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Vision systems are now delivering real-time tracked and classified data from which behaviours can be
inferred. Behavioural specifications of observable entities are viewed as attribute grammars with general
constraints on the values of the attributes. The characteristic features of realistic input data to a
behavioural recogniser are missing, inserted and noisy values. Behaviour recognition is defined in terms of
a simple language which is used to express behaviour specifications. The meaning of a specification is
given by a mapping to the set of observable value sequences which exhibit the specified behaviour. A
computational mechanism for behaviour recognition, which is consistent with the meaning of behaviour
specifications, is given using a simple functional programming language which has been enriched with
non-deterministic features. The non-determinism is controlled using a simple belief mechanism.
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INTRODUCTION

input data will be:

Conceptual processing of observed data [Nagel, 1988]
involves constructing high level structured symbolic
descriptions in terms of low level, unstructured incom-
plete input. Observed data will be a stream of simple
discrete events for single entities, e.g. object ¢, enters the
scene at time ¢, and is classified as a truck. A behaviour
for a single entity can be described as sequence of
observed low level events, e.g. if a truck on the ground at
an airport enters the scene then arrives at the aft-hold of
an aircraft, waits for 10min (the interval of 10 min is
completely arbitrary and could be a parameter of the
behaviour if desired) and then leaves the scene, then the
truck is said to have exhibited a behaviour consistent
with loading baggage onto the aircraft.

Behaviours are readily described using scripts (Schank
and Abelson, 1977) which represent perfect sequences of
events. Given perfect input data, ordered with respect to
time, the activity of behaviour recognition can be viewed
as parsing, with the scripts taking the place of the
grammar and the observed events in place of the input
tokens. This analogy is extended by noting that the input
data will be structured, e.g. an input token may contain a
time, a simple action, an entity identifier and a
classification. Behaviour recognition of structured
input data is viewed as parsing with respect to an
attribute grammar (Knuth, 1968; Frost, 1992) with
general constraints on the values of the attributes.

Unfortunately, the processes by which real world
events are transformed into input data are far from
perfect. For example classifications of entities will be
inconsistent, particularly as the entity is initially tracked,
not all events will be detected and incorrect events will be
hallucinated. The characteristic features of real world

e Missing data—some events which are expected will
not be detected and must be hypothesized.

e Junk data—spurious events which are unexpected
will be received.

o Noisy data—values will not always be exact or
consistent.

This paper describes work which has been carried out as
part of the ESPRIT VIEWS project (Corrall and Hill,
1992a, b; Corrall et al., 1993) which has developed a
real-time camera vision system which classifies and
tracks vehicles in a scene. The behaviour of vehicles
servicing an aircraft have been specified using an
attribute grammar. The combined system demonstrates
real-time behaviour recognition. The paper is structured
as follows:

e Section 3 describes related work which is compared to
the described approach in Section 9.

e A simple language for specifying behaviours is defined
in Section 4 and given a semantics in terms of a
mapping from each specification to the set of
observable value sequences which will be said to
‘exhibit the behaviour’. The mapping will determine
meanings for the characteristic features of noise, junk
and hypotheses.

e Although the language gives a precise meaning for the
term ‘behaviour specification’ it does not help in
recognising the behaviours given sequences of
observed values. Recognition will be performed
using a parser which is implemented in a simple
function language which is defined in Section 5.

e Section 6 defines the parsing machinery using the
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386 A. N. CLARK

functional language which will perform behaviour
recognition.

e Section 7 gives a simple example of behaviour
specification and value sequences which exhibit the
characteristic features of real world data.

e The parsers which are built using the techniques in
Section 6 will not, in general, be complete with respect
to the meaning of the language defined in Section 4.
Section 8 shows three different mechanisms for
controlling the parse.

3. RELATED WORK

Fu (1974) is a comprehensive introduction to the field of
pattern recognition using syntactic methods and covers
techniques for string and stochastic parsing in particular.
Tang et al. (1979) describes attribute grammars applied
to pattern recognition where the terminal symbols are
associated with attribute vectors, non-terminals con-
struct attribute vectors as functions of their components
and complete alternative parses are ruled out on the basis
of their overall attribute vector. Bunke (1982) describes
the different types of error which can be observed during
pattern recognition. Flick and Jones (1986) observed that
a statistical measure can be associated with the different
types of error and alternative parses can be distinguished
on the basis of a confidence measure. Flasinski (1993)
describes pattern recognition using graph grammars
which allow sharing in between terminal symbols.
Woods (1977) describes a method of parsing incomplete
input data by growing islands and coalescing islands
which are sufficiently close together in the parse.

Parsing using functional combinators has been
described in Burge (1975) and Hutton (1989) and are
generalized to include attributes in Johnsson (1987) and
Frost (1992). Partridge and Wright (1994) and Wadler
(1990) show how monads can be used to implement
parsers and hide error information.

4. BEHAVIOURS AS GRAMMARS

A grammar represents a formal language which is the set
of strings which the grammar generates. A behaviour
specification represents a behaviour which is the set of
observable event sequences which is generated from it.
Parsing with respect to a grammar is viewed as testing a
given string for set membership in the language
generated from the grammar. Of course it is too costly
to generate the entire set and then test for membership,
so parsers test each element of the input string in turn,
generating only a small portion of the language as they
go.

This section will show how behaviour specifications
are viewed as grammars which generate a formal
language and how behaviour recognition is viewed as
set membership. Section 6 will show how conventional
parsing techniques can be modified to generate a
behaviour recognizer which conforms to set member-
ship but generates the set lazily.

R:= P:—-B

= KP | I | N |S| (P,Py,....,P) | @S

P
B:u= By;By | Bi|B, | $P | 7IE | &RP
E

FIGURE 1. A language for specifying behaviour grammars.

Figure 1 shows the grammar for a language which
specifies behaviours. The language will be described
informally and then given a semantics by defining a
mapping which will translate any rule r € R to a set of
value sequences which the rule specifies. The syntactic
categories are: rules R, patterns P, rule bodies B,
expressions E, identifiers /, numbers N and strings S.
A pattern P may be a data constructor k € K followed by
a pattern, an identifier, a number, a string, an n-tuple of
patterns or a classification, which is an @ character
followed by a classification name string.

Arule [ p: —b] € Ris a behaviour specification which
will be a set of observable value sequences. Each of the
observable sequences will be associated with a value
which is defined by the pattern p. For example if the rule
is [(x,y) : —b] for identifiers x and y and a body b then b
will define sequences of values in terms of the identifiers x
and y (and possibly other identifiers too), the rule will
represent each value sequence tagged with a pair
containing the value of x and value of y which was
used to generate that particular sequence.

A body is constructed using ;,|,$,? and &. In the
following description, the current rule will be the
innermost rule which textually contains the body
construct in question. The [by;5,] € B construct will
specify that the sequences of values denoted by b; must
be observed before the sequences denoted by b,. The
[b1]6;] € B construct will specify that either the
sequences denoted by b; or those denoted by b, must
be observed. The [$p] € B construct will specify that the
next value to be observed will be described by the pattern
p. The [&rp] € B construct will specify that the next
collection of sequences will be specified by the rule r
which denotes a collection of sequences each of which is
tagged with a value. Each value which is associated with
an r sequence will be unified with p to produce the values
of the identifiers (viewed as variables) associated with the
sequences in the context of the current rule. The
[?ie] € B construct specifies a constraint on the values
of the variables for each sequence in the current rule. i
will be the name of a predicate and e will be an expression
in terms of the identifiers of the current rule. The
sequences which are specified by the current rule must
have identifier values which satisfy the predicate. e is an
expression which is an identifier, a string or an operator
applied to operand expressions, e.g. [e; + e;].

A rule is given a precise meaning by translating it to
the set of value sequences which it specifies using the
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PATTERN RECOGNITION OF NOISY SEQUENCES 387

DIIP: _bl] = {(wrvvc) l (w,e,c) € D(b),v:e(p)}

D[by;bs]) = {(wiw2,e1 D ez, c1 +¢2) | (wi,e1,¢1) € D(by), (w2, e2,c2) € D(b2), agree(ey,e2)}

D[[b1]b2]) = D(b1) U D(b2)

D[?ie]) = {(y,e,c) | (v,e,c) € D(e),i(v)}

Dfey + e2]] = {(v1 + va,e1 B ea,e1 +¢2) | (vi,e1,¢1) € D(er), (v2, e2,¢2) € D(e2)}

D[] = {(v,i—~v,0) | veV}

Dfs] = {(s,{},0)}

Dl@s]] = {(@s',{},c) | s" € T,s" = glb(s,s"),s" # L,c= diffis,s')}

D[$p] = J(D(p) U {(7,e,c+1) | (w,e,c) € D(p)})

D[kp]) = {(kv,e,c) | (v,e,c) € D(p)}

Dﬂ(plw"'apﬂ)]] = {((vlu---,vn)ael b...bey, 1 +-~-+Cn) |
(vlyelacl) € D(pl)a"-a(vnvenvcn) € D(pﬂ)a
Ve,e' € {e1,...,en} ® agree(e,e’)}

D[I&T'p]] = {(wve)c) | (w,v,¢) € D(r),e(p) =

J(s) =sUJ(s)

where

v}

s ={(vw,e,c+ 1) | (w,e,c)€Es,veVIU
{(wv,e,c+1) | (w,e,¢) €Es,veEV}

FIGURE 2. The semantics of behaviour specifications.

operator D which is defined in Figure 2. The definition of
D uses set comprehension notation:

{U|plvp2» v 7pn}

where v is a value expression and p; are predicate
expressions. A set comprehension will contain some
identifiers and will denote the set which is constructed by
substituting all possible combinations of values for the
identifiers in v such that the corresponding predicate
expressions are true. D also uses a universally quantified
Boolean expression

VicSee
The meaning of a rule will be a triple
(w,v,c)

Where w is a value sequence, v is the value specified by
the pattern in the rule and c is an integer which represents
how close the sequence w is to that which was specified in
the rule using the $ constructs. A ¢ value will be referred
to as a measure of ‘closeness’, the lower the value—the
closer the match. The meaning of a body construct will
be a triple

(w,e,c)

where w and ¢ are a value sequence and closeness
measure respectively and e is an environment containing
associations between the identifiers in the current rule
and the values which they have been given to produce the
value sequence w. An environment will be either empty,
{}, a single binding from an identifier to a value i+ v or
a concatenation of environments e; & e,. The result of
substituting values for all identifiers bound in an
environment ¢ which occur in a pattern p is represented
as e( p). The predicate agree is true of two environments
when the identifiers which both environments have in
common are bound to the same values in both
environments. The operator diff will produce a numeric
value which represents the degree of difference between
two classification names. V is the set of all values which
can occur in value sequences and T is the set of all
classification type names.

Value sequences will correspond to the actions which
are performed by observed entities and will contain
classifications for those entities. In a realistic situation,
the software which performs the classification may make
mistakes and classify an entity of type ¢ as a different, but
related, type ¢’. The classification types are arranged in a
lattice structure with a top and bottom element. Given
two classification types, there will be a greatest lower
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388 A. N. CLARK

bound g/b(t,t') and a closeness measure diff (¢,t'). The
denotation of a classification in Figure 2 is defined to be
all of the related classifications and a closeness measure.

Given a behaviour specification for a single observable
value [$p], the pattern p will determine a set of possible
values which fit the specification. If the values which are
presented to the behaviour recognition system could be
guaranteed to be perfect then the set of single values
corresponding to all the ways in which the identifiers in p
can be bound would be the meaning of [$p]. Unfor-
tunately, in a realistic situation, the software which
provides the observed values may get things wrong and
the observed entity may deviate slightly from the
specified behaviour. The following three types of imper-
fection must be taken into account:

o Expected values may be missing from the observa-
tions. The more values which are missed, the less
confidence we will have that the observations meet the
specification.

e Junk values may be observed which are not expected.
This will be as though extra values have been inserted
into the specified behaviour and the more junk which
is inserted, the less confidence we will have that the
observations meet the specification.

e The observed values may not match the specified
values exactly. The observations will contain char-
acteristic types of noise, such as the classifications
which are described above. The more noise which an
observed value contains, the less confidence we will
have that it meets the specification.

The definition of D for the body component [$p] takes
all of these imperfections into account. The sequence 7 is
the empty sequence and the operator J will map a set of
observed sequences to a new set which contains all
possible combinations of junk added to the left and right

of each sequence. As more junk is added by J, the
confidence in each sequence is reduced.

Given an observed sequence of values w and a
behaviour rule r then the sequence is specified by the
rule with closeness ¢ and producing the value v if

(w,v,c) € D(r)
v will be the best value specified for w when
Y(w,v',c") € D(r)ec’ > ¢

A meaning has been given to a behaviour specification as
a set of event sequences. If an observed sequence of
events is found in the set then it is said to exhibit the
behaviour. Characteristic imperfections in the input
data are handled by adding corresponding imperfections
to the sequences generated from the specification. An
input sequence may match multiple sequences in the
behaviour. A confidence is attributed to a match and is
the degree to which it differs from the original
specification.

The meaning of a behaviour specification does not help
in evaluating a recognition since the sets of event
sequences will be too large to compute. The rest of this
paper will describe a computational mechanism which
recognises behaviour by comparing the input value
sequences with the specified sequences element by
element. In this way, the specified sequences only need
to be developed as far as is required in order to determine
whether or not the current input value matches or not.
Where multiple matches are possible, a simple belief
mechanism will choose between competing parses. Section
5 will describe a simple functional language and Section 6
will describe how conventional parsing techniques can be
represented in this language and extended to perform
behaviour recognition.

Ex:= I | N | S| APtE | if E, then E; else E3 |

(E\,Eq,...,E,) | let Pt =FE; in E; | let rec Pt = E, in E, |

die | E where Bt | case E of At end | E1OE, | (E)

Pu= 1| _| (P,Py...,P) | KP
A:= P=>F

Ou:= +| - | © |

B:= Pt=F

T:= let Pt =F | let rec Pt =F

C:u:= I | N | S| AMC|ifC, then C; else Cs

] (Cl,Cg,...,Cn) I die

FIGURE 3. A The concrete syntax of a functional language.
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PATTERN RECOGNITION OF NOISY SEQUENCES 389

5. AFUNCTIONAL LANGUAGE

The parsing of behaviours will be described using a
simple functional language. The syntax of the language is
given in Figure 3 and the semantics will be given in
Appendix B. The novel feature of the language is that it
has been enriched with a builtin operator for non-
determinism, fork, and a construct, die, which causes the
current computation to commit suicide. The language is
divided into: the core, which is given a semantics by a
finite state transition machine, and the rest which is given
a semantics by a translation to the core.

The syntactic categories are: expressions E; identifiers
I; numbers N; strings S; patterns P; data constructors K
case expressions arms A; infix operators O; bindings B;
and toplevel definitions 7. X ¥ means a sequence of one
or more constructs of syntactic category X. The core
syntax is given by C which is essentially the A-calculus,
the rest of this section will briefly describe the translation
of expressions in E to expressions in C, if e; € E and
e, € CUFE then we will represent the translation as
e, — e, where e, and e, are equivalent expressions.

E supports curried functions so

AD1D2 - - -Dy-€ = AD1.ADa ... ADp.€

A pattern may occur in any binding position and serves
to restrict the domain of the underlying function and to
‘destructure’ the value which is bound. A pattern may be
one of: _in which case the value is ignored; i € I in which
case the function is total and the value will be bound to i;
(p1,--.,pp) in which case the value must be an n-tuple
whose components match and are destructured by the
corresponding p;; or kp in which case the value must be
the result of applying the constructor & to a value which
matches and is destructured by p. If any of the matching
tests fail then the function will return the distinguished
value e. The following translations describe the semantics
of pattern matching:

A_.e — Ai.e

/\(plv s 7pn)'e -
Al if isntuple(i')
then let p,=iTlin...
let p,=iTnine
else ¢

Mep.e — i if isk(i)
then (\p.e)(stripk(i))
else ¢

The identifier i is not free in the expression e. The
predicate isntuple will test whether or not its argument is
a tuple of length n, the infix operator _ T _ will extract the
desired element from a tuple, the predicate isk tests
whether or not its argument has been constructed using
the constructor k and the operator stripk is the inverse of
the constructor k. let- and where-binding are defined in
terms of a translation to function application:

let p=e;ine;, — (Ap.ey)e

let pp* = e, ine; — (Ap.e))A\pT.e
e; wherep=¢, — letp=e,ine

Bindings are translated so that there is a single identifier
on the left hand side and then multiple bindings are
‘tupled up’ to produce a single binding:
ipt=e—i=Xp"e
(il = el)(iz = 62) e (ln = e,,) —
(il,iz, .. .,in) = (81,6‘2), . ,e,,)
Recursive bindings are defined using the ‘paradoxical’

combinator Y which is defined so that it finds the fixed
point of a function, i.e.

JY()) =Y()

A let rec expression is translated into a let expression
which uses Y to construct the cyclic structure or recursive
function:

letreci pt =e, ine, —
leti=Y\ip©.e; ine,

A case expression is translated to the application of a
function. Each case arm is translated to a function which
will return € if the case pattern does not match the
supplied value:

case ¢ of a" end — a”(e)
p=e— A\pe
ajay; — Ai. if a;(i) = € then a, (i) else a, (i)

All infix operators are assumed to be curried so that:
ey 0ey, — 0e1e

where application associates to the left. T defines the
syntax of top level definitions.

6. BEHAVIOUR RECOGNITION AS PARSING

Parsing may be viewed as generating all the strings in the
formal language and then testing a candidate string for
set membership. Alternatively, conventional parsing
techniques approximate the set of all language strings
by producing portions of the strings on demand as each
input token is processed.

This section will describe how conventional parsing
may be modified to produce a behavioural recognizer
which handles the characteristics of real input data. Each
of the syntactic constructors that were defined in Figure
1 will be given a definition as an operator in the
functional language. A behaviour specification which is
constructed using the operators will parse the sequence
of input values in a manner which is consistent with the
meaning for the specification as defined by D.

6.1. Basic building blocks

Each behaviour parser is an operator which maps a
package of control parameters to a new package of
control parameters. Each control package has the
following format,

(stream, conf, env, vars)
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390 A. N. CLARK

where:

e stream is an input stream of observed events. The
operator read will map an input stream to the next
input event and a new input stream.

e confis a package which contains the number of values
which have matched and the hyp, junk and noise
confidence values.

e envis an environment which maps variables to values.

e vars is an environment which maps variable names to
variables.

The operator D, which maps behaviour specifications to
their meaning, substitutes values for variable names and
tags the resulting event sequences with the collection of
bindings from variable names to the substituted values.
When event sequences are concatenated, only those
sequences where the bindings for variable names
common to both sequences are the same (modulo
noise). The parsers use the same technique but bind
variable names to variables, which represent all the
possible values which D would substitute for a variable
name, and use unification to ensure that different
occurrences of the same variable name are always
bound to the same value (modulo noise). D will
construct a set of tagged event sequences from the
body of a specification and then use the head pattern to
retag each sequence with a value. Using D the variable
binding tags on a sequence can never escape from a rule
so that occurrences of the same variable name in different

specifications can never get confused. env is an environ-
ment which maps variables to values and which is
updated by unification. Each rule is provided with the
current value of env and will produce a new env as a
result. vars is an environment which maps variable names
to particular variables which are bound in env. Each time
a rule is invoked, a fresh collection of variables are
allocated and bound to the variable names by resetting
the vars environment to { }. Making the value of vars
local to a rule invocation ensures that the variables
associated with variable names in a specification cannot
be confused with variables associated with the same
names in a different rule or in a different invocation of
the same rule.

Figure 4 shows the definition of each of the basic
parser building operators. The operator newcnstr will
produce a new data constructor, predicate and stripper.
The operator construct will construct a value using a
pattern and the current value of vars by substituting
variables for each occurrence of !varname. The associa-
tion between the variable name and the variable for each
invocation of a parser will be done lazily, i.e. when a
variable name is looked up in vars if it does not exist then
it is added. This is why construct produces a value and an
updated vars environment. unify is a standard unifier
(Knight, 1989) which has been modified to cope with
noisy data. eval will evaluate an expression which is in
the form of a term. The definitions of unify, construct and
eval are given in Appendix A.

let (!, is!, strip!) = newcnstr(1)
let (@, 1@, strip@) = newcnstr(1)

let (pattern :- body) (stream, conf, env, vars) arg =
let (value, vars) = construct(pattern, vars) in
let (conf, env) = unify(value, arg, conf, env)
in body(stream, conf, env, vars)

let $ pattern (stream, conf, env, vars) =
let (value, vars) = construcit(pattern, vars) in
let (stream, conf, env) = consume(value, stream, conf, env)
in (stream, conf, env, vars)

let & parser pattern (stream, conf, env, vars) =
let (arg, vars) = construct(pattern, vars) in
let (stream, conf, env, .) = parser(stream, conf, env, {}) arg
in (stream, conf, env, vars)

let ? pattern (stream, conf, env, vars) =
let (boolezp, vars) = construct(pattern, vars)
in if eval(boolezp, env) then (stream, conf, env, vars) else die

let (parser, ; parser,) = parser, o parser;

let (parser, | parser,) = fork(parser,, parser,)

FIGURE 4. The parser building operators.
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PATTERN RECOGNITION OF NOISY SEQUENCES 391

The :- operator constructs a value from the head
pattern and then unifies it with the supplied argument. If
this succeeds then the modified package of control
parameters is supplied to the body. The $ operator will
construct a value from the token pattern and then
attempt to match the next input token against the value
using consume which is defined in Section 6.2. The &
operator will construct an argument and then supply it to
the named parser. The ? operator will construct the
expression term and then evaluate it, if the result is true
then the result is a modified package of control
parameters otherwise the parse fails by evaluating the
expression die. Parsers are composed sequentially
using _; - which corresponds to function composition.
The _|. operator constructs parsers which succeed when
either of the two arguments succeed (including both).
The fork operator, which is fully described in Section 8§,
builds a new parser which will perform both parses
independently.

6.2. Terminals

An input token is consumed in response to parsing a
terminal of the grammar. The operator $ introduces
terminals and Figure 4 shows its definition using the
consume operator. consume will map a package of con-
trol parameters and a terminal to a new package such
that the next input token has been consumed and
matched against the terminal, consume must handle
missing input and input which contains junk. This

section shows how consume is composed of three sub-
operators which correspond to matching, hypothesizing
and ignoring input tokens.

Figure 5 shows the definition of the operators involved
in consuming a terminal and affecting the confidence in
the current parse. The conf package which is passed to
and returned from each parser will have the following
format

(m7 n7 h7j7 C)

where m is the number of exact matches which have
taken place, n is a measure of the amount of noise which
has been detected in the matches, 4 is the number of
expected input tokens which have been hypothesized, j is
the number of input tokens which have been considered
junk and ¢ is the most recently registered confidence
level. As a parse proceeds, the values in the conf package
will be affected and at strategic times, the parse may
update its confidence level by combining the individual
values into a single number and applying the operator
setconf. There is no fixed way to combine the confidence
values but Figure 5 suggests a definition for the operator
combineconf. The individual components of the conf
package are updated by the operators addmatched,
addnoise, addhyp and addjunk. When a parse wishes to
update its current confidence level it uses the operator
updateconf.

The operator consume will attempt to match the next
input token against a terminal of the grammar. Since the

let combineconfm,n,h,j) = m? — (n+h+j)

let addmatched(m,n,h,j,c) = (m+1,n,h,jc)

let addnoise((m,ni,h,j,c),n2) = (m,ny +na,h,j,c)

let addhyp(m,n, h,j,c) = (m,n,h+1,j,¢)

let addjunk(m,n,h,j,c) = (m,n,h,j+1,c)

let updateconfim,n,h,j,c) = (m,n,h,j, setconf combineconf(m,n, h, j)))

let rec consume = fork(fork(insert, missing), match)

where

match(terminal, stream, conf, env) =
let (stream, token) = read(stream) in
let (conf, env) = unify(terminal, token, conf, env)
in (stream, updateconfladdmatched(conf)), env)

missing(terminal, stream, conf, env) =
let (conf, env) = unify(terminal, default, conf, env)
in (stream, updateconf{addhyp(conf)), env)

insert(terminal, stream, conf, env) =
let (stream, _) = read(stream)
in consume(terminal, stream, (updateconf{ addjunk(conf))), env)

FIGURE 5. The definition of consume.
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input will not be perfect, the match must take into
account noise, junk and missing information. consume is
defined using three operators match, missing and insert
by combining them using the fork operator. When
consume is applied to a terminal, a stream, a confidence
package and a variable environment, three new parsers
are ‘forked’ and will continue independently. The first
parser will attempt to match the terminal against the next
input token. The match is performed by unifying the
expected tokens against the next input token where the
unifier will take into account noisy matches. If the match
fails then the parser will commit suicide. The second
parser will assume that the expected value is missing
from the input stream and will hallucinate it by matching
the expected token against some default value. The third
parser will assume that the next input token is junk and
will consume it and throw it away before calling consume
again. In each case the parser will update its confidence
value accordingly.

7. AN EXAMPLE BEHAVIOUR
SPECIFICATION

This section will give an example behaviour specification
and two event sequences which will contain the charac-
teristic features of real world data whilst exhibiting the
behaviour. Aircraft are serviced on the ground at
airports between flights. Servicing activities include
refuelling, restocking the galley and loading or unload-
ing baggage. Each activity is performed by a particular
class of vehicle which will perform a reasonably simple
prescribed task, for example a baggage load will be
performed by a fork lift truck driving up to either the
forward or aft hold of the aircraft, loading the baggage
and then driving away.

A simple declarative language has been developed in
order to represent behaviour specifications. Figure 6

shows an example behaviour specification which
describes the loading of baggage by a fork lift truck at
either the fore-hold or the aft-hold.

baggageload specifies sequences of tokens which
represent a fork lift truck entering the scene, loading
baggage onto an aircraft and then leaving the scene.
baggageload is constructed from three subspecifications
(only two of which are shown). Joad specifies the
sequences of event tokens which represent a fork lift
truck loading baggage at either the fore- or aft-holds.
loadafthold specifies sequences of tokens which represent
a loading behaviour at the aft-hold. loadforehold is not
defined but it is the same as loadafthold with fore
substituted for aft.

The loadafthold specification represents pairs of event
tokens such that the first token signals a fork lift truck
arriving at the aft-hold and the second token signals the
same truck leaving the aft-hold. The specification is
parameterized by two variables !“object” and !“wait”.
The first variable forces the same fork lift truck to arrive
at and leave from the hold. The second variable
represents the minimum amount of time for baggage to
be loaded into the hold.

The load specification represents pairs of event tokens
which are consistent with either the loadafthold or the
loadforehold specifications. The values of the variables
I“object” and !““wait” which are supplied to load are
passed on to both of the sub-specifications.

The baggageload specification represents sequences of
four tokens such that the first token signals the arrival of
a fork lift truck in the scene, the next two tokens are
specified by load and the final token signals the fork lift
truck leaving the scene. The variable !“object " forces all
the tokens to represent the behaviour of a single fork lift
truck. The variable !““object” is viewed as a synthesized
attribute of the grammar since the sequence of observed

let (token, istoken, striptoken) = newcnstr(4)

let loadafthold =
(/(“object”), Y(“wait”)) :-

$token (“arrivesatah”, !(“object”), @(“forklift’), (“t,”));
$token (“leavesfh”, Y(“object’), @(“forklift”), |(“t”));
?<(+(!(“t1”), !(“wait”)), !(“t2”))

let load =
((“object”), (“wait”)) :-

&cloadforehold(!(“object”), V(“wait”)) |
&loadafthold(!(“object’), 1(“wait"))

let baggageload =
(/(“object), V(“wazt”)) :-

$token (“arrives”, !(“object”), @(“forklift’), '(“t,”));
&load(!(“object”), 1(“wait”));
$token (“leaves”, (“object”), @(“forklift’), I(“t,”))

FIGURE 6. An example behaviour specification.
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token(“arrives”, “01”, @(“vehicle”), 14)
token( “arrivesatfh”, “o1”, Q@(“truck”), 15)
token(“leavesfh”, “01”, @(“forklift”), 26)
token(“turns(0)”, “o1”, @(“forklift”), 28)
token(“leaves”, “o0,”, @(“forklift”), 30)

token(“arrives”, “o9”, @(“forklift’), 36)
token(“arrivesatah”, “oy”, Q(“forklift’), 37)

token(“leaves”, “o09”, @(“forklaft’), 51)

FIGURE 7. Tokens for baggageload.

input tokens will supply its value. The variable !“wait  is
viewed as an inherited attribute of the grammar since its
value is supplied when the baggageload specification is
used.

Figure 7 shows two sequences of input tokens which
will be recognized as baggageload with a waiting time of
10min. The sequences have examples of the three
characteristic features of real input data. The classifica-
tion of the entity in the first sequence is initially *‘vehicle”
then “truck” and then “‘forklift”. The first sequence of
tokens contains an inserted event which describes the
fork lift truck turning through 6 degrees. Finally, an
expected event token is missing from the second
sequence.

If a behaviour specification is viewed as a set of event
sequences then baggageload must contain both of the
sequences described in Figure 7.

8. CONTROL

Behaviours for single entities are recognized by parsing a
stream of input tokens using the parser developed in
Section 6. Such a parser uses the non-deierministic
operator, fork, and a computational suicide pill, die, to
split parses at choice points and to drop parses which
have failed. Each parse is associated with a confidence
level which describes how closely the input tokens have
matched the expected behaviour. The parser is tolerant
of noise, missing elements and inserted elements but is
capable of hallucinating a parse where none exists, to the
extent that all input tokens are ignored and all the
expected terminals are hypothesized. Such a parse will
have a very low confidence level associated with it. The
work which is involved in parsing a behaviour can be
greatly reduced if the parsers are controlled in terms of
the respective confidence levels. For some applications it
may be sufficient to develop the single parse with the
highest confidence level whereas for other applications it
may be necessary to develop a collection of parses which
are constructed by constantly reviewing their confidence
levels.

This section will show how the parses are controlled by
giving an operational semantics to the implementation
language using a transition machine. When a non-
deterministic operator (constructed using fork) is applied
to a value, a pair of machines are ‘spawned’. Each
machine will execute a different parse thread and will
contain its own confidence level. The machines are
controlled by a program which can decide whether to
continue executing the machine based on its current
confidence level.

The SECD (Landin, 1964) machine gives an opera-
tional semantics to the A-calculus. In Henderson (1980),
the SECD machine is extended with primitives for non-
deterministic computation. We go further and define an
IPARG machine which includes primitives for non-
determinism but also includes control information which
represents the current level of confidence in the
computation. (The name IPARG is associated with the
system described in this paper.)

Like the SECD machine, the IPARG machine
evaluates by performing state transitions. Unlike the
SECD machine, the IPARG state transition function will
map a single state to a set of states, each of which arises
because of the non-determinism in the program. Unlike
the SECD machine, the IPARG machine has a state
component which contains a value representing the
current level of confidence in the computation. The
program will update this component using the builtin
operator setconf and the confidence value will be used in
ranking the current collection of computations in order
of interest. The IPARG state transition function is
defined in Figure B1.

The non-determinism in a computation arises from the
builtin operator fork. The operand of fork is a pair of
operators, 0; and 0,, and the result of the application is a
new operator which when applied to an operand will
non-deterministically apply either o, or 0,. The definition
of the builtin operator fork is given in Figure BI.

Each time an evaluating program performs an action
which causes its confidence level to change, it will use the
builtin operator setconf to update the state component to
the new value. The confidence level is used to rank the
computations in order of interest, so a program may
make itself more or less interesting by affecting this
value. The definition of setconf is given in Figure B1.

Suppose that the IPARG machine is implemented in
the functional language and that there is a constructor

(-5-0-50)

for machine states and a function — which maps a single
machine state to a set of machine states which is the
result of performing a single non-deterministic atomic
machine transition. Sets of machine states will be
implemented as lists with the following constructors: [
as the empty list and : : is the list constructor which adds
an element x to a list / to produce x :: . We will now
show how three different control strategies can be
implemented for the IPARG machine depending upon
the resources which are available for the parser.

Figure 8 gives the definitions of three operators exec,
exec, and execs. These operators will each map a set of
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IPARG initial machine states to a set of final machine
states and differ in the ways in which they control the
machines. The other operators in Figure 8 are used in the
control operators and are described as follows: the
operator \ is used to construct a list homomorphism from
a right associative binary operator ®, a unary operator f
and a base value b, given a list

xp:(xg 0)
the homomorphism

\(®)fb

will produce the value

f(x1)®f(x) ®b

the operator / is used to remove values which do not

letrec \ (®) f bl=

case | of
g=0
zul=(f(z)®(\ (®) f b
end
letrec / p =
case | of
0=1[
z:l=
if p(z)
then z::(/ p {)
else / p |
end
let I(z) ==

let zmazy=if ¢ >y then z else y

let 11+f-12:\ (22) 11, 1

let ~p z=if p(z) then false else true

let confl_,.,,n,)=n
let done(.,-,s,-,d)=(s=[])&(d=())
let less n = (< n)o conf

let evals=\ (+) (—) []

satisfy a given predicate p from a list /; I is the identity
operator; the operator ++ will append two lists; the
operator ~ is used to negate a predicate; the operator
conf maps an IPARG machine state to its current
confidence value which is a number; the predicate done is
true of an IPARG machine state when there is no more
computation to be performed; the predicate less is true
for a value n and a machine state s when the confidence
value for s is less than n; the operator evals will map a set
of IPARG machine states to the set of states which is
produced by performing a single machine transition for
each starting state and then flattening the resulting lists.

The operator exec; will map a set of initial machine
states to the set of terminal states which is constructed by
running all of the states to completion. This control
operator does not take into account the confidence

let rec ezec; s = (/done s)++(ezeci(evals(/(~ done)s)))

let rec ezec; n s = (/done s)++(ezec; n (/(less n)(evals(/(~ done)s))))

let rec ezecs s = (/done s)++(ezecs((/(less n)notdone) ++(evals(/(~ (less n))notdone))))

where

n =1\ (maz) conf 0 s
notdone = [(~ done)s

FIGURE 8. Definitions of controllers.

THE COMPUTER JOURNAL,

VoL. 37, No.5, 1994

¥202 Iudy 60 U0 1s9nb Aq 29GGHE/S8€/S/ /L /e101e/|ulWwoo/woo dno-ojwepeoe//:sdiy wolj papeojumoq



PATTERN RECOGNITION OF NOISY SEQUENCES 395

values of any of the machine states and may take a great
deal of resources to find the desired parse.

The operator exec, will map a confidence level » and
set of initial machine states to a set of terminal machine
states s such that each of the states in s has a confidence
level which is greater than n. This control operator will
ignore any parses whose confidence levels drop below the
threshold value n. exec, will use less resources than exec)
because it will not develop any parses which are not
required. Unfortunately exec, is not perfect because it
may throw away some of the parses which are desired if
they dip temporarily below the threshold value.

The operator exec; will map a set of initial machine
states to a set of machine states, some of which have
terminated. At any stage, exec; will only develop those
parses which have the highest confidence levels. Parses
which are initially found interesting will be developed
until they eventually succeed or until their confidence
levels drop below previously ‘frozen’ parses. If all of the
parses have the same confidence levels throughout, then
exec; will consume the same amount of resources as exec.
If the confidence level for the ‘correct’ parse becomes the
highest very quickly and stays that way, then exec; will
consume only slightly more resources than exec;.

The three control operators which are described
above, are not the only control mechanisms for the
IPARG machine. The best controller is likely to depend
upon the characteristics of the parsing for the type of
application.

9. CONCLUSION, DISCUSSION AND
FURTHER WORK

Behavioural specifications of single entities have been
described as attribute grammars and behavioural recogni-
tion as parsing. A behaviour specification generates a
formal language which is a set of sequences of event
tokens. The sentences in the formal language are
characterized by missing, inserted and noisy data. A
conventional parser has been modified to deal with the
characteristic features of realistic input data. Such a parser
is controlled with respect to a confidence level which
describes the difference between the token sequences
which were expected and those that were received.

The parsers are given a semantics using a simple
functional programming language which has been
extended with constructs for non-determinism. The
operational semantics of the functional language is
defined by the IPARG machine which is constructed
from the SECD machine enriching it with primitives for
non-deterministic computation and including a confi-
dence level with each computation. Each computation
may use a primitive operation to change its confidence
level and therefore make itself more or less interesting.
The machine transition function maps a single state to a
list of states each of which continues independently. An
entire program evaluation is performed by the function
exec which uses the confidence levels to rank computa-
tions. Different variations of the exec operator may be

defined which give rise to different strategies for
controlling the non-deterministic program.

We have not shown a formal proof of the consistency
and completeness of the parsing operators with respect
to the semantics of behaviour specifications as defined by
D in Figure 2. In general, a parser will not be complete,
i.e. not produce the best value for a parse, because the
definition of exec will have been designed to work within
specific resource limits.

The system described in this paper has been
implemented as part of the VIEWS ESPRIT project.
The implementation is written in Common Lisp and has
been used to construct behaviour recognizers which
describe a realistic scene in which baggage is loaded on
and off an aircraft, the galley is restocked, the toilets are
serviced, the aircraft is refuelled, and passengers embark
and disembark.

We believe this work to be a successful synthesis of
many related threads of pattern recognition—parsing
attribute grammars with generalized constraints, noise
related errors and heuristics, using state-of-the-art
techniques. The novel implementation mechanism
provides a particularly clean and easily controlled
vehicle for experimentation with different parsing
techniques. In particular, high level functional programs
can be freely mixed with grammar rules and the
interpretive mechanism for the language supports
features which are ideally suited to pattern recognition
and need not clutter the recognition program.

In comparison to related work, our approach allows
missing, inserted and noisy data to be handled in a
generic and modular fashion which is not true of
conventional attribute parsing techniques which must
extend each production with mechanisms for handling
errors—an approach which is also supported. The
nature of conventional backtracking parsers is such
that if the search space is developed in a depth first
fashion and missing input tokens are hypothesized then
more appropriate alternative parses may never the
developed. Our approach is related to stochastic
grammars in that confidence levels are associated with
alternative parses, but unlike these grammars we are able
to have very flexible control by programming the
IPARG machine. Our approach is related to attribute
grammars since each input token has attributes and
production rules synthesize attributes. Unlike conven-
tional attribute grammars, the attributes are unified and
general constraints are applied to the attributes at all
levels of the grammar. This provides a very expressive
language for expressing behaviours. The unification
technique has much in common with parsing using lazy
functional programming languages and it would be
interesting to compare these approaches in detail.
Combinators have been used to construct parsers but
our approach extends existing systems with components
for handling characteristic errors and confidence levels.

In our experiments within the VIEWS project we have
found the prototype parser to be of satisfactory
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performance with respect to simple scenes. Since the
parser control can be programmed, as as scene complex-
ity increases, adding extra cleverness to the control will
maintain the desired performance. Since each parser
combinator has a standard interface, which is a package
of information, new combinators can easily be invented
and the package can be extended with information which
can be used to control the parse. A feature which we
expect to be of importance with parsers of this kind is a
‘cut’ mechanism (rather like that of Prolog) which can be
inserted into the grammar rules in order to discard

let rec deref(v,e) =
if isvar(v)
then
if v € dom(e)
then deref(e o v)
else v
else v

let rec unify(vy, vo, conf, e) =

unwanted alternative parses. The approach described
here will parse strings of input tokens; it would be
interesting to see if the approach could be generalized for
trees and graphs.
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let (v1, v2) = (deref(v1, €), deref{w, €))

in case (v, v2) of
!

(!5, 2) = (conf, e ® (v1 — v2))
(-, 12) = (conf, e ® (va — v1))

(v, v) = (conf, e)

((z1, -y 2), (Y1) -y Yn) = unifypairs(zip(vy, va)) conf e

(@sy, @sy) =

if glb(sy, s2) = L

then die

else (addnoise(conf, diff(s1, s2)), €)

_ = die
end

let rec construci(v, e¢) =
case v of
constant(k) = (k, e)
Is =
if s € dom(e)
then (e os, ¢)

else (v, e ® (n —!(v)))

where v = newvar s

end

let rec eval(v, e) =
case deref(v, e) of
constant(k) = k
'v = deref(v, €)
+(e1, e2) =

let v; = eval(ey, €) and
ve = eval(ea, €)

in v; + 1,

end

FIGURE A1. Utility operators.
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Interpretation and Evaluation of Wide-area Scenes. The
design and implementation of the behaviour recognition
system described in this paper was performed by A. N.
Clark and A. G. Hill. The author wishes to thank A. G.
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APPENDIX A: UTILITIES

Figure Al gives the definitions of the unification, term
construction and expression evaluation operators which
have been used in this paper.

The operator unify is a standard unification algorithm
which has been extended to cope with noisy classification
matches. If the unifier fails to match the two input values
then the final arm of the case expression in unify will
cause the current parse to commit suicide. The operator
zip will map two lists of equal length to a list of pairs and
the operator unifypairs will succeed when each pair of
values in the list unify. Note that the operator _e _ will
look a value up in an environment and dom will map an
environment to the set of things which may be looked up
in it.

The operator construct will reconstruct the value v by
replacing each variable of the form !s by the correspond-
ing variable which is bound to the name s in e. If no
variable exists then a fresh variable is constructed using
the operator newvar.

The operator eval will evaluate an expression which is
supplied in the form of a value v.

APPENDIX B: TRANSITIONS

The parsers which are developed in the main text are
written in a functional language. This language is given
an operational semantics by describing how it evaluates
using a transition machine. The machine is defined in
Figure B1 and consists of a set of states and a transition
function which is defined to map single machine states to
sets of machine states. Each machine state has the
following form

(s,e,c,x,d)

where s is a list of program outcomes, e is an
environment which associates program identifier names
and their current values, c is a list of program expressions
and machine instructions, x is a value which represents
the current confidence in the parse which is being
performed by the machine and d is a value which is
either empty () or a state

(s7 e’ C7d)

without an x component. The letter k stands for any
constant such as a string or a number; the letter v stands
for any program outcome; the letter f stands for any
operator (i.e. applicable value). The transition function
defines the atomic computational steps when a func-
tional program is performed. Since the program may
apply a fork operator, the result of each machine
transition will be a set of machine states. A function
‘closure’ is represented as a term

<i1 er, 62>

where i is the formal parameter, e, is the environment for
the closure and e, is the body of the closure. Machine
instructions are created as the program is performed and
are the terms fup(n), for tuple creation, @ for function
application and test(e;, e,) for conditional expressions
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(s,e,i:ie,z,d)— {((e o) ::s,e0cz,d)}

(s,e, ke z,d)— {(k::s,e,c,z,d)}

(s,e1,[Ai.ea] i e, z,d) — {(< i,e1,e2 >::5,e,¢,2,d)}

(s,e,[erez] i c,z,d)— {(s,€e,e2 €1 :: @ ¢, z,d)}

(< tye1,ea > v s,e3, @ ey, d)— {([],e1 D (i — v),[e2), z,(s,e3,¢,d))}

(s,e,[(e1,-..,en)] i c,z,d) — {(s,€e,e1 ... 1 en i tup(n) 2 ¢, z,d)}

(vp i ...v1 s, e, tup(n) e, z,d) — {((v1,...,vn) it s,€,¢,2,d)}

(s,e,[if e; then e, else es] ::c,z,d)— {(s,e,e; :: test(ea,e3) i c,z,d)}

(true :: s,e, test(e1,e2) i c,z,d) — {(s,e,e1 i ¢, z,d)}

(false :: s, e, test(ey, e2) :: c,z,d) — {(s,€e,e2 :: ¢, z,d)}

(s e, [di€] :: ¢, z,d) — {}

(Bift“fork?) =2 (fu, f2) 2 s,e, @ :ic,2,d) s {(fork(fi, f2) i 5,e,, 2, d)}

(bifl “getconf’) :: () :: s,e, @ ¢ ,z,d)— (z ::s,e,c,2,d)

(bifl “setconf’) :: xy 2 s,e, @ ¢, za,d)— (21 ::5,e,¢,21,d)

(fork(f1, f2) mv :s,e, @ e,z d)— {(f1 v 5,6, @ ic,z,d),(f2::v 8,6, @ e, z,d)}

(ves' e[,z (s,e,c,d))— {(v::s,ec z,d)}

FIGURE B1. The IPARG machine.

where e, is the consequent and e, is the alternative. what happens when it is applied. Notice that the x
Builtin operator are represented as terms bif (s) where s is component of the machine is ‘global’, i.e. it is not saved
the name of the operator. The builtin operators are and restored on function application and return.

defined by giving the transition rule which will describe
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