Book REVIEWS 349

therefore recommend the book to someone with a back-
ground and interest in theorem proving techniques,
especially related to algebraic specification.

Without detracting from the merits of this book, let
me end with a tribute to Donald Knuth: we have got so
used to seeing TeX-quality mathematical typesetting,
that one wishes the publishers of this book had also
typeset it in TeX.

K. Lopaya
Institute of Mathematical Sciences, Madras

RACHEL HARRISON
Abstract Data Types in Standard ML. Wiley, 1993,
£19.95, 212 pp softbound, ISBN 0-471-93844-0

The notion of abstraction is a vital one in software
engineering—addressing the different phases of software
development at the appropriate level of detail is a pre-
condition for the construction of high-quality, reusable
software. This book tackles the issue of data abstraction
in a functional framework, using the language Standard
ML (SML) as the implementation language.

In keeping with conventional texts on abstract data
types, the book looks at the normal range of data
structures such as lists, stacks, queues and trees. Each
data structure is specified informally in terms of pre-
and post-conditions and implemented generically using
SMUL’s structures. Throughout the book the twin goals
of correctness and modularity are emphasised.

The book is not intended as an introductory text to
functional programming nor to SML. Herein lies its
principle problem—the amount of knowledge assumed
on the part of the reader is not clear. The preface states
that some familiarity with functional programming is
assumed; however on opposite pages we find the term
‘head of list’ defined whereas curried functions are used
without explanation—it is difficult to imagine a reader
who understands the latter without already understand-
ing the former! Other minor quibbles are that the use
of pre/post specifications is at times inconsistent (varying
from vague type requirements to precise relationships
between function arguments) and the inexplicable lack
of use of SML’s exception handling mechanism (using
instead hd O to raise every exception).

These points aside, this book has admirable objectives
and, by and large, achieves them. The advantage of the
functional approach is that the relationship between
specifications and implementations is clear, unlike in
conventional treatments where this relationship is easily
lost in the mire of code. For those students of software
engineering with a good grasp of functional program-
ming, who wish to learn the rudiments of data abstrac-
tion, this is an excellent text.

P. MUKHERJEE
University of Birmingham

CoLIN MYERS, CHRIS CLACK AND ELLEN POON
Programming with Standard ML. Prentice-Hall, 1993,
£19.95, 301 pp softbound, ISBN 0-13-722075-8

This book is intended as an introduction to functional
programming using a functional subset of Standard ML.
It is aimed at those with little programming experience
as well as more experienced programmers who wish to
learn about functional programming. It intentionally
differs from other texts on the same subject by avoiding
mathematics and mathematical reasoning whenever pos-
sible, instead concentrating on more practical program-
ming issues.

The book begins by introducing fundamental func-
tional programming concepts such as expressions, types
and referential transparency. From there, the notion of
a function is introduced. Simple examples of functions
are presented and the ideas of recursion and polymorph-
ism are described. The principle of allotting a single
purpose to each function when decomposing a problem
is continually stressed, both explicitly and by example.

The third chapter is a long chapter on lists. The
notion of a list is introduced, functions over lists are
described and different kinds of recursion over lists are
discussed. An extended example is presented—a function
similar to the Unix grep command—to demonstrate that
‘real’ software can be written in a functional program-
ming language. The remaining distinguishing property
of functional programming, namely curried and higher
order functions, is described in chapter 4, having been
motivated by the introduction of lists. Standard func-
tions such as map, foldl and foldr are introduced.

Chapters 5-7 give a detailed description of the features
available in Standard ML, based on the ideas of
local definitions, encapsulation, information hiding and
modularity. Thus these chapters are concerned with
more practical issues than the preceding chapters which
attempt to teach the principles of sound program design
in a functional style.

A consequence of the intentional absence of mathem-
atics is that there is no mention of proving properties of
programs. In particular, correctness is not treated at all.
Related ideas such as validation of functions are similarly
absent. These aspects of software construction are hardly
dry theoretical issues; on the contrary, they are vital for
software construction to be considered as an engineering
discipline. Moreover, this is one area where functional
programming languages score heavily over imperative
languages because referential transparency greatly eases
reasoning. Even if a detailed treatment of program proof
and correctness was undesirable, a brief discussion of
the merits of correctness by construction would have
been sufficient.

The book also occasionally runs into problems due
to its stated ambition of appealing to both those with
little or no programming experience and experienced
programmers wishing to learn a functional language.
For instance, the relative simplicity of the functional

THE COMPUTER JOURNAL,

VoL. 37, No.4, 1994

¥20Z Iudy 01 uo 1senb Aq 656G/ £/61E/P/LE/e101E/|UlWoo/Wo0 dno-ojwepeoe//:sdiy wolj papeojumoq



350 Book REVIEWS

style over imperative programming is illustrated by
comparing Standard ML code and ANSI C code for
implementing a function which swaps two integers. For
readers acquainted with ANSI C, this is a clear illustra-
tion of the variable-oriented approach of imperative
programming; however, for readers who are unfamiliar
with any programming language and are using the text
as an introduction to programming, this comparison is
likely to be meaningless. The profusion of footnotes also
suggests difficulties in this dual-audience approach.

For those new to programming this book provides a
good introduction to the discipline, using the functional
style to illustrate sound design technique, supported by
a good range of examples and some intelligent exercises.
This text would also be useful for experienced program-
mers, perhaps already familiar with functional program-
ming, who wish to learn to use Standard ML. However,
for experienced programmers who wish to learn software
engineering in the functional style, this is not an appro-
priate text.

P. MUKHERIJEE
University of Birmingham

R. J. MITCHELL
C+ + Object-Oriented Programming. Macmillan, 1993,
£15.99, 255 pp softbound, ISBN 0-333-58937-8

The main aim of this book is to teach object-oriented
programming methodology and to show how it can be
used in the development of large programs. C+ + is
used as the language for all the example code. No
previous knowledge of C+ + is necessary, but the book
assumes familiarity with either C, or a language similar
to Pascal, Ada of Modula-2. C programmers could jump
straight into this book, but for fans of other languages,
Appendix 1 gives a concise introduction to C.

The introduction is a good description of the basics
of object-oriented techniques, using examples in C+ +
and contrasting the object-oriented method with more
traditional approaches. It sets the high standards of
explanation and informal but clear tone found through-
out the rest of the book.

The whole of the remaining text is centred around the
development of a single example project, a drawing
package. The choice of a graphically-based example does
of course mean that a some of the code is compiler-
specific. The compiler chosen is the Borland C+ +
compiler, available only to the IBM-compatible PC
platform. For anyone without a PC, there are a few
parts of the program that would have to be altered if
the code is actually to work.

If all the code in the book were put together as the
reader progressed it would take little extra work to
produce a well-featured drawing package. I believe that
this is one of the best ways to learn the ins and outs of
object-oriented programming and C+ +, and where
several other C+ + books I have read fall down: isolated
and incomplete examples lead to a lack of motivation

and understanding in many students. A disk is available
containing the finished package and answers to exercises.

Language features are introduced a few at a time in
a sensible order, all clearly explained. First come classes,
then inheritance, objects and pointers and finally stre-
ams. Motivation for the use of all these features is well-
provided, with examples from text and graphics window
classes, through the traditional linked list and tree
structures to the development of a context-sensitive help
system. Virtual funtions, operator overloading and
input/output are dealt with thoroughly.

For some reason, possibly because the compiler chosen
does not support it, templating is not covered. As
templating is one of the most powerful tools available
in C+ + I found this to be an unfortunate omission.

For people who have experience in other languages
and want a good introduction to both object-oriented
programming and C + +, especially as it is implemented
on the PC, I would recommend this book. Its few
drawbacks are outweighed by the clarity and thor-
oughness of its explanations.

M. B. M. GiBsoN
Warwick University

P. J. PLAUGER
Programming on Purpose I1I. PTR Prentice Hall, 1993,
£21.25, 204 pp, softbound, ISBN 0-13-328105-1

This is the middle of three volumes of essays written by
the author for his column ‘Programming on Purpose’ in
the Computer Language magazine over a period of six
and a half years. Each volume has a theme, and the
subtitle of this one is Essays on Software People. As you
would expect, therefore, it is not a really technical book,
and it contains less technical detail than either of the
other two volumes, on Software Design and Software
Technology. Plauger has been involved in the software
industry over many years, first as a programmer, then
as the founder and manager of a software company, and
now as a consumer. This gives considerable authority
to his comments on any aspect of the industry. There is
a great deal of common sense and good humour, mixed
in with some obviously heart-felt advice. The 26 essays
make easy and entertaining reading, though I would
recommend they be read one at a time for best effect.
Each essay is followed by an afterword to complete
what were ongoing stories at the time of writing the
essay, or to report on the response to the original.
Although they are often very brief, these afterwords
definitely enhance the essays.

In spite of the subtitle, these are not essays about
individuals. They cover a wide range of issues related to
people, such as ethics, intellectual property, the duties
of reviewers and how not to antagonize customers. In
one or two of the essays the reader is reminded that
Plauger writes in an American context, but in the
software world no one can ignore the USA. His remarks
in three essays on language standardization, the result

THE COMPUTER JOURNAL,

VoL. 37, No.4, 1994

¥20Z Iudy 01 uo 1senb Aq 656G/ £/61E/P/LE/e101E/|UlWoo/Wo0 dno-ojwepeoe//:sdiy wolj papeojumoq





