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It is shown how a graphics device can be given pictures to display which reveal its own underlying

structure, its dimensions and its faults.
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1. INTRODUCTION

Superimposed periodic patterns often produce interfer-
ence. The interference caused by superimposed families
of curves was studied in general form by Firby and
Hubbard (1990). The approach used there, and used
again in this current paper, is that of simple spatial
domain mathematics. Other approaches to the analysis
of interference are possible as can be seen in Bryngdahl
(1976), Harthong (1981) or in Kendig (1980).

An analysis of the interference of direct relevance to
the process of printing appeared in Tollenaar (1957), in
Steinbach and Wong (1979) and more recently in
Amidror (1991).

Here we consider the application of the ideas of
interference to the practical problem of analysing the
presented structure and the resolution of a graphics
device.

2. DETERMINING THE STRUCTURE

In covering a plane area by dots or pixels we can assume
two independent translations are in operation. The
pattern produced can then be interpreted in terms of
two-dimensional crystallography and the array produced
by the centres of the dots or pixels will be the associated
two-dimensional lattice.

It is known that the only possible periods for a
rotational symmetry operation of a two-dimensional
lattice are 2, 3, 4, and 6 (Coxeter, 1969; Hoggar, 1992).
Examples of two-dimensional lattices with periods 2, 4
and 6 are shown in Figure 1(a—c), and we note that a
family of parallel lines, as shown in Figure 1(d), has
period 2.

Suppose a lattice L; with period n, is superimposed on
a lattice L, with period n,, and then the whole picture is
rotated. The lattice L; will regain its initial configuration
n, times within 27, while L, will regain its initial
configuration n, times. It follows that the full picture
will regain its initial configuration n times within 2,
where n is the greatest common divisor of n; and n,.

Thus if two lattices of the form shown in Figure 1(c),
each of period 6, are superimposed then the resulting
picture will again have period 6. This is shown in Figure

2(a). However, if a lattice of the form shown in Figure
1(c), with period 6, is superimposed on a lattice of the
form shown in Figure 1(b), with period 4, then the
resulting picture will have period 2. This is illustrated in
Figure 2(b). Similarly a lattice of the form shown in
Figure 1(a) superimposed on a lattice of the form shown
in Figure 1(b), will produce a picture of the type shown in
Figure 2(c), with period 2. In each case the superimposed
lattice has been slightly rotated to bring out the
interference.

Now when a picture is presented on a monitor or on a
printer the process involved is better described as a
composition of two functions. Instead of the picture
being superimposed on the underlying structure of the
device it is filtered through this underlying structure.
However, the same principles apply. The centres of the
pixels or dots form an underlying two-dimensional
lattice. If the Dirichlet region of a point in this lattice
has non-empty intersection with the picture then the
associated pixel or point is ‘switched on’. Then if the
underlying two-dimensional lattice has rotational period
n, and the picture has period n, the observed picture will
have period n = ged(ny, ny).

Using these ideas we can ask a visual devise to ‘analyse
its own structure’ by presenting suitable pictures.

Figure 3(a) shows what happens when a console is
asked to present a picture of a two-dimensional lattice
with suitable spacing and with period 6, of the form
shown in Figure 1(c). The observed picture has period 2
from which we deduce that the underlying pixel structure
cannot have period 3 or 6. Figure 3(b) shows what
happens when the same console is asked to present a
picture of a two-dimensional lattice of period 4 of the
form shown in Figure 1(b) but slightly rotated. The
observed picture has period 2 from which we deduce that
the underlying pixel structure has period 2. Moreover the
observed picture has the form of Figure 2(c). The dots in
the square lattice are evidently interfering with horizon-
tal sequences of pixels and vertical sequences of pixels in
the underlying structure to produce the sides of the
parallelograms. We are led to the conclusion that the
two-dimensional lattice associated with the underlying
pixel structure is a rectangular lattice similar to that
shown in Figure 1(a).
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FIGURE 1. (a) A rectangular lattice, period 2. (b) A square lattice, period 4. (c) A hexagonal lattice, period 6. (d) Parallel lines, period 2.

3. DETERMINING THE RESOLUTION

Now that the visual devise has demonstrated the form of
its underlying structure and we recognise it as a
rectangular grid, we seek a way for the device to
demonstrate the dimensions of the grid which it actually
presents, i.e. to demonstrate its resolution.

Interference between two families of curves has the
effect of magnifying any variations displayed by the
families. By viewing a suitable picture and observing the
interference caused by the interaction of the picture and

the underlying rectangular lattice, we can use this
magnification effect to estimate the lattice dimensions.
The simplest form of interference, that between two
families of parallel lines with equal spacing A and
inclined at a small angle 6, is shown in Figure 4. Here
the spacing A is the perpendicular distance from the
centre of one line to the centre of the next and the
interference will show for any angle 6 less than
approximately 45° (Firby and Hubbard, 1990). The
interference is again a family of parallel lines.
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FIGURE 2. (a) A hexagonal lattice superimposed on a hexagonal lattice. (b) A hexagonal lattice superimposed on a square lattice. (c) A rectangular
lattice superimposed on a square lattice.

In general if ¢ : U — R is smooth, where U is open in
R? and where y is a regular value of ¢ for each y € ¢(U)
(i.e. ¢(x) =y implies V¢(x) # (0,0)), then the set
{¢"'(h) : h € H}, where H is some suitable finite or
countable ‘indexing set’, defines a family of curves. At
x € ¢~ '(h) we define the local spacing at x, denoted by
A(x), to be the arc length from x to ¢ ' (h + 1) along the
orthogonal curve to the family through x. It has been
shown (Firby and Hubbard, 1990) that 1/||V¢(x)|| can

be taken as an approximation to the local spacing at x
and that this value is exact in the case of the parallel lines
above.

For two superimposed families of curves described by
the functions ¢ and v the spacing at a point determines
the order of interference seen at that point (Firby and
Hubbard, 1990). If the spacing of one family is no more
than 1.5 times that of the second then the first order
interference will be seen. This interference follows curves
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Figure 3. (a) A hexagonal lattice viewed on a monitor. (b) A square lattice, slightly rotated, viewed on a monitor.

in the direction of the shortest diagonals 4B of the
parallelogram shown in Figure 5, and is described by one
of the functions ¢ + v (Firby and Stone, 1984).

If the spacing of one family is between 1.5 and 2.5
times that of the second then at that point second order
interference will be seen, provided the crossing angle is
small enough. This is the interference which follows
curves in the direction of the shortest diagonal 4B of the
parallelogram shown in Figure 6 and is described by one
of the functions ¢ & 21 or 2¢ + .

In a similar way nth order interference follows curves
in the direction of the shortest diagonal of a parallelo-
gram made up from one section of a ¢ curve and n
sections of a i curve, or of one section of a i curve and n
sections of a ¢ curve. This is described by ¢ + ny or
by n¢+1 and will be seen for sufficiently small
angles when the spacing of one family is between
(2n—1)/2 and (2n+1)/2 times that of the other
family. Fractional orders of interference, e.g. the 3/2th
order interference given by 3¢ =+ 2, can also occur but
in normal conditions they are usually very weak. See
Firby and Hubbard (1990) for an explanation of why this
is so.

Now suppose we are given a family of parallel lines,
described by

Blx,y) =% =1(1€),

where d is the fixed spacing, and a family of radial lines
described by

piy) = ~tan ! (2) =5 (s 2,)

where 1 is defined on some suitable subset of R* and
where o = 27/m is the angle between consecutive rays.
Here Z denotes the set of integers and Z,, denotes the set
of integers modulo m.

The effect of the superposition of these two families is
shown in Figure 7. The variation in the spacing of the
radial lines shows up in the appearance of several
different orders of interference.

With a view to our application the picture of the radial
lines has been started, at the left hand side of the picture,
at the point where the local spacing is d and increasing.
The first interference seen on the left is therefore the first
order interference, and moving right the next strong
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FIGURE 3. (Contd).

interference seen is the second order interference
centered on the points where the local spacing of the
radial lines is 2d. Between these a faint ‘ghost’ of the 3/
2th order interference can be seen and beyond the second
order the even more faint forms of the 5/2th order
interference can be seen.

From the above we see that the local spacing for v at
(x,y) is given by

1 o +yh)
IVl (=Xl

and so the points forming the centre of the nth order
interference are given by

a(x* +37)2,

o(x? +y2)7] = nd.

The point on the x-axis at the centre of the nth order
interference is therefore given by
_nd

X )
«

and so the distance u between the centre of the nth order
interference and the centre of the (n-+ 1)th order

interference is

d
H=—
[0
where « is the angle between consecutive radial lines and
where d is the distance between consecutive parallel lines.

Now return to the investigation of the underlying
rectangular grid structure of our visual device. This
structure described horizontal and vertical lines whose
distance apart, the resolutions of the device in the vertical
and horizontal directions, we wish to measure.

Let the horizontal lines in the grid be described by the
function ¢(x,y) above, in which case the vertical
resolution we seek is d. On the device view a picture of
the family of radial lines given by ¢(x, y). The observed
picture will be completely filled from the centre of the
radial lines up to the points where the local spacing is d.
After this the interference shown in Figure 7 will appear,
close to the x-axis. (Close to the y-axis the radial lines will
be interfering with the vertical component of the
underlying grid and so will give an estimate for the
horizontal resolution.) Now if we measure the distance
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between the centres of consecutive orders of interference

The results of the above demonstration, and of similar
experiments carried out on different devices, are listed in

Device

(horizontal/vertical)

Console type 2

(vertical)
oooooooooooo
(horizontal/vertical)
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FIGURE 7. A family of radial lines superimposed on a family of parallel lines.

Table 1. In each cause the value yu was simply measured the case of the laser printers, accurate machines which
with a ruler to the nearest millimetre, o was taken as seem to be accurately set, our estimate is within 2% of
2m/540 and the resulting value for d was compared with the device specification. We believe that this is the sort
the resolution obtained from the device specification. In of accuracy that this, apparently crude measurement

! /// | NN

FIGURE 8. A family of radial lines displayed by a laser printer.
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FIGURE 9. A family of parallel lines displayed by a laser printer. The spacing is four times the estimated resolution: (a) the lines are drawn at a slight
angle to the horizontal and (b) the lines are drawn at a slight angle to the vertical.

by ruler, produces for the resolution of the final image. up of the screen width and height by the engineer.
The estimates for the console resolutions varied by up to Adjustment based on the interference pattern would
9% from the device specification and this would appear appear to be more accurate than setting screen width and
to be mainly caused by a slight inaccuracy in the setting screen height.
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the lines vertical. (b) With the lines horizontal.

all have the same variation of almost 5%
estimated horizontal and vertical screen resolutions. They Finally, the knowledge of the geometry of the underlying
! rid structure and its dimensions can be used to test the

,,,,,,,,,,,,,,,,,,,,,,,,,,,
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accuracy of this structure. Asking the device to display a
family of lines of spacing say four times the resolution
and at a small angle to the horizontal should produce as
interference parallel lines at a small angle to the vertical.
Any horizontal distortion or displacements in the under-
lying structure should then be magnified in the inter-
ference. Figure 9(a) shows this test applied to the 300 d.p.i.
laser printer where the angle chosen is /1000. Figure 9(b)
shows the same test for vertical distortion or displacement.
It can be seen that the machine displays remarkable
accuracy.

Compare this with a similar test applied to the overlay
operation of a photocopier. In Figure 10(a) a family of
parallel lines has been photocopied and then the same
family overlayed at a slight angle. The interference shows
the considerable distortion produced by the machine in
say the y-direction. The same process applied to the
picture rotated through 7/2, seen in Figure 10(b) shows
that the device produced much less distortion in the x-
direction. Figures 10(a) and (b) can be compared with
Figure 4, the same picture displayed through the laser
printer.
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