is easily checked that
the g-value of the left-hand side is greater or equal
than the g-value of the right-hand side. Since the func-
tions that are used in the definition of g are weakly
monotonous in their coordinates, we may conclude that
g-value is never increased by a rewrite step. []

In the proof of the main theorem we will apply induc-
tion on a lexicographical combination of L-value and
g-value.

4.2. Some lemmas

We deduce three lemmas that will be used in the proof
of the main theorem. The first lemma is typical for
normed processes [1], i.e. for processes that are able
to terminate in finitely many transitions. This lemma
originates from [4].

LEMMA 4.3 Ifpr < gr, thenp & q.

o e a . .
Proof A transition p'r — p"r in pr cannot be mim-
. o . a .
icked by a transition ¢'r — r in gr, because |p’'r| > |r|.
oy a . . .
Hence, each transition p'r — p’’r is mimicked by a
’ a
transition ¢'r — ¢"r, and vice versa. This induces
a bisimulation relation between p and g; A transition
;) a) . .. cys ;) a "o
p’ — p" in p is mimicked by a transition ¢’ — ¢” in
q, and vice versa. [|

Definition 4.1 We say that two process terms p
and q have behaviour in common if there are p' and ¢
such that p —— p’ and ¢ — ¢ and p’ © ¢'.

LEMMA 4.4 If two terms pq and rs have behaviour
in common, and |q| > |s|, then either ¢ & ts for some
torqe s.

Proof If pg = q and rs — r's with ¢ & r’s, or
if pg = ¢ and rs — s with ¢ & s, then we are
done. And pg — p’q and rs —— s with p'q & s would
contradict |q| > |s].

Thus, the only interesting case is pg — p’q and
rs — r's with p'q & r’s. The inequality |¢| > |s]
yields |p’| < |r’|. We show, with induction on |p’|, that
p'q & r's together with |p’| < || indicates either g & ts
for some t or q & s.

If |p/| = 1, then p’ % /, and so p'q —— q. Since
p'q & r's, this transition can be mimicked by a transi-
tion r's — r”s or r's — s, and so ¢ & /s or q¢ & s,

respectively.
Next, let |p'| = n + 1. Clearly, there is a transi-
tion p’ - p” with [p”| = n. Since p'q = r's, and

p'q — p”q, there must be a transition r's —— 7”'s
with p”’q & r”s. And |r'| > n + 1 implies |r”| > n, so
the induction hypothesis learns that either ¢ — ts for
some t or q <« S. |

LEMMA 4.5 If pq or p®q is a normal form, then q
is not a normal form of a term rs.

Proof Suppose that q is a normal form of a term rs.
Each rule in Table 5 that applies to a term of the form
tu or t®u, reduces it to one of either forms again. So g
must be in one of either forms. But Rules 3, 4, 7 and
8 reduce p(tu) and p® (tu) and p(t®u) and p® (t®u),
respectively. Hence, pq and p®q are not in normal form.

n

4.3. The main theorem

Process terms are considered modulo commutativity
and associativity of the +. From now on, this equiv-
alence is denoted by p & ¢, and we say that p and q are
of the same form. Clearly, each process term p is of the
forma;+..+ar+pigi+... + g+ + ...+ 5.
The terms a; and p;q; and r;®s; are called the sum-
mands of p.

THEOREM 4.6 If two normal forms p and q are
bisimilar, then they are of the same form.

Proof In order to prove the theorem, we will prove
three extra statements in parallel, namely:

A. If two normal forms p = rs and ¢ = tu have common
behaviour, then s & u.

B. If two normal forms p = rs and ¢ = t®u have com-
mon behaviour, then s & t®u + u.

C. If two normal forms p = r®s and ¢
common behaviour, then r%s = t®u.

t® u have

Il

The statement in the main theorem is labelled D.

If L(p) = L(q) = 0, then both p and ¢ must be sums
of atoms. So in this case A and B and C are empty
statements. And D holds too, because bisimilarity of
p and ¢ indicates that they contain exactly the same

THE COMPUTER JOURNAL,

VoL. 37, No. 4, 1994

¥20z Iudy 01 uo 1senb Aq 621G /£/652/v/LE/e101e/|Uulwoo/wod dno-ojwepeoe//:sdiy wolj papeojumoq

BAsic PROCESS ALGEBRA WITH ITERATION: COMPLETENESS OF ITS EQUATIONAL AXIOMS 265

atoms, and Rule 1 ensures that both terms contain each
of these atoms only once.

Next, fix an m > 0 and assume that we have al-
ready proved the four statements for if L(p) and L(q)
are smaller than m. We will prove it for the case that
they are smaller or equal m. Let A, and B, and
C, and D, denote the assertions for pairs p,q with
max{L(p), L(¢)} < m and g(p) + g(q) < n. They are
proved by induction on n.

The case n = 0 corresponds with the case L(p) =
L(q) = 0, because if g(p) + g(q) = 0, then both p and
g must be sums of atoms. As induction hypothesis we
now assume A,, B,,C, and D,, and we shall prove
Ant1,Bnt1,Cryr and Dpyy.

1. Apyq is true.

Let normal forms rs and tu have behaviour in common,
with L(rs) < m and L(tu) < m and g(rs) + g(tu) =
n + 1. We want to prove s = u. Without loss of gener-
ality we may assume |s| > |u|, so Lemma 4.4 offers two
possibilities.

1.1 s & u.

L(s) < L(rs) < m and L(u) < L(tu) < m and g(s) +
g(u) < g(rs) + g(tu) = n + 1. Hence, D,, yields s & u.

1.2 s & vu for some v.

Let w be a normal form of vu. According to Lemma 4.2
g(w) < g(vu), so g(s) + g(w) < g(rs) + g(vu) =n +1.
Further, since s & w, L(w) = L(s) < m. Hence, D,
yields s = w. However, Lemma 4.5 says that s cannot
be a normal form of a term vu; contradiction.

2. Bp4 is true.

According to the previous point we may assume A, 1.
Let normal forms rs and t®u have behaviour in common,
with L(rs) < m and L(t®u) < m and g(rs) + g(t®
u) = n+ 1. We want to prove s = t®u + u. Since
t®u o t(t®u + u), Lemma 4.4 offers three possibilities.

2.1 s & t%u + u.

The term t®u + u is a normal form, because we cannot
apply Rules 1,2 or 6 to it. Moreover, g(s)+g(t®u+u) =
g(s) + g(t%u) = n, so D,, gives s = t®u + u.

2.2 vs « t®u 4 u for some v.

This implies v’'s < u for some v/, and we get a contra-
diction as in 1.2.

2.3 s & v(t®u + u) for some v.

Note that g(s) + g(v(t®u + u)) = n + 1, so we cannot
yet apply D,.

If v & t then s < t®u, so that D,, yields s = t®u.
But then Rule 7 reduces rs, so apparently v cannot be
bisimilar with ¢. So if v is a normal form, v(t®u + u) is
a normal form too.

First, consider a summand a8 of s. This term and
v(t®u + u) have behaviour in common, so A, yields

8= t%u +u.

Next, consider a summand a®3 of s. This term and
v(t®u + u) have behaviour in common, so Lemma 4.4
offers three possibilities.

-a®B+ 8 o tu+u
We have g(a®8+) +g(t*u+u) < g(s)+g(t%u) = n,
so D,, implies a®3+3 = t®u+u. Since the summands
of a®B + 8 and t®u + u with greatest size are a®g3
and t®u, respectively, it follows that a®3 = t®u.

- w(a®B + B) & t%u + u for some w.
Then w'(a®B + B) < u for some w’, and we get a
contradiction as in 2.2.

- a®B+ B & w(t®u + u) for some w.
Then 8 « w'(t%u+u) for some w’, and again we get
a contradiction as in 2.2.

So we may conclude o®3 = t%u.

If s contains several summands of the form o(t®u+u)
or t®u, then we can apply Rule 1,2 or 6 to s. However,
s is in normal form, so apparently it consists of a single
term a(t®u + u) or t®u. But then we can apply Rule 3
or 7 to rs, and again this is a contradiction.

3. Cp41 is true.

Assume normal forms r®s and t®u that have behaviour
in common, with L(r®s) < m and L(t®u) < m and
g(r®s) + g(t®u) = n + 1. We want to prove r®s = t%y,
Without loss of generality we assume [r®s| > [t®ul, so
once more Lemma 4.4 offers two possibilities.

3.1 7% + s & v(t%u + u) for some v.

Then s & v/(t®u + u) for some v'. This leads to a
contradiction as in 2.3.

327% +s o t%u +u.

First, suppose that s and u have no behaviour in com-
mon with t®u and r® s, respectively, so that s — u
and 7®s — t®u. Since D, applies to the first equiva-
lence, we get s = u. And the second equivalence yields
r(r®s+s) o t(t°u+u) & t(r®s + s), so Lemma 4.3
implies r & t. Since L(r) = L(t) < m, statement D
then gives r = t, and we are done.

So without loss of generality we may assume that s
and t®u have behaviour in common. If a summand af3
or v®6 of s has behaviour in common with t®u, then B,
or C,, implies 8 = t°u + u or v%6 = t®u, respectively. If
s contains several summands of the form a(t®u + u) or
t®u, then Rules 1,2 or 6 can be applied to it. However, s
is a normal form, so apparently it contains exactly one
such summand.

If © and 7®s have behaviour in common too, then
similarly u has a summand of the form 3(r®s + s) or
r®s, which indicates that u has greater size than s. But
on the other hand, s has a summand a(t®u + u) or t®u,
so s has size greater than u. This cannot be, so u and
r®s can have no behaviour in common.

And if u has behaviour in common with the summand
a(t®u + u) or t%u of s, then it follows from A, or B,

THE COMPUTER JOURNAL,

VoL. 37, No. 4, 1994

¥20z Iudy 01 uo 1senb Aq 621G /£/652/v/LE/e101e/|Uulwoo/wod dno-ojwepeoe//:sdiy wolj papeojumoq

266 W. J. FOKKINK AND H. ZANTEMA

or C,, that u has a summand of the form ~(t®u + u) or
t®u. Again we establish a contradiction; u has greater
size than itself.

So, s is of the form a(t®u + u) + s or t®u + ¢,
where s’ & u, and r®s + a(t®u +u) or r®s +t%u is
bisimilar with t®u. From D,, it follows that s’ = u. We
distinguish the two possible forms of s:

- s a(t®u+u) + u.
Then 7®s + a(t®u + u) & t®u, and so, since 7°
s+ o t*u4u, we have (r+a)(t®u+u) o t(t2u+u).
Then Lemma 4.3 implies r + a < ¢, so since L(r +
a) = L(t) < m, we obtain r + @ — t. But then
Rule 9 can be applied to 7®s = r®(a(t®u + u) + u).
Since r®s is a normal form, this is a contradiction.

- s = t%u+u.
Then r®s+t%u o t®u, and so, since r®s+s « t*u+u,
we have (r +t)(t®u + u) & t(t®u + u). This implies
r+t o t, so since L(r +t) = L(t) < m, we obtain
r 4+t — t. But then Rule 10 can be applied to
r®s = r®(t®u+ u), and once more we have a
contradiction.

4. Dp4q is true.

We may assume A1 and B,41 and Cr11. Let p and
g be bisimilar normal forms with L(p) = L(g) = m and
g(p) + g(q) =n + 1. We want to prove p = q.

First, we show that each summand of p is bisimilar to
a summand of g, and vice versa. Clearly, each atomic
summand a of p corresponds with a summand a of g.
We now show that each non-atomic summand of p is
also bisimilar to a summand of q.

Suppose that a summand rs of p has behaviour in
common with two summands of ¢. If these summands
are of the form tu and t'v/, then A, ; implies u = s =
u’, so that Rule 2 reduces this pair. And if they are
of the form tu and t' ® ', then A,.1 and B,y give
u s 2t'®y + 4, so that Rule 6 reduces this pair.
Finally, if they are of the form t®u and #'®u/, then B, 41
implies tPu+u = s 2 t/®u/+u’. This means t®u = t'®u/,
so Rule 1 reduces this pair.

Similarly, if a summand r®s of p has behaviour in
common with two summands of ¢, we find using B,+1
and Cp, 41 that Rule 1, 2 or 6 can be applied to this pair.

So, since ¢ is a normal form, the assumption of a
non-atomic summand of p having behaviour in common
with two summands of ¢ leads to a contradiction. By
symmetry, each non-atomic summand of q too can have
behaviour in common with only one summand of p. So
apparently, each non-atomic summand of p is bisimilar
with a non-atomic summand of ¢ and vice versa.

- Suppose that summands rs and tu are bisimilar.
Then A, implies s & u, so according to Lemma
4.3 r & t. Since L(r) = L(t) < m, we obtain r = t.

- If summands rs and t®u are bisimilar, then B, 1
implies s = t%u 4+ u. So r(t®u+u) ¥ rs o t°
v < t(t®u + u), and Lemma 4.3 implies r © t.

Since L(r) = L(t) < m, this yields r = t. Hence,
rs = t(t°u + u). But then we can apply Rule 5 to
rs; contradiction.

- Finally, if summands r® s of p and ¢t ® u of g are
bisimilar, then C,,;; says that they are of the same
form.

Hence, p and ¢ contain exactly the same summands.
Rule 1 indicates that each of these summands occurs
only once in both p and g, so p = q. []

COROLLARY 4.7 The azioms Al1-5 + BKS1-3 for
BPA* are complete with respect to bisimulation equiva-
lence.

Proof If two terms in BPA® are bisimilar, then ac-
cording to Theorem 4.6 their normal forms are of the
same form. Since all the rewrite rules can be deduced
from A1-5 + PI1-3, it follows that this is a complete
axiom system for BPA®. Then clearly A1-5 + BKS1-3
is a complete axiomatization for BPA*. u

ACKNOWLEDGEMENTS

Jan Bergstra is thanked for his enthusiastic support,
and Jos van Wamel for many stimulating discussions.

REFERENCES

[1] J. C. M. Baeten, J. A. Bergstra and J. W. Klop. De-
cidability of bisimulation equivalence for processes gen-
erating context-free languages. Journal of the ACM,
40(3):653-682, 1993.

[2] J. C. M. Baeten and C. Verhoef. A congruence theorem
for structured operational semantics with predicates.
In E. Best, ed., Proceedings CONCUR’93, Hildesheim,
LNCS 715, pp. 477-492. Springer-Verlag, Berlin 1993.

(3] J. A. Bergstra, I. Bethke and A. Ponse. Process algebra
with iteration and nesting. This issue.

[4] D. Caucal. Graphes canoniques et graphes algébriques.
Theoretical Informatics and Applications, 24(4):339-
352, 1990.

[5] J. H. Conway. Regular Algebra and Finite Machines.
Chapman and Hall, London, 1971.

(6] 1. M. Copi, C. C. Elgot and J. B. Wright. Realization of
events by logical nets. Journal of the ACM, 5:181-196,
1958.

[7] W. J. Fokkink. A complete equational axiomatisation
for prefix iteration. Report CS-R9415, CWI, Amster-
dam, 1994.

[8] S. C. Kleene. Representation of events in nerve nets
and finite automata. In Automata Studies, pp. 3—41.
Princeton University Press, Princeton, NJ, 1956.

[9] D. Kozen. A completeness theorem for Kleene alge-
bras and the algebra of regular events. In Proceedings
LICS’91, Amsterdam, pp. 214-225. IEEE Computer
Society Press, New York, 1991.

[10] R. Milner. A complete inference system for a class of
regular behaviours. Journal of Computer and System
Sciences, 28:439-466, 1984.

THE COMPUTER JOURNAL,

VoL. 37, No. 4, 199%4

¥20z Iudy 01 uo 1senb Aq 621G /£/652/v/LE/e101e/|Uulwoo/wod dno-ojwepeoe//:sdiy wolj papeojumoq

Basic PROCESS ALGEBRA WITH ITERATION

: COMPLETENESS OF ITS EQUATIONAL AXIOMS

267

(11]

(12]

[13]

(14]

[15]

(16]

(17]

D. M. R. Park. Concurrency and automata on infi-
nite sequences. In P. Deussen, ed., 5th GI Conference,
LNCS 104, pp. 167-183. Springer-Verlag, Berlin 1981.
G. D. Plotkin. A structural approach to operational
semantics. Report DAIMI FN-19, Computer Science
Department, Aarhus University, 1981.

V. N. Redko. On defining relations for the algebra
of regular events. Ukrainskii Matematicheskii Zhurnal,
16:120-126, 1964. In Russian.

A. Salomaa. Two complete axiom systems for the alge-
bra of regular events. Journal of the ACM, 13(1):158-
169, 1966.

P. Sewell. Bisimulation is not (first order) equationally
axiomatisable. Technical report, Department of Com-
puter Science, Edinburgh University, 1993. To appear
in Proceedings LICS’9).

D. R. Troeger. Step bisimulation is pomset equivalence
on a parallel language without explicit internal choice.
Mathematical Structures in Computer Science, 3:25-62,
1993.

H. Zantema. Termination of term rewriting by seman-
tic labelling. Report RUU-CS-92-38, Department of
Computer Science, Utrecht University, 1992. Revised
version RUU-CS-93-24. To appear in Fundamenta In-
formatice (special issue on term rewriting systems).

THE COMPUTER JOURNAL, VoL. 37,

No. 4,

1994

¥20z Iudy 01 uo 1senb Aq 621G /£/652/v/LE/e101e/|Uulwoo/wod dno-ojwepeoe//:sdiy wolj papeojumoq

