A Theory for Simulators

HENRI KORVER
CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

This paper presents a formalization of the notion simulator for process languages like
ACP, CCS, (x)CRL, LOTOS and PSF. Precise definitions for the notions simulator
and simulation are given. Moreover, the equivalence that a simulator induces on the
explored process terms is investigated. This is done by considering two processes
p and q equivalent if each simulation of p is also a simulation of ¢ and vice versa. It
is proven that there is no ‘reasonable’ simulator inducing bisimulation equivalence.

1. INTRODUCTION

Nowadays the so-called simulator tools can not be
thought away in the validation of concurrent system
specifications. A number of simulator tools have been
developed in the area of process algebra. In this setting
a simulator can be considered as a tool that is used
to explore the state space of process term in a certain
language. Examples are the simulators that have been
built for CCS [4], (1)CRL [14, 18], LOTOS [5, 6, 16, 7]
and PSF [17]. The basic working of these simulators is
as follows. From a given process term, the set of one-
step transitions is computed. Subsequently one of these
transitions is chosen and the next state, mostly given as
a process term again, is returned. Then the whole pro-
cedure can be repeated recursively for this next state.

To our knowledge this idea of the working of a simula-
tor has never been formalized in a general and structural
way. In this paper, we propose an exact definition for
the notion simulator. As far as we are aware all existing
simulator tools can be described as an instance of this
definition. The motivation of this work is that it allows
for studying simulator tools in a precise and meaningful
way.

More precisely, we define a simulator as a triple
Sim = (C, M, R) of recursive (computable) functions.
From a process term that is fed into the simulator, the
conversion function C computes the initial state of its
exploration. The menu function M computes the set of
all possible one-step transitions of a state in the explo-
ration. The residue function R computes the next state
when one of the transitions in the menu is chosen.

Once we have formalized the notion of a simulator,
we can investigate the equivalence it induces on process
terms. In particular, two process terms p and g are
equivalent exactly when each simulation of p is also a
simulation of g and vice versa. A simulation of a term
p is defined as a finite alternating sequence of menus
offered by the simulator and choices from these menus
(see Definition 3.1). To guide the intuition, consider
the two CCS processes a.a.0+a.a.0 and a.a.0+a.(a.0+
a.0). Although they are obviously bisimilar, for example

the Concurrency Workbench [4] (a toolbox including a
simulator for CCS) already distinguishes them in the
first menus:

M(a.a.0 + a.a.0) = {1: - a.0}
and M(a.a.0 + a.(a.0 + a.0)) =
{1: % a0; 2: % a.0+a.0}.

This poses the question: do there exist (in theory)
simulators inducing bisimulation equivalence? If so,
then we may be able to develop simulator tools that
do not confuse us with too many details and that still
visualise all the aspects of processes one could be inter-
ested in.* If not, then we know that a simulator does
not respect a fundamental process equivalence.

In this paper, it is shown that there does exist
a (highly theoretical) simulator inducing bisimulation
equivalence (see Theorem 7.1). However the working
of this simulator goes beyond any reasonable intuition.
For instance, the generated simulations do not match
with our ‘graph interpretation’ of processes. For rul-
ing out such ‘unreasonable’ simulators we introduce the
compatibility restriction in Definition 8.1. A simulator
is compatible with a particular equivalence class modelt
of process graphs if the graph of all the possible simula-
tions of a process term p is contained in the equivalence
class interpretation of p. For example, a simulator com-
puting the menu

M(a.0+ a.a.0) = {1: = a.0}

is not compatible with the standard bisimulation model
[11] where there are always two a-edges in the graph
interpretation of a.0 + a.a.0.

With the compatibility restriction we prove in Section
8 that in general there do not exist simulators induc-
ing bisimulation equivalence. Furthermore, there are

*Following the paradigm that bisimulation equivalence is the
most concrete behavioural equivalence one wants to impose, e.g.
[1].

T For technical reasons we restrict ourselves to process models
that can be represented by an equivalence class model of labelled
transition systems (LTS) denoted by LTS/ ~ . Nearly all existing
process models can be represented in such a way.

THE COMPUTER JOURNAL,

VoL. 37, No. 4, 1994

¥20Z Iudy 01 uo 1senb Aq 211G/ €162/ L1819 e |ulwoo/wod dno-ojwepeoe//:sdiy wolj papeojumoq

280 H. KORVER

simulators inducing coarser equivalences like ready and
trace equivalence. Unfortunately, such simulators are
unlikely to run in polynomial time (at least we could
not find them). We had the same experience with graph
isomorphism. Concluding, we expect that the equiva-
lence induced by an efficient simulator is at least finer
(less identifying) than bisimulation equivalence.

2. PRELIMINARIES

2.1. Labelled transition systems

In this paper, we restrict ourselves to the ‘interleaving
paradigm’ and consider labelled transition systems as
the basic model for processes.

Definition 2.1 A labelled transition
(LTS) is a 4-tuple T = (S, L, —,r), where:

system

® S is a set of states;

® [is a set of transition labels;

® C SxLx(SU{T}) is the transition relation where
T is a distinguished element called the termination
state;

® r ¢S is the root state.

The domain of LTS’s is denoted by LTS.

An element (s,a,s’) €— is called a transition, and is
usually written in a more ‘pictorial’ notation s — s’.
In this pictorial notation, the arrow — is also called
an edge. We shall use the following notations for tran-
sitions: (1) s - s’ for (s,a,s') €— (2) s — for
3s' s - 8 (3)sﬁal>fornotsi> (4) s —A for Va €
L:s/A5 (5) s "5 s, for s =5 57 225 55+ —2 5.
A state s is called a deadlock state if s Z T and s —A .

Definition 2.2 (Isomorphism.) Two LTS’s:
g,h € LTS are isomorphic, notation g ~ h, if there
ezists a bijective mapping between their sets of states
which preserves roots, termination states (T) and tran-
sitions.

The notion of bisimulation equivalence plays a central
role in this paper.

Definition 2.3 (Bisimulation.)
Let g; = (SiaLh_‘—’iari) (Z = 1,2) be LTS’s. A rela-
tion R C S1 X Ss is a (strong) bisimulation between g;
and go if it satisfies:

® 7‘1R’I‘2;
® — if sRt and s —, &', then there is a t' € Sy with
t —255 t' and s'Rt’.
— if SRt and t ——4 t', then there is a s’ € S; with
s —1 8 and s'Rt'.
® — ifsRtands —; T, thent —, T.
— if SRt andt ——, T, then s —; T.

LTS’s g1 and go are bisimilar, notation g; < go, if there
is a bisimulation between them. Note that bisimilarity
is an equivalence relation.

2.2. A process specification language

As a running example, we here present the language
of ACP [3]. ACP is chosen here as one of the many
algebraic formalisms for specifying processes (LTS’s),
like CCS, CSP and MEIJ E, but of course the other
candidates can be used equally well.

We consider the following ACP syntax:

p:=6|p-plp+plpllplal|du(p)|X where

® ¢ ranges over a finite set of actions A.

® HC A

® X ranges over a finite set Var = {X,Y,...} of vari-
ables. We say that a process expression p is guarded
iff every variable occurrence in p occurs in a subex-
pression aq of p. Recursive processes are defined by
a finite set of guarded equations

A={X,¥p|1<i<k}
where the X; are distinct variables from Var, and the
p; are guarded ACP expressions with free variables
in Var(A) ={Xy,..., Xk}

The set of ACP terms generated by p is denoted by
Terms(ACP) or just Terms when clear from the con-
text. A generic process is denoted by p, g, ... The oper-
ators to build process terms are sequential composition
p - p, summation p + p, parallel composition p || p and
encapsulation dy (p) which renames actions in H into é.
The constant 6 stands for deadlock. In a product p-q we
will often omit the ‘dot’ (-). We take sequential compo-
sition () to be more binding than other operations and
+ to be less binding than other operations. In case we
are dealing with an associative operator, we also leave
out the parentheses.

Definition 2.4 (The LTS specified by an ACP
term.) Suppose that an action set A, a symmetric com-
munication function v : A X A — A and a (recursive)
process declaration A are given. Then let — be the

transition relation defined by the action rules given in
Table 1. A term p € Terms(ACP) specifies the LTS:

S0S(p) & (Terms(ACP), A, —, p).

Usually, action rules like the ones presented in Ta-
ble 1 follow the structure of the process terms and are
therefore called SOS (acronym for Structural Opera-
tional Semantics) rules [12].

Definition 2.5 (An LTS equivalence class model
for ACP.) Let ~ be a given equivalence relation on LTS.
The equivalence class {g € LTS | g ~ SOS(p)} is the
interpretation of an ACP term p € Terms(ACP) in the
model LTS/ ~ .

3. A DEFINITION FOR A SIMULATOR

In the definition below we formalize a simulator as a
3-tuple Sim = (C, M, R) consisting of a conversion-,
menu- and a residue function.

THE COMPUTER JOURNAL,

VoL. 37, No. 4, 1994

¥20Z Iudy 01 uo 1senb Aq 211G/ €162/ L1819 e |ulwoo/wod dno-ojwepeoe//:sdiy wolj papeojumoq

A THEORY FOR SIMULATORS 281

TABLE 1. SOS rules for Terms(ACP).

a

a€ A a— T
pLT
pPqg—gq

2T

N p

p+qi>T q+pi>-|-

p—p
p-qg—p g
p——p
p+qg—>p q+p-Sp

/

pL)T

a /
“ . p_)p

If v(a,b) = ¢, then

a 4 b
p->p q-——gq
plla=p | d

p-5T g-¢

plla=>7 g qllp->ql|p

/

plla—=4d qllp->4q

p—T a¢g¢ H

On - _
a def a def

Recursion p—T X=pea p—p (X=peA
X-5T X %y

plla—>4q qlp—gq

pi»T q—b>T

pllg—=T

p——>p a¢H

Definition 3.1 (Simulator.) Let L = {p!,p?,...}
be an enumerable set of process terms, let Act =
{al,a?,...} be an enumerable set of actions, let S =
{s3,s%,...} be an enumerable set of states and let S’ =
{s1,s?,s%,s4,...} be the enumerable set S including the
special states s' = L and s*> = T. The function triple
Sim = (C, M, R) where

C:L-S (Conversion function)
M :S — Pgr(Act x N) (Menu function)
R:SxActxN—S" (Residue function)

is a simulator (for language L) if

® C,M and R are computable functions with respect
to the enumerations of L, Act, S and S'.}

® (a,i) € M(s) <= R(s,a,i) = L foralls €S, a €
Act and i € N.

In the definition above, Pg, (Act x N) denotes the set of
all finite subsets of Act x N.

tFormally this means that C, M and R can be coded by the
recursive functions ¢,m : N — N and r : N3 — N defined by
olt) = k <= C(pt) = s*; m(k) = CI({(L,3) | (a',i) € M(s*)});
and r(k,1,i) = s* <= R(s*,a!,i) = s*. The canonical index (CI)
of @is 0 and of {k1, kz, ..., k;} it is the number 2~1 42k2 4 42k
An ordered pair (k,!) is coded by %(l’c2 + 2kl + 12 + 3k + 1), see
[13]. However readers who are not familiar with recursion theory
can skip these definitions without any problem.

The intuition of the functions C, M, R is as follows.
The conversion function C : L — S maps a process term
in L to its initial (root) state in S.

The menu function M computes the set of actions
that the simulated process can perform in state s. These
actions are linked with a natural number ¢ > 0 to dis-
tinguish actions that are the same but lead to different
states.

Given a choice from the menu (a,i) € M(s) in the
current state s, the residue function R computes the
next state. In other words, (s,a,R(s,a,t)) is the a-
transition that is explored by the simulator by choosing
(a,i) from the menu M(s). M(s) = {a1,aq, dotsa,}
and The range of R includes two special symbols L and
T. R(s,a,i) = T means that after choosing (a,) from
the menu of s the termination state is reached. When
this is the case the simulator stops the exploration. The
L symbol is used to express that the next state is un-
defined. E.g. R(s,a,i) = L when (a,1) is not a choice
from the menu of s (see the last line of Definition 3.1).

Definition 3.2 (Polynomial simulator.) A simu-
lator Sim = (C, M, R) is polynomial if the functions
C,M and R can be computed in polynomial time with
respect to the size of their arguments.

THE COMPUTER JOURNAL,

VoL. 37, No. 4, 1994

¥20Z Iudy 01 uo 1senb Aq 211G/ €162/ L1819 e |ulwoo/wod dno-ojwepeoe//:sdiy wolj papeojumoq

282 H. KORVER

4. AN EXAMPLE OF A SIMULATOR

Many simulator tools [4, 5, 6, 16, 14] for process lan-
guages are implemented via action (SOS) rules. As an
example, we instantiate a simulator for ACP via the
SOS rules given in Table 1. This example is a simplifi-
cation but gives the underlying idea of the working of
many existing simulator tools.

Ezample 4.1 (SOS simulator for ACP.) Let A =

{a,b} and A = {P % abX + aa + b5, X % a}. De-

fine a simulator Sim = (C, M, R) for Terms(ACP) as
follows:

® S =L = Terms(ACP), Act = A.

® C(p)=pforallpel

® Let Succ(p,a) := {p' | p — p'} be the a-successor
set of state p € S, where — is defined by the action
rules in Table 1.

- M(p) = {(a,q) |0 < i < |Succ(p,a)|}

— The residue R(p, a,1) is defined as the i*" element
in the set Succ(p, a) with respect to an arbitrary
but fixed strict’ ordering < on SU{T}. Formally,
R(p,a,i) =

q if g€ Succ(p,a); and
vje{0,...,i—1} : R(p,a,j) < ¢; and
Vie{i+1,...,|Succ(p,a)l} : g<R(p,a,j)
L otherwise

In the example below, we assumre that < satis-
fles: a < b< X < bX.

For compact notation we often write a; for (a,3).
Now let us try to understand the working of the sim-

ulator given in Example 4.1. Let P 4l X + aa + b6

(with X def a) be a term in L that we want to explore
with the simulator. The initial state of process P is
given by the term C(P). The menu of C(P) is given
by M(C(P)) = M(P) = {a1,a2,b1} expressing that
the initial state of P has three outgoing edges denoted
by ai,as and b;. By selecting the edge a;, the next
state is given by R(P,a,1) = a because a < bX (see
the definition above). By selecting the edge a3, we have
R(P,a,2) = bX. By selecting b;, we enter a deadlock
state: R(P,b,1) = 4. This procedure can be repeated
recursively as pictured in Figure 1 until a termination
(T) or a deadlock (6) state is reached.

Without proof we remark that all the functions of
the simulator given in Example 4.1 can be computed in
polynomial time.

Proposition 4.1 The simulator given in Example
4.1 is polynomial.

There are also simulators that are based on rewriting
process terms into head normal form, e.g. the simula-
tor for uCRL developed by Emile Verschuren [18] and

§A strict ordering is a binary relation that is transitive, ir-
reflexive and total.

the PSF simulator [17]. In [10] it is shown how such
simulators can also be defined in our framework.

5. DEFINING A SESSION WITH A SIMU-
LATOR

A session of a term p with a simulator Sim = (C, M, R)
is obtained by selecting an element (a, %) from the menu
M(C(p)) and repeating this procedure recursively for
the ‘next’ state given by the state R(C(p), a,1).

Definition 5.1 (A session with a simulator.) Let
Sim = (C, M, R) be a simulator for L.

® M(C(p)) is a session (forp € L).

® Let p be a session ending in M(s) and let (a,i) €
M(s). If R(s,a,i) = T then ¢(a,1) is a session called
a termination session; otherwise ¢(a,i)M(R(s,a,i))
is a session. In case M(s) = 0 we call ¢ a deadlock
session, and in case M(s) # 0 we call ¢ a partial
session.

Ezample 5.1 Below all the sessions of P def b x +

aa + b, X 4ef 4 with the simulator given in Example
4.1 are summerized.

1. {ai,az2,b1} partial

2. {a1,a2,b1} a1 {a1} partial

3. {a1,a2,b1} a1 {a1} a1 terminated
4. {ai,az,b1} az {b1} partial

5. {a1,a2,b1} az {b1} b1 {a1} partial

6. {al,ag,bl} as {bl} b1 {(11} al terminated
7. {a1,a2,b1} by {} deadlock

For example, session 7 above expresses that the initial
state of the process graph of the process P has two
outgoing a-edges and one outgoing b-edge. By selecting
the b-edge the process evolves into a deadlock state.

6. THE SESSION SET SEMANTICS OF A
SIMULATOR

In this section, we provide a simulator with a semantics.
The session set semantics is in our opinion the most
logical first step to provide a simulator with a semantics.
In this semantics, a process term is modeled by the set
containing all possible sessions that can be obtained by
exploring this term with the simulator.

From this session set model, we derive two useful
models, the simulation set and simulation graph model,
which both make the same identifications on processes
as the session set model. The simulation set model is
introduced because it is an efficient representation of
the session set model and allows for easy notation. The
simulation graph model is introduced as a handy repre-
sentation for formulating a useful semantic criterion for
simulators in Definition 8.1.

THE COMPUTER JOURNAL,

Vor. 37, No. 4, 199%4

¥20Z Iudy 01 uo 1senb Aq 211G/ €162/ L1819 e |ulwoo/wod dno-ojwepeoe//:sdiy wolj papeojumoq

A THEORY FOR SIMULATORS 283

C(P)=P
M(P) = {a1,a2,b1}

R(P,a,2) = bX
M(bX) = {b1)

R(P,a,1) =a
M(a) = {a1}
ali
a1

R(bX,b,1) = X
M(X) = {a1}

def

FIGURE 1. The working of the example simulator on the input of the process P def abX + aa+ b6, X = a.

6.1. Session set and simulation set model

Definition 6.1 (Session set of a term induced by
a simulator.) Let Sim = (C, M, R) be a simulator for
L. The session set of a process term p € L induced by
Sim is given by

SES sim (p) = {all simulation sessions of p with Sim }

Definition 6.2 (Equivalence on terms induced by
a simulator.) A simulator Sim = (C, M, R) induces an
equivalence =g;,, on L as follows:

P =5im ¢ <> SES gim(p)=SESsim(q) for allp,q € L.

In the following, we show that if we leave out the menus
in a session set we still have the same identifications on
process terms.

Definition 6.3 (Simulation.) Let ¢ be a session
with a simulator. Define a simulation @ as follows:

® [f o = M(s°) then

® Ifo=M(s°)(a% i) M(s')...(a" 1t in_1)M(s™)
then

aiO)"'(anvin)T'

In words, a simulation ¥ is defined as session ¢ where
the menus are left out. In case ¢ is a termination
session, a termination symbol f is appended. The
empty simulation A corresponds to the simulation ses-
sion ¢ = M (s?) where the menu of the initial state is
displayed but no choice has yet been made.

Definition 6.4 (Simulation set induced by a sim-
ulator.) Let Sim = (C, M, R) be a simulator for L. The

simulation set of a term p € L induced by Sim is given
by the set

SIM sim (p) = {P| ¢ € SES sim(p)}-
In respect with Example 5.1, we have
SIM sim (P) = {\,a1,a1011, a2, agby, agbrast, by }.

THEOREM 6.1 Let Sim = (C, M, R) be a simulator
for L. For every p,q € L, we have that the following two
statements are equivalent:

1. SIM sim(p) = SIM gim(q)
2. SES sim(p) = SES sim(q).

6.2. Simulation graph model

Below we give a possible definition of the LTS of a term
that is explored by a simulator.

Definition 6.5 (The LTS of a term ezxplored by a
simulator.) The LTS of a term p € L explored by a
simulator Sim = (C, M, R) is given by

LTSSim(p) = ((ACt X N)* X SaACtv -, (/\,C(p)))

where — 1is defined by the following rules (one for each
a € Act,i € N;s€S,o € (Act x N)*):

(o,9) =T if R(s,a,1) =T;

(0,8) = (ca;, R(s,a,1)) if a; € M(s) and
R(s,a,i) #T.

We often call LTS sim(p) the simulation graph of p.

This definition shall be used to formalize a semantic
criterion for simulators in Definition 8.1.

In Figure 2, one can see that a state, say g, in the
simulation graph consists of two components ¢ = (o, s).

THE COMPUTER JOURNAL,

Vor. 37, No. 4, 1994

¥20Z Iudy 01 uo 1senb Aq 211G/ €162/ L1819 e |ulwoo/wod dno-ojwepeoe//:sdiy wolj papeojumoq

284 H. KORVER

FIGURE 2. LTSg;,,(P) where P % abX + aa + b6, X < a.

The first component o € (Act x N)* is the sequence of
choices (simulation) leading to q. o can be considered as
a unique identifier for state q. The other component s €
S is the information for computing the next transitions
of ¢. Note that once the simulation graph is built the
second component can be left out.

The LTS of term P explored by the simulator given
in Example 4.1 is presented in Figure 2.

COROLLARY 6.2 Let Sim = (C,M,R) be a sim-
ulator for L. For every p,q € L, the following four
statements are equivalent:

1. SESs,'m(p) = SESSim(q)

2. SIM sim(p) = SIM sim(q)

3. LTSSim(p) = LTS sim (q)

4. P =gim q (by definition)

When we write LTS gim(p) = LTS gim(q) in the corol-
lary above, we just mean that the graphs are set equiva-
lent, e.g. ({1},0,0,1) = ({1,1},0,0,1). Note that this is
less identifying than for instance isomorphism (). For
example, ({1},0,0,1) ~ ({2},0,0,2) but ({1},0,0,1) #
({2},0,0,2).

7. SOUNDNESS AND COMPLETENESS OF
A SIMULATOR

In this section we develop the machinery for relating
the term-identification of a simulator with the term-
identification of the well-known process models which
have been developed in process algebra [8]. The follow-
ing definition says that a simulator Sim is sound with
respect to a process model M if the processes identified
by Sim are also identified by M. ¥

Definition 7.1 (Soundness.) A simulator Sim
for a language L is sound with respect to a model M
if for all p,q € L it holds that p =gjm g => M =p=gq.

YA model M = (I,D) for L is a mapping I : L — D where
D is a semantic domain. Let p,q € L, we write M Ep=gqiff
I(p) = I(q).

Conversely, we say that a simulator is complete with
respect to a model M if the processes identified by M
are also identified by Sim.

Definition 7.2 (Completeness.) A simulator Sim
for language L is complete with respect to a model M
if for all p,q € L it holds that M= p=q = p =gim q.

The following definition gives insight in how the SOS
simulator given in Example 4.1 is related with the
graph isomorphism model (LTS/ ~) and the bisimu-
lation model (LTS/ <).

Proposition 7.1 Let Sim be the simulator given
in Example 4.1.

1. Sim is sound with respect to LTS/ ~ as given in
Definition 2.5.

2. Sim is not complete with respect to LTS/ ~.

. Sim is sound with respect to LTS/ < .

4. Sim is not complete with respect to LTS/ < .

w

Proof

1. Straightforward by inspection of the definitions of
the simulator given in Example 4.1 and the graph
isomorphism model LTS/~ .

2. LTS/ ~= aX + ab = aa + ab. But Sim distin-
guishes them: a;1b; € SIM g;m(aX + ab) and a1b; &
SIM gim (aa+ab). Note that this distinction is caused
by the fact that the simulator given in Example 4.1
respects the ordering a < b < X.

3. Immediate by 7.1.1 by using the fact that isomor-
phism is strictly finer than bisimulation (in symbols:
~C o).

4. Immediate by 7.1.2. Or as follows: LTS/ & k
aa+aa = aa+a(a+a). But Sim distinguishes them:
M(aa+aa) = {a,} and M(aa+a(a+a)) = {a1,az}.

|

Proposition 7.1 says that the simulator given in Ex-
ample 4.1 induces an equivalence that is strictly finer
than graph isomorphism and bisimulation. The follow-
ing theorem states that in theory there exists a simula-
tor that is sound and complete with respect to bisimu-
lation semantics.

THEOREM 7.1 There ezists a simulator Sim =
(C, M, R) for Terms(ACP) that is sound and complete
with respect to LTS/ & as given in Definition 2.5.

We shall prove this theorem by constructing a simulator
with the required properties. In doing this we need a
projection operator which can be added to the syntax
of ACP (as given in Section 2.2) as follows:

p:=... | m(p) withneN.

The terms of ACP extended with a projection oper-
ator is denoted by Terms(ACP,PR). The operational

THE COMPUTER JOURNAL,

VoL. 37, No. 4, 1994

¥20Z Iudy 01 uo 1senb Aq 211G/ €162/ L1819 e |ulwoo/wod dno-ojwepeoe//:sdiy wolj papeojumoq

A THEORY FOR SIMULATORS 285

semantics of the projection operator is given by the fol-
lowing SOS rules (one for each n € N and a € A):

p—p

nt1(p) = T (p')

Intuitively, 7,(p) allows p to perform n moves freely,
and then stops it. The following lemma is the core of
the proof of Theorem 7.1.

LEMMA 7.2 There exists a computable coding
function 7.7 : Terms(ACP,PR) — N such that for all
terms p,q € Terms(ACP,PR) and all n,m € N it holds
that

" (p) = "1m(q)" &= LTS/ = = 7n(p) = Tm(q)-

Now we can construct a simulator that is sound and
complete with respect to the bisimulation model.

Proof (Theorem 7.1.) Define a simulator Sim =
(C, M, R) for Terms(ACP) as follows:

® Let S = Terms(ACP) x N and let Act = {a} where a
is an arbitrary but fixed action (not necessary in A).
A state (p,n) € S determines the current projection
mn(p) of the simulated process p.
® C(p) = (p,1). The initial state of p is determined by
its first projection 7 (p).
® M((p,n)) = {(a,1), (a,2),.., (a, 7a(p)}. So, the
number of elements in the menu is exactly the encod-
ing of the n* projection of p. Note that the actual
contents of this menu does not play a role but only its
cardinality is what counts. By Lemma 7.2 we know
that this coding takes care that bisimilar terms are
identified.
® R((p,n),a,i) =
(pymn+1) ifi < m,(p)” and
"m0 (p) # "t (p)”
T if Tmn(p)”" ="t (p)”
L otherwise

The residue function takes care that the depth of the
projection is incremented by one in each step of the
simulation. Note that a termination symbol (T) is
returned when the projection reaches a fixed-point:

Tn(P) = Tny1(p).
||

So, the intuition of the bisimulation simulator is that
the cardinality of the menu that is displayed after n
steps in the simulation of term p, exactly corresponds
to the encoding of Lemma 7.2. This encoding takes care
that bisimilar terms are identified. It is obvious that the
working of this simulator goes far beyond any reason-
able intuition and in the next section we shall develop
an criterion to rule out such simulator definitions.

As a final remark, we note that we could not find a
bisimulation simulator which runs in polynomial time.

8. THE NON-COMPATIBILITY OF A
BISIMULATION SIMULATOR

We find that the working of the bisimulation simulator
given in the previous section goes beyond any ‘reason-
able’ intuition. For example the simulation graph of the
ACP term a + b induced by the simulator constructed
in Section 7 only contains a-actions. But if we think in
terms of for instance bisimulation semantics we find it
reasonable that there must also occur an b action in the
graph interpretation of a + b. And therefore we want to
rule out such simulator definitions. This can be done
by imposing an extra semantic criterion, besides sound-
ness and completeness, on the definition of a simulator
as follows.

Definition 8.1 (Compatibility of a Simulator.)
Let LTS/ ~ be a model for language L given by the
interpretation function I : L — LTS/~ . A simulator
Sim for language L is compatible with LTS/ ~ if for
all p € L it holds that LTS gim(p) € I(p). We say that
a simulator Sim respects a model M if Sim is sound,
complete and compatible with M.

This definition says that a simulator is compatible with
an equivalence class model LTS/~ if for each simulated
term p the corresponding simulation graph LTS g;m(p)
is contained in the equivalence class interpretation of p
in LTS/~ (denoted by I(p)).

REMARK 8.1 We write a™ for the n-fold sequential
composition of an action a € A with itself: a-a... -
a. We write Y1, p; (where p; € Terms(ACP)) as a
shorthand for p; + p2 ...+ p,. As a special case, we let

0
> i—1 Pi denote 6.

THEOREM 8.1 There are (finite) A,~v, A such that
there is no simulator Sim = (C, M, R) for language
Terms(ACP) that respects (is sound, complete and
compatible with) LTS/ < .

Proof 1In [2, 15] it is shown that we can choose fi-
nite A,7,A in such way that we can exhibit a term
U2CM,, € Terms(ACP) (for each n € N) whose LTS
behaves like a universal 2-counter machine on input n.
Then LTS/« k= U2CM, = X (where X ¥ 4. X € A)
iff the counter machine diverges. This is a nonrecursive
problem [9]: let K be a recursively enumerable but not
recursive subset of N, then n ¢ K <= LTS/ o E
U2CM, = X.

Now suppose Sim = (C, M, R) is a simulator of the
intended kind. From the menu function M we define
an auxiliary function B : S x Act — N defined by

B(p,a) = |(a,7) € M(p)|.

This function counts the number of a-transitions that
can be chosen from the menu M (p). Note that because
M is a computable function it directly follows that B
is also a computable function.

THE COMPUTER JOURNAL,

VoLr. 37, No. 4, 1994

¥20Z Iudy 01 uo 1senb Aq 211G/ €162/ L1819 e |ulwoo/wod dno-ojwepeoe//:sdiy wolj papeojumoq

286 H. KORVER

Now let B(C(X),a) = k with k > 1. And define the
process Y = ¢ U2CM,, - b' (see Remark 8.1). Then
we have:

®nc K= B(C(Y),a) > k+ 1, because the initial
state C(Y') of process Y has at least k + 1 outgoing
a-edges by compatibility with LTS/ < .

®n¢ K = B(C(Y),a) = B(C(X),a) = k by com-
pleteness.

Combining the last two implications, we have
B(C(Y),a) =k<=n¢K,

which contradicts the fact that B is a computable func-
tion. So there can never exist a simulator that respects
bismulation semantics. []

To guide the intuition consider the processes a- P+a-Q
and a- P where P and @ are arbitrary ACP terms. Now
a simulator respecting bisimulation should compute the
same menu for these processes if P and @ are bisimilar
because then also a- P+a-Q and a- P are bisimilar (by
compatibility). However this contradicts the fact that
bisimulation equivalence is undecidable for (recursive)
ACP terms [2, 15].

We conjecture that we can prove similar (negative)
results as Theorem 8.1 in a setting of LTS/ ~ (graph
isomorphism), LTS/ ~pr (failure trace), LTS/ ~gr
(ready), LTS/ ~p (failure), LTS/ ~cr (completed
trace). The definition of these equivalences can be
found in [8]. However, there do exist simulators re-
specting LTS/ ~pgr (ready trace) and LTS/~ (trace).
In [10] the following theorem is proven.

THEOREM 8.2 There exists a simulator Sim for
language Terms(ACP) respecting LTS/ ~pgr (ready
trace) and there exists a simulator respecting LTS/ ~r
(trace).

The idea behind this result is that in trace semantics,
we do not have to decide whether or not the menu
M(a- P+ a- Q) consists of one or two choices. Via the
well known trace law a- P+a-Q =a- (P + Q) we can
always compute deterministic menus: M(a-P+a-Q) =
M(a- (P + @Q)) = {(a,1)} without running into decid-
ability problems. Similar arguments can be given for
ready trace semantics. However, we could not find sim-
ulators respecting LTS/ ~gr or LTS/ ~7 that run in
polynomial time.

9. SUMMARY AND CONCLUSION

Table 2 summerizes the results of this paper: it shows
the existence (Y) or non existence (N) of simulators re-
specting (being sound, complete and compatible with
respect to) the well-known process models that have
emerged from process theory [8]. In addition, informa-
tion is given about the computational complexity of a
simulator in question: ‘P’ indicates the existence of a

polynomial simulator and ‘—P’ indicates that we could
not find a polynomial simulator with the required prop-
erties. A question mark (?) in the table expresses that
the existence or the non existence of a certain simulator
is conjectured (Yes?, No?). The symbols I, B, RT, FT,
R, F, CT, T are taken from [8] and respectively stand
for the models LTS/~ (graph isomorphism), LTS/ &
(bisimulation), LTS/ ~grr (ready trace), LTS/ ~pr
(failure trace), LTS/ ~g (ready), LTS/ ~F (failure),
LTS/ ~cr (completed trace), LTS/~ {trace).

From the first row in the table above one can make
up there are simulators that are sound with respect to
all the models mentioned in the table. This depends on
Proposition 7.1 which states that the simulator given
in Example 4.1 is sound with I (graph isomorphism).
(This directly implies that this simulator is also sound
with respect to all the other models in the table). Fur-
thermore we know by Proposition 4.1 that this simula-
tor runs in polynomial time which is denoted by P in
the table.

In the second row one can see that we could not find
efficient simulators that are sound and complete with
respect to one of the models in the table.

In the third row it is shown that we can prove with
a reasonable restriction, i.e. the compatibility criterion,
that there do not exist simulators that are sound and
complete with bisimulation semantics (denoted by B in
the table).

All these observations together confirm our belief
that an efficient simulator must be less identifying than
bisimulation and maybe even less identifying than graph
isomorphism.

ACKNOWLEDGEMENTS

I am very grateful to Jan Bergstra for being the person
really understanding and backing up my ideas. Without
his help and mental support this paper would have never
reached its current form. Further I would like to thank
Willem Jan Fokkink, Steven Klusener, Alban Ponse and
Frits Vaandrager for feedback and suggestions. Finally,
I would like to thank an anonymous referee for spotting
bugs in, and for his helpful comments on, a previous
draft of this paper.

REFERENCES

(1] S. Abramsky. Observation equivalence as a testing
equivalence. Theoretical Computer Science, 53:225-
241, 1987.

[2] J. A. Bergstra and J. W. Klop. The algebra of re-
cursively defined processes and the algebra of regular
processes. Report IW 235, CWI, Amsterdam, 1983.

[3] J. C. M. Baeten and W. P. Weijland. Process Algebra.
Cambridge Tracts in Theoretical Computer Science 18.
Cambridge University Press, Cambridge, 1990.

[4] R. Cleaveland, J. Parrow, and B. Steffen. A semantics-
based tool for the verification of finite-state systems. In
Proceedings of the Ninth IFIP Symposium on Protocol

THE COMPUTER JOURNAL,

VoL. 37, No. 4, 1994

¥20Z Iudy 01 uo 1senb Aq 211G/ €162/ L1819 e |ulwoo/wod dno-ojwepeoe//:sdiy wolj papeojumoq

A THEORY FOR SIMULATORS 287

(5]

(6

(7]

(8]

(9]

[10]
(11]

(12]

[13]

[14]

(15]

[16]

(17]

TABLE 2. Summary.

I B RT FT R F CT T

sound Y[YD) Y@D)[Y((@)|Y((71)|Y(71)]Y(71)|Y(71)
P(41) | P (41) | P (41) | P (41) | P (41) | P (41) | P (41) | P (4.1)

sound & Y? Y (7.1) | Y (8.2) Y? Y? Y? Y? Y (8.2)
complete

~P -P -P -P -P -P -P -P
sound & N? N (81)|Y(82)| N? N? N? N? Y (8.2)
complete &
compatible

-P -P -P -P -P -P -P

Specification, Testing and Verification, Lecture Notes in
Computer Science, pp. 287-302. North-Holland, Ams-
terdam, 1990.

H. Eertink. SMILE detailed design document. LOTO-
SPHERE technical report Lo/WP2/T2.2/UT/N0012,
University of Twente, 1991.

P. H. J. van Eijk. The design of a simulator tool. In
van Eijk et al. [7], pp. 351-390.

P. H. J. van Eijk, C. A. Vissers, and M. Diaz, editors.
The Formal Description Technique LOTOS. North-
Holland, Amsterdam, 1989.

R. J. van Glabbeek. The linear time — branching
time spectrum. In J.C.M. Baeten and J.W. Klop, ed-
itors, Proceedings CONCUR 90, Amsterdam, volume
458 of Lecture Notes in Computer Science, pp. 278-297.
Springer-Verlag, Berlin, 1990.

J. E. Hopcroft and J. D. Ullman. Introduction to Au-
tomata Theory, Languages and Computation. Addison-
Wesley, Reading, MA, 1979.

H. Korver. A theory of simulator tools. Report CS
9302, CWI, Amsterdam, 1993.

R. Milner. Communication and Concurrency. Prentice-
Hall International, Englewood Cliffs, NJ, 1989.

G. D. Plotkin. A structural approach to operational
semantics. Report DAIMI FN-19, Computer Science
Department, Aarhus University, 1981.

H. Rogers. Theory of Recursive Functions and Effec-
tive Computability. McGraw-Hill Book Co., New York,
1967.

SPECS. Intermediate report on methods and tools in
CRL/MR. Document D5.19, European project RACE
1046: Specification Environment for Communication
Software (SPECS), 1992.

D. A. Taubner. Finite representation of CCS and
TCSP programs by automata and Petri nets, volume
369 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, 1989.

J. Tretmans. HIPPO: a LOTOS simulator. In van Eijk
et al. [7], pp. 391-396.

G. J. Veltink. The PSF toolkit. In Computer Networks
and ISDN Systems, number 25. North-Holland, Ams-
terdam, 1993.

[18] J. A. Verschuren. A simulator for yCRL in ASF+SDF.

Report P9203, Programming Research Group, Univer-
sity of Amsterdam, 1992.

THE COMPUTER JOURNAL,

VoL. 37,

No. 4, 1994

¥20Z Iudy 01 uo 1senb Aq 211G/ €162/ L1819 e |ulwoo/wod dno-ojwepeoe//:sdiy wolj papeojumoq

