Book REVIEWS 349

therefore recommend the book to someone with a back-
ground and interest in theorem proving techniques,
especially related to algebraic specification.

Without detracting from the merits of this book, let
me end with a tribute to Donald Knuth: we have got so
used to seeing TeX-quality mathematical typesetting,
that one wishes the publishers of this book had also
typeset it in TeX.

K. Lopaya
Institute of Mathematical Sciences, Madras

RACHEL HARRISON
Abstract Data Types in Standard ML. Wiley, 1993,
£19.95, 212 pp softbound, ISBN 0-471-93844-0

The notion of abstraction is a vital one in software
engineering—addressing the different phases of software
development at the appropriate level of detail is a pre-
condition for the construction of high-quality, reusable
software. This book tackles the issue of data abstraction
in a functional framework, using the language Standard
ML (SML) as the implementation language.

In keeping with conventional texts on abstract data
types, the book looks at the normal range of data
structures such as lists, stacks, queues and trees. Each
data structure is specified informally in terms of pre-
and post-conditions and implemented generically using
SMUL’s structures. Throughout the book the twin goals
of correctness and modularity are emphasised.

The book is not intended as an introductory text to
functional programming nor to SML. Herein lies its
principle problem—the amount of knowledge assumed
on the part of the reader is not clear. The preface states
that some familiarity with functional programming is
assumed; however on opposite pages we find the term
‘head of list’ defined whereas curried functions are used
without explanation—it is difficult to imagine a reader
who understands the latter without already understand-
ing the former! Other minor quibbles are that the use
of pre/post specifications is at times inconsistent (varying
from vague type requirements to precise relationships
between function arguments) and the inexplicable lack
of use of SML’s exception handling mechanism (using
instead hd O to raise every exception).

These points aside, this book has admirable objectives
and, by and large, achieves them. The advantage of the
functional approach is that the relationship between
specifications and implementations is clear, unlike in
conventional treatments where this relationship is easily
lost in the mire of code. For those students of software
engineering with a good grasp of functional program-
ming, who wish to learn the rudiments of data abstrac-
tion, this is an excellent text.

P. MUKHERJEE
University of Birmingham

CoLIN MYERS, CHRIS CLACK AND ELLEN POON
Programming with Standard ML. Prentice-Hall, 1993,
£19.95, 301 pp softbound, ISBN 0-13-722075-8

This book is intended as an introduction to functional
programming using a functional subset of Standard ML.
It is aimed at those with little programming experience
as well as more experienced programmers who wish to
learn about functional programming. It intentionally
differs from other texts on the same subject by avoiding
mathematics and mathematical reasoning whenever pos-
sible, instead concentrating on more practical program-
ming issues.

The book begins by introducing fundamental func-
tional programming concepts such as expressions, types
and referential transparency. From there, the notion of
a function is introduced. Simple examples of functions
are presented and the ideas of recursion and polymorph-
ism are described. The principle of allotting a single
purpose to each function when decomposing a problem
is continually stressed, both explicitly and by example.

The third chapter is a long chapter on lists. The
notion of a list is introduced, functions over lists are
described and different kinds of recursion over lists are
discussed. An extended example is presented—a function
similar to the Unix grep command—to demonstrate that
‘real’ software can be written in a functional program-
ming language. The remaining distinguishing property
of functional programming, namely curried and higher
order functions, is described in chapter 4, having been
motivated by the introduction of lists. Standard func-
tions such as map, foldl and foldr are introduced.

Chapters 5-7 give a detailed description of the features
available in Standard ML, based on the ideas of
local definitions, encapsulation, information hiding and
modularity. Thus these chapters are concerned with
more practical issues than the preceding chapters which
attempt to teach the principles of sound program design
in a functional style.

A consequence of the intentional absence of mathem-
atics is that there is no mention of proving properties of
programs. In particular, correctness is not treated at all.
Related ideas such as validation of functions are similarly
absent. These aspects of software construction are hardly
dry theoretical issues; on the contrary, they are vital for
software construction to be considered as an engineering
discipline. Moreover, this is one area where functional
programming languages score heavily over imperative
languages because referential transparency greatly eases
reasoning. Even if a detailed treatment of program proof
and correctness was undesirable, a brief discussion of
the merits of correctness by construction would have
been sufficient.

The book also occasionally runs into problems due
to its stated ambition of appealing to both those with
little or no programming experience and experienced
programmers wishing to learn a functional language.
For instance, the relative simplicity of the functional

THE COMPUTER JOURNAL,

VoL. 37, No.4, 1994

$20Z Iudy || uo1senb AqQ v1GG/E/61E /L /e101e/|ulWwoo/wo0 dno-ojwepeoe//:sdiy wolj papeojumoq

