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The high complexity of distributed computer systems requires new methodologies and languages especially
designed for the characteristics of these systems. Declarative languages have been proposed as a promising
alternative because they provide a way of leaving aside system details. However, the behaviour of reactive
systems cannot be described in pure relational or functional terms. We propose a declarative environment
for distributed programming based on the concurrent logic language Parlog, which has the capability of
expressing concurrence, communication and non-determinism in a very natural way. That is, the intrinsic
parallel semantics of the concurrent logic languages make them appropriate for distributed programming.
The proposed environment is particularly suitable for loosely coupled systems and it contains mechanisms
for distributed process control, and both real-time and object-oriented design. Each of these characteristics
is achieved by the integration, in the framework of the underlying concurrent logic language, of real-
time and distributed processing control primitives and object-oriented constructions. From this viewpoint,
an operational semantics is defined and some implementation issues are discussed.
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1. INTRODUCTION

Software has become the most critical component in
real-time distributed systems. These kinds of systems are
usually very complex and they have very strong safety
and reliability requirements. These systems are com-
posed of collections of diverse computations without
central coordination and without total knowledge of
each other. Most languages have not been designed to
support such systems, but only to describe tightly coord-
inated computations. In the last few years, many new
proposals for distributed programming have emerged
(Bal et al., 1989). The majority of the models are based
on extending traditional imperative languages, but
others are intended to provide new paradigms suited to
the characteristics of this type of system. Some of these
models try to define some kind of message passing [CSP
(Hoare, 1985), Ada (US DoD, 1983)] or shared memory
mechanisms [ Linda (Ahuja et al., 1986), Orca (Bal et al.,
1987)], which can be used for distributed processes
communication. Other approaches are based on object-
oriented [Actor (Agha, 1986)], logic (concurrent logic
languages) or functional [Gamma (Banatre and
Lemetayer, 1990)] paradigms. So, high level languages
with simple but powerful mechanisms to express features
such as concurrency or non-determinism are a typical
choice. Programming in these languages does not depend
on the underlying machine architecture, as it is an
implementation problem to map the language’s abstract
execution model into a concrete system.

Usually, distributed systems have to meet time con-
straints, because of the kind of applications they are
designed for. Also, in the real-time field many approaches
have been presented in the last few years, some of which

use very high level languages making it possible to use
formal techniques for analysis and verification. Although
it may seem nonsensical to use a high level language for
distributed real-time programming, real-time does not
mean short response time or short interrupt handling
latency. A real-time system must meet all the time
constraints, and it may be that a fast system with a bad
scheduling policy behaves worse, in meeting time con-
straints, than a slower one with a fast context switch
and a well-designed scheduling policy. Among the
different proposals there exist imperative languages, such
as Occam (Inmos, 1988) and Esterel (Boussinot and
de Simone, 1991), declarative languages, such as Lustre
(Halbwachs, 1991) and Signal (Leguernic et al., 1991),
and graphical languages, like Statecharts (Harel, 1987)
and Objectcharts (Coleman et al., 1989).

Concurrent logic languages (CLLs) appear as an
attempt to fit Prolog to parallel systems (Clark et al.,
1986), and its suitability for distributed systems has been
clearly shown by Shapiro (1983). These languages have
also been compared with the above mentioned models,
e.g. with Actor (Kahn and Miller, 1988) and Linda
(Shapiro, 1983). In fact, CLLs were used as kernel
languages to construct declarative environments for dis-
tributed programming (Foster, 1990). Out of these envir-
onments, which were inefficient, CLLs evolved into new
languages more oriented to the characteristics of distrib-
uted systems. Some languages which have come out of
this evolution are: RGDC (Cohen et al., 1991), presented
as an amalgam of Prolog and Occam; Sandra (Elshiewy,
1990), a distributed language based on the idea of
incorporating the concept of agent (Liskov and
Scheiffler, 1983) to a CLL; and Janus (Saraswat et al.,
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1990), a language used for concurrent constraint pro-
gramming, which has the same basis as CLLs, but whose
objective is to be a kernel language for distributed
constraint programming.

On the other hand, CLLs have been extended provid-
ing an object-oriented view of their declarative style of
programming. In fact, a number of object-oriented exten-
sions of these languages have been proposed: Vulcan
(Kahn et al., 1987), Polka (Davison, 1989), Mandala
(Ohki et al, 1987), AUM (Yoshida and Chikayama,
1988) and L2 | O2 (Pimentel and Troya, 1992). All these
proposals include some of the main characteristics of
the object-oriented paradigm: inheritance, encapsulation,
information hiding, etc., and they use the logic compon-
ent in the integration to obtain very expressive object-
oriented programming languages. They are based on the
idea of considering objects as perpetual processes and
the messages between them as information transfer by
means of shared variables (Shapiro and Takeuchi, 1983).
The object-oriented methodology organizes the memory
into local objects, instead of having a single global
store; this property explains its relevance to distributed
computing.

One of the drawbacks of CLLs, which is common to
all the proposals in their use for distributed systems, is
their lack of efficiency, because the communication
mechanism is based on sharing logical variables and the
implementation in distributed environments involves
very high costs. In order to solve this drawback, there
have been some approaches, trying to sir.aplify the execu-
tion model of CLLs to suit it to distributed environ-
ments, such as flat CLLs (Foster and Taylor, 1988) or
Strand (Foster et al., 1990).

We propose a new approach for distributed program-
ming based on Parlog (Diaz et al., 1992) and oriented
to coarse granularity parallelism. The environment is
created on the basis of the integration of different
paradigms (real-time, distributed processing and object
orientation), extending CLLs to cover the different
aspects of complex real-time distributed systems. In this
sense the execution model of CLLs has been modified
to comply with real-time requirements and distributed
execution, and an object-oriented extension has been
defined. Although similar extensions have been made
previously, our work is new in the sense that it integrates
the different paradigms under the same framework and
that the extensions are particularly designed to deal with
the special characteristics of complex distributed real-
time systems.

These extensions have been incorporated under the
same semantic framework, which is presented from an
operational point of view. So, an operational semantics
has been defined, in order to extract information about
successful, deadlock and infinite computations. It also
defines the behaviour of each component in the language
and the new computational model incorporated to sup-
port the real-time primitives. In this sense, the semantics
offers an integrated view of both extensions, by incorpor-

ating the time into the transition systems which define
the operational semantics for the object-oriented exten-
sion (Pimentel and Troya, 1992). Although it is not the
aim of this work, and therefore has not been developed
here, the semantic aspects could be analyzed from other
different perspectives. For example, it should be possible
to define a declarative and a denotational semantics for
the integration. In this sense, the declarative and denota-
tional aspects of the object-oriented component have
been studied in (Pimentel and Troya, 1992 and 1993,
respectively); and it is thought that these works could
be extended to deal with the distributed (Brogi and
Gorrieri, 1989) and real-time (Nicollin and Sifakis, 1991)
characteristics of the proposed environment.

From the implementation point of view the aspects of
efficiency, scalability, resource sharing, etc., have been
taken into account, following Diaz and Troya (1993).

This paper has been organized as follows. In Section 2
we introduce the CLLs. In Section 3 a language incorpor-
ating the real-time and object-oriented extensions is
described, and we show how the behaviour of objects
can be expressed giving some examples. Later, in the
fourth section, we consider some implementation
issues related to the distributed implementation of the
environment.

2. CLLs AND Parlog

CLLs are high level programming languages for parallel
machines, that offer a wide margin of parallel program-
ming techniques. These languages preserve many of the
advantages of the logic programming model based on
Horn clauses, including logic interpretation of programs,
data structures represented by terms and unification.

Their operational computational model consists of
a set of concurrent processes, communicating by in-
stantiating shared logical variables and synchronizing
by suspending on non-instantiated variables. These lan-
guages also have some degree of non-determinism. A
computation begins with a set of objectives, each object-
ive being an atom p(Ty, ..., T,), which represents a process
whose state will be given by partial substitutions of the
terms T,. The set of objectives can be considered as a
communicating process network. The behaviour of a
process is expressed with Guarded Horn Clauses (GHC)
with the following form:

HeG,, Gy, ...,Cn:B, By, ..., B

where the goals G, form the guard of the clause and B,
its body.

The head and the guard specify the conditions for a
reduction transition. The clause body indicates the state
of the new process (or processes) after the transition. A
transition is produced when a clause is selected (in a
non-deterministic way) among all clauses that match
with the head and with the successfully evaluated guards.

After selecting a clause the process is substituted by
the set of processes provided by the body. If the body is
empty then the process ends. These languages are non-
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deterministic in a don’t care sense. This means that once
a transition is made, there is no backtracking (as in
Prolog). Formally, it makes partial substitutions and
communication among processes observable. The paral-
lelism expressed by concurrent logic languages is of two
different kinds: AND parallelism and OR parallelism.
The first one appears when an objective is reduced to a
conjunction of objectives. The second is exploited when
an objective can be reduced by using more than one
clause. These clauses will be tried in parallel, although
only one will be selected finally.

In this family of languages, the most outstanding
representatives are Parlog (Clark et al., 1986), Concur-
rent Prolog (Shapiro, 1983) and GHC (Ueda, 1985).
Another characteristic of these languages is the dis-
tinction between input and output arguments; either by
means of a mode declaration (Parlog); by adding ‘7
after the variable (Concurrent Prolog); or by including
the input constraint in the execution model (GHC).

Another significant characteristic of CLLs is back
communication (incomplete messages). For example,
the clause:

p(success(Ok), V) «c(V): Ok = ok.

will return ok on the Ok variable, if V satisfies c, although
the first argument of p is declared as input.

2.1. Objects as perpetual processes

AND-stream parallelism and partial binding allow us
to identify objects as perpetual processes (Warren, 1982;
Koymans et al., 1985). This is obtained by defining the
behaviour of objects by means of predicates consisting
of recursive clauses, which will create a permanently
active process. On the other hand, communication
among objects is achieved by sending incomplete mess-
ages on shared variables. These are the communication
channels.

By applying this programming style it is possible to
introduce, at an elementary level, an object-oriented
methodology into the commited choice logic languages
family. However, the syntactic complexity in the descrip-
tion of a class is very high; in addition, the exploitation
of mechanisms such as inheritance, client/supplier rela-
tion, information hiding, etc., is not direct.

2.2. Process control in Parlog

Parlog has been used for system programming and, in
general, for applications in which a process must control
the execution of other processes. The mechanism
allowing this is the control metacall (Foster, 1990). This
metacall can create a process, control its execution and
detect the state of the process. The format of the metacall
is as follows:

call(Pred?, Status”, Control?).
Where Pred is the process to be executed and Status

and Control are lists used to control the process. The
control list can be instantiated with the following terms:

® suspend: suspends process execution; the Status list
will be instantiated to [suspended|_].

® stop: aborts the execution of the process (Status=
[stopped|_]).

® continue: makes a suspended process continue its
execution.

The metacall is a predicate that never fails, always
succeeding and returning the final state of the executed
process. This feature is very important for the application
of this kind of language to system programming, because
one of the most important requirements of these applica-
tions is that the entire system must not break down
because of a failure in a single process. This is even more
important in a distributed environment, where the failure
or misbehaviour of a processor must not affect the rest
of the system. The control metacall can also detect
termination, by waiting for the status variable to be
instantiated. This can be very useful in distributed imple-
mentations where termination and deadlock detection
are very difficult tasks.

3. THE DROL ENVIRONMENT

DROL is an environment designed to deal with complex
distributed systems. It is based on concurrent logic
languages, but the computational model has been modi-
fied to deal with real-time problems and distributed
systems. Besides this, the environment includes object-
oriented mechanisms to make the development of reli-
able software for complex systems easier. In this section,
we describe the distributed execution model, the real-
time and object-oriented extensions and an illustrative
example.

3.1. Distributed execution

Distributed implementations of concurrent logic lan-
guages are highly complex, because they are based on
communications via shared logical variables, therefore
these implementations have to deal with the problems
associated with sharing data in distributed environments.
The usual approach to solve this problem has been to
implement a distributed unification algorithm, by repres-
enting a variable with a single occurrence in only one
processor and with remote references to it in the other
ones. However, distributed unification algorithms
(Taylor, 1989) are not very efficient and may involve the
interchange of a great number of messages simply to
unify two terms. This aspect is especially important
in systems with high communications costs (loosely
coupled systems).

Some proposals, such as Strand, try to implement
more efficient CLLs. This language does not support
full unification, making the implementation more effi-
cient. However, the implementation model is still based
on the representation of a variable with a single occur-
rence in one processor and remote references to it in
others, and where access to remote variables involves
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the exchange of various messages. Another approach
that tries to overcome this problem, is Janus (Saraswat
et al., 1990). In Janus, variables are regarded as point
to point unidirectional communication channels. This
approach is similar to the one adopted in our environ-
ment, but we only consider the free variables shared
between processors as communication channels, main-
taining the same semantics for communication as in
CLLs for intraprocessor communications.

We propose a new approach for systems with high
communication costs, in which the simulation of data
sharing mechanisms can be very expensive. Two kinds
of logical variables are distinguished: the usual ones, for
process communication in the same processor; and vari-
ables to link remote processes. These special variables
will correspond to unidirectional communication chan-
nels, which will be mapped to physical communication
channels.

This approach has been implemented by using a
remote metacall. The creation and the control of Parlog
processes is very easy using the control metacall, and
our aim is to maintain this simplicity when the process
to be created and controlled is remote, hiding any kind
of protocol or implementation details of the communica-
tion system. The Parlog control metacall has been
extended with a new variable that will be instantiated
to the name of the host executing the process:

remote_call (Host, Pred, Status, Control).

The meaning of the control and status lists is the same
as in the usual metacall. The Host variable is bound to
the host symbolic name, but it may be a free variable
too. If this happens the system will decide where to
place the process and it will instantiate the Host variable.
This scheduling will be made in relation to load balan-
cing and communication costs. The predicate has to be
defined in the remote host and the variables must be
annotated as input or output variables:

remote_call (Host, pred (Input?, Output™), St, Ctrl).

Communication with the remote process will be made
in the same way as with a local process (by instantiation
of shared variables), with the exception of incomplete
messages. In the case of incomplete messages the free
variables used for back communication also have to be
annotated as input or output and these variables will
also be considered as communication channels:

Output”™ = [m(X?)|T]
X? is an input communication channel

A remote call can be made by any process and at any
time, so the network topology is dynamic. This topology
is always a logical tree, i.e. the physical allocation process
graph may have loops, but the logical communication
graph is always a tree. The root of this tree is always
the host that initializes the system. Once the system is
initialized the rest of the hosts in the network can be

used to execute remote metacalls. There can be more
than one root host; in fact, each host in the network can
initialize its own system and can be the root of a new
system, using the rest of the hosts in the network for
remote metacalls. However, these systems are independ-
ent and cannot exchange information (Figure 1).

This limitation can be problematical in the case of
different hosts sharing resources. To solve this there
exists a special class of processes, named servers, which
can be seen from the various independent systems, so
allowing information exchange among them. In this
sense, each system can be seen as a virtual machine with
as many processors as hosts in the network and sharing
resources with other virtual machines via servers
(Figure 2).

Servers are special processes which are created with
the primitive create_server (process), where process is a
predicate with input variables only. When a server is
created the host tests whether the name of the process
exists as a server (the servers are identified by their
names and by the host to which they belong). The host
maintains a list with the name of the servers. When a
system process wants to use the service of another one
it must take the following steps:

® sk _for_services(Host,L). L will be instantiated to a
list containing the name of the processes in Host.

® scrvice (Host, Name, Channels, Acknowledge). The last
argument will be instantiated to ack or nack,
depending whether the service is granted or not by
the host, and Channels will be instantiated to a list
with the variables that will be used to communicate
with the server.

In the foreign host, when a service is requested, the
variables and sockets for communication are created
and sent back to the host which asked for the service.
Besides the control metacall, and the primitives for
dealing with servers, some other primitives for distrib-
uted programming have been implemented. The more
important ones are:

® init(Host). Initializes a host to a known initial state; if
Host is a free variable all the hosts in the network
will be initialized.

® remote_load (Host, Database). Loads a database with
predicate definitions in Host. If Host is free the
Database will be loaded in all the hosts.

® statistic (Host, Results). Returns in the Results variable
statistics about CPU time and Host memory.

® connected(L). Returns on the list L the symbolic names
of the connected hosts.

® Jocal_host(X). Returns in X the name of the local host.

3.2. Real-time extension

CLLs do not provide any mechanism to express real-
time constraints in the execution of processes. Sandra
(Elshiewy, 1990) introduces the notion of logical clocks
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FIGURE 1. Different independent systems in the same network.
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FIGURE 2. Different independent systems in the same network connected via servers.

to express time in the field of CLLs, which, however is
not real-time, and the logical clocks only have the aim
of ordering the occurrence of events in the system.
Another approach in the field of declarative languages
is the one of Erlang (Armstrong et al., 1993), a functional
language that evolved from Strand. This language can
express real-time constraints, but its semantics is at
present very different from that of CLLs.

As the execution model of CLLs is based on interleav-
ing, the order in process scheduling cannot be known.
So, an extension of CLLs which allows for process
timing constraints is proposed. This extension implies a
modification of the execution model. In CLLs a process
may suspend on a non-instantiated variable, during the
matching of the clause head or on the guard evaluation.
In our extension, processes may also suspend in the
evaluation of timed guards. A timed guard is a guard
with an after(T) primitive, which makes the process
suspend for T seconds, after head matching and guard
evaluation. If there is no other clause which commits
before that time has elapsed, then the clause is selected
to reduce the process. In the example below we have
the definition of two processes: a producer, p, and a
consumer, c, communicating via a shared variable L. In
the definition of the consumer we have a timed guard,
detecting a time out error if no data arrives in the
channel during a ten seconds period.

mode c(?,?, )

c([X|L], T, St) «c(L, T, St).

c(L, T, St) « after (T) : St = time_out.
«pL), c, 10, St).

mode p(™).
p((item|L]) «p(L).

When a timed clause exists in the definition of a
process, this process must be selected to be reduced as
soon as possible, i.e. this process has higher priority
than ordinary ones. For example, let us assume the

following scenario, where p and c are the processes
defined above and r is a process independent of p and c:

Process L

[item, ...

t>T

[item, item, ...

aaQam R =R RRRT

The consumer process does not detect that the produ-
cer has taken more than T seconds to produce the
second item of the list. However, if the ¢ process had
been scheduled before the r process, this situation would
have been detected. If there is more than one real-time
process in the same conjunction the scheduling time for
them is the same as the first.

Indeed, to satisfy all the time constraints there should
exist as many processes as processors, and each process
should be scheduled as soon as the process becomes
ready for execution (Maximal Parallelism), but this
approach is unrealistic. In fact, depending on the applica-
tion we could have a permitted error time-limit and a
process could be scheduled in that time interval. In our
model that interval can be specified and if the system
violates that limit an exception is raised.

The environment can constrain the execution time of
processes by using some real-time control primitives.
This feature is very important in some applications like
protocols and process control. Real-time control is local
and there is no synchronization among the different host
clocks in the network. We can access the system clock
with the predicate clock(N"), that binds N with the time
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elapsed (in seconds) since clock initialization. The more
important primitives are:

® init clock. Initializes the local clock.

® afier(N). A delay of N seconds. The process is sus-
pended for the number of seconds indicated by N.

® timeout(Pred, Time, Status). A metacall executes the
process indicated by Pred limiting its execution time
and returning the Status (success, failed, timeout).

® alarm(Pred, Time, Ctrl). The process starts its execu-
tion once the time indicated by Time has elapsed.
The alarm can be cancelled using the control list.

The implementation of a simple protocol with time-
outs is shown below as an application example:

mode rec (Inp_channel?, Out_channel”, timeout?).
rec([Data|Stream], O, Time)

«process(Data), rec(Stream, O, Time).
rec(Stream, O, Time) « after (Time) : O = disconnect.

A process waits for data in a stream. If no data is
received within a specified time then a disconnection
message is sent.

3.3. Object-oriented extension

The absence of structuring mechanisms in CLLs necessit-
ates the presence of characteristics which provide the
programming methodology in this kind of environment.
In this sense, the object-oriented paradigm has been
chosen, and mechanisms such as inheritance, client/
supplier relation, encapsulation, inform:tion hiding, etc.,
have been incorporated in the real-time extension pre-
sented previously.

The syntax, semantics and implementation of the
object-oriented extension defined are based on those of
Polka, although it presents significant differences (among
them, the existence of dynamic binding). In addition,
this system uses timed guards to describe the messages,
and its implementation is based on a distributed imple-
mentation of Parlog.

The syntactic outline of a class definition in the
proposed extension is:

<class> [ <channels>][; <channels>]
[inherit <classes>]
state <state_variables_and_supplier_objects>
messages

EGHCs
end.

where EGHCs are a sequence of extended GHC whose
syntax and informal semantics are studied below.

The interface of a class instance is given by its input
and output channels. They are declared after the class
name (the output channels appear afterwards ;). A class
will always have a default input channel self(c), c being
the class name, in addition to those appearing in the
declaration. An object’s state will be determined by the
structures declared in the state clause. These will be
composed of state variables, corresponding to simple

data, and also by references to some other class instances,
corresponding to objects providing services. Encap-
sulating and information hiding issues related to in-
stance variables are similar to Smalltalk; this means that
state access will be made by using incomplete messages.
Message processing will be determined by the extended
guarded clauses. These clauses have the following syntax:

([[]?]H<G:B

where I will be an input channel of the class or an
output channel of an object in use. If I is not present,
the default input channel, called self(c), is considered.
The non-extended GHC correspond to private predic-
ates. Message passing primitives can appear in B, such
as O!m, m being a term and O either an output channel
of the class, an input channel of an object in state, or
the keyword self. The message m can also be a sequence
of messages. Naturally, the guard G can contain the
after (T) primitive.

The behaviour of a controller, which will be explained
in the next section, can be described in this language
as follows:

controller C; G, T
state Car
messages
? measure(D) « D= =approaching: G!down (Ok),
wait (O, train).
? measure(D) « D= =travelling: Glup(Ok),
wait (Ok, gate).
C ? measure (D) « Car becomes D.
mode wait(?, ?).
wait(Ok, gate) « after(20):Glerror.
wait (ok, gate).
wait(Ok, train) <« after(10): T!alarm.
wait(ok, train) « Car/= =ingate : true.
end.

A controller is defined by considering two input
channels, self(controller) and C, and two output chan-
nels, G and T. The variable Car will determine the state
of an instance, and its updating is made with the
becomes primitive (Davison, 1989), whose behaviour is
similar to an assignment. However, the result is not
effective until whole message is processed. Note that
private messages, such as wait/2, will be processed by
Parlog clauses.

The class instances are created from the state section
of a class or by means of a query. The queries will be
made from what is called top, and that will be considered
a special class (T), such that its state section will contain
the part of the query which creates the instances, and
whose messages section will be composed of non-
extended guarded Horn clauses. For example, a query
like:

?=C1(01), -+, Ca(0n) A1 -y G

c; being classes, will be made in a class T frame where
the state section is: c,(0;),...,c,(0,). The rest of the
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calls, qi, ..., qm, will be considered goals to solve. The
class top is only considered for technical reasons related
to the operational semantics definition.

3.4. Operational semantics

We have presented the environment as currently
developed; two different extensions of the concurrent
logic language Parlog have been proposed. However,
the result is an integration of both extensions. The
operational semantics defined below shows how two
paradigms are combined to obtain an integrated lan-
guage, incorporating real-time primitives and object-
oriented constructions for distributed programming. In
this sense, the real-time primitives inside the object-
oriented context are defined by means of transition
systems, and the effect of these primitives on the object-
oriented mechanisms are studied. Only the after primitive
is considered, because the other time primitives can be
defined in the same terms. The operational semantics
for the object-oriented extension given in Pimentel and
Troya (1992) is extended, in order to incorporate the
behaviour derived from using timed guards, so defining
an operational semantics for the proposed language.
This approach is used instead of extending the opera-
tional semantics of the real-time extension, because the
after primitive modifies the computational model,
whereas the object-oriented mechanisms do not affect
the functioning of timed guards.

Thus, the operational semantics gives an integrated
view of the environment, based on the semantics of the
underlying concurrent logic language, i.e. Parlog. In this
sense, we will assume a transition relation —p,,, as
defined in Boer et al. (1989).

The general description of a class is assumed to be
as follows:

Clyylgyuenyiy; 01502, ..., Oy
inherit ¢, c,, ..., ¢,
state X1 X5 ceey Xy, dl(jlv E)’ d2(j27 E)’ cees du(ju’ E;)
messages

M
end

c

where ¢, ¢, d, € ¢ (set of class names); iy, o, € Ch (set
of channels); x,eSVar (set of state variables);
Ji,» Px € Ch™ (sequences of channels); and M, is a set of
EGHCs. The variables appearing in the clauses of M,
can be state or logical variables; we will denote each
one by SVar and LVar, respectively.

A class ¢ € ¢ will be characterized by:

I.=iy-...~i,e Ch™, representing input channels,
0.=o0,"... 0,€ Ch", representing output channels,
S.={x;}i=1. s € P(SVar), representing state variables,
H.={c;}i=1. n€ P(X), representing inherited classes,
Ue = {di(jis i)} k=1..a € P(AL(Ch, T9)), representing
suppliers,

and M.. At(Ch, X¢) denotes the set of atoms composed

by functors of X, and arguments of Ch. Of course, h =
0 implies H. = &, which means the absence of inherited
classes. Similarly, n =0 is equivalent to I.=¢ (empty
sequence). A program will be given by a set of class
definitions.

The class hierarchy associated with a class ¢ will be
represented by the set:

A=tetio( U )
a€ He

Note that I, and O, are defined as sequences while S,
H. and U, are sets. This distinction is not arbitrary: the
position of the channels is relevant when instances are
created. Although the inheritance order is also important
to the programmer (we could have considered the set
H, with an order relation), we will model a strict
inheritance in which the graph inheritance search will
depend on the implementation.

In the following, we will consider all becomes opera-
tions in an EGHC grouped at the end of its body. It
does not assume a restriction in the language because
the result of all becomes operation has no effect until
the next message is processed. In addition, all clauses in
a class are assumed to have a timed guard such as
after(t), T being an integer (including 0). That is, EGHCs
will have the following appearance:

[I]?H « G, after(7): B, X becomes f.

We will base the operational semantics of the language
on the transition systems. The transition systems permit
us to determine the program’s semantics in terms of
transitions between configurations. Program execution
is modelled by a configuration sequence with transitions
between them, starting with an initial configuration, and
finishing with a terminal one.

An instance is identified by its class name and its
channels. In fact, when an object is created, a call such
as:

C(iO’ il’ cey lyy 01,025 .0y Om),

is used, where ¢ € X and i, 0, € Ch.

However, to make object representation easier we
assume a set Obj containing names for active objects,
and a function

T:0bj— 3,

which assigns to each object o € Obj the class to which
it belongs. Furthermore, we consider the function

v:P(0bj) x - Obj,

such that v(X,c)¢ X and T(v(X,c)=c, for finite
X € Obj and x € Z°. The v function gives a new name
for an instance of ¢ for a finite set X of object names
and a class name c.

3.4.1. Configurations

In order to describe the state of an object different
aspects need to be considered. Firstly, it is necessary to
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know the current values of its state variables. So, one of
the state components of an object « € Obj (a = T(x)) is a
mapping from

S,— Tm,

where S, =U,.7; S5 and Tm is the set of terms. In
general, the state of a system of objects can be modelled
by:

S,ar = Obj — Eval,

where Eval = SVar — Tm. But the state of an instance is
also characterized by its connection with other system
objects by means of its channels. It can be expressed by

S., = Obj— Ch— Obj.

For each a € Obj (a = T(«)), an element ¢ € S, will deter-
mine the correspondence between its output channels
and the objects taking them as input channels. That is,

o(a): 0,0 0U, - Obj,

where the sequence O, contains all output channels
defined in the class a and its ancestors. Similarly, OU,
denotes the output channels corresponding to the
suppliers.

So, S,, determines the receivers associated with each
output channel of an object, but no information exists
about what input channel will be used to make the
connection. To cover this aspect, we define:

R = {r e Obj > Ch— Ch:supp(r(a)) N ran(r())
= & A r(a) injective VY o« € Obj },

where supp and ran represent the support and the range,
respectively, of a mapping. An element r € R represents,
for each object « (a = T(a)), a renaming of channels:

r():1,uIU,— Ch,

where I, and IU, are defined in a similar way to O,
and OU,, respectively. Given an object, a renaming
can be extended to sequences, so that if 0 =o0,..., 0
and p=py,..., pr, the renaming {o/p} will represent
{01/P1s -5 Ok/Pr}-

So far only the functional aspects of the objects have
been modelled. The logical component will be given by
substitutions. Let Subst be the set of substitutions. A
substitution is a total function from logical variables to
terms, 6:LVar— Tm, such that supp(0) is finite. The
empty substitution will be denoted by ¢. The composition
of substitutions and the most general unifier (mgu) of
terms are defined in the usual way.

Finally, it is necessary to maintain a set containing
the active objects of the system.

Definition 1 (State) We define the set of states St by:
St = S,4 % Subst x S, x R x 2 (0bj)

Each component of o¢e€St 1is denoted by
(04, 0,,03,04,05). The first component stores the values
of the state variables in each object, and the second one

contains the binding of logical variables occurring in the
system. The third and fourth components establish
connections between objects. The last one includes the
names of the active objects.

The following variant notation is used. By o{a, x — t}
(with o € Obj, x € SVar and t € Tm) we shall denote the
state ¢’ that is the same as o, but for the value of
o' ()(x), which is t. Similarly, we denote the new state
o' by o{a,0—>f} (with a € Obj, o€ Ch and f € Obj},
which is equal to ¢ but for o3(a)(0), which is B. Likewise,
by a{a, r,} (r,€ Ch— Ch) we represent the state ¢’ that
is the same as ¢ but for the value of o)(«), which is r,.
This notation can be extended to sequences: if X =
X;°...* Xs 18 a sequence of state variables, t=t¢,-...- t, is
a sequence of terms, and 6 =0, "...*0,, is a sequence of
channels:

o{oe,0>p} =0a{a,0,—>p}... {0, 0,,— B}, and
of{o, x>t} =0af{o, x; >t} ... {o, x,; > t}.

Also, by a0
(O-l’ 0-20, 03, 04, 65)'

(o0 €St,0 € Subst) we denote

Definition 2 (Configurations) A typical configuration
will be a triad composed of a set of pairs, a state, and a
global clock. Each pair in the first component will model
the pending goals for each active object, and these are
represented by a list of goals. So, the set of configurations
will be

T = P(0bj x P(At,)) x St x N,

where At, is a set of tuples composed of an element
from At, and different instances of a special predicate
wait/S. If p € At, a typical element of At, has the form

p.i=p, or
p.ii=p, + wait(C,t),

where C is an EGHC, and teN. When p+
wait(Cy, t;) + ... + wait(C,, t,) € At,, we will write
p+ X, ,wait(C;t;). An element of At, denotes the
candidate clauses to solve a goal, or to process a message.

Given a configuration (X, o, t) € I, when an object a
is created the set of goals to solve is empty. In this case,
the pair (o, ) will belong to X. But the absence of
goals can also be produced because all goals have been
solved. In fact, a pair (o, [ ]) € X, [ ] being the singleton
set {true}, represents this situation.

The third component of a configuration represents
time. We will assume the maximum time to perform a
transition is 1

max*

Definition 3 (Terminal configurations) A configura-
tion (X, o, t) € I is terminal if and only if:

v(a,Pa)GX’Pa=QVPa=[]

The set of terminal configurations will be denoted
by I'.
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3.4.2. Transition rules

Before describing the transition relation, we will explain
when a clause is a candidate to solve a goal or to process
a message, which is similar to that in concurrent logic
languages. For the rest of the section we let W denote
a fixed program. Given a set of logical variables V,
W, denotes the program whose clauses are variants,
with respect to V, of the clauses of W. The set of variables
occurring in a term t is indicated by var(t). Similarly, if
p € At, ivar(p) denotes the set of variables corresponding
to input arguments of p. The notions of input and
output mgu’s of two predicates (mgu; and mgu,, respect-
ively) are introduced by considering the mgu restricted
to input and output arguments, respectively.

Definition 4 (Candidate clauses) Given a class ¢ and
an atom g, a clause C=(h«F,after: B) € (My)ipary)
(de H,U{T}) is candidate to solve the goal g in the
context of ¢, if and only if:

3 0 = mgui(g’ h) <F» 0> _)’P!‘arlog<[ ]’ 0’> A 0|/ivar(g) =&

Let M.(g) be the set of candidate clauses, in the context
of ¢, to solve g. 6-(g) denotes 6.

Likewise, if ¢eEval, an extended clause
C = (i?h « F, after: B) € (M)yarem) (d € H,) is candidate, in
the environment (c, £), to process the message m along
the channel i, iff:

3 0 = mgu(m, hé) <F€’ 0> _)garlog<[ ]a 0,> A Ollvar(m) =&

Let M, «(m, i) be the set of candidate clauses, and 0c.(m)
the substitution 6.

Now we can define —, = T" x I'" as the smallest relation
verifying these two rules:

(X,o,t) <X, a,t')

(X,0,t) > (X', a', t')
(X,0,t)-+ and {X, o, t) is not terminal

(X, 0,t) > X, 0,t + Tmax )

where —» =T xI"” is an auxiliary transition relation
defined below. Note how the transition relation —.,
inserts a silent transition by increasing the current time
when the configuration cannot proceed under —.

(a) Creation of instances

deXf, f=v(0s,d), t <t < Tpay

o' =0a{a, iy i—f} L
{B, 6> a}{B, {self(d)/io, 1a/i, 04/0}},
with o5 =050 {f}

Ao dlio,i, 0)}, 0, ) > {(os [ 1), (B D)} 0, 1)

The creation of an instance is made by a goal com-
posed of a class identifier (d) and the channels (i, i, 0).
The first renames the self channel (self(d)/i,) and the rest
are connected to the input and output channels of the
class (I,/i, 0;4/0). A new object is created () without

goals to solve, by considering its input channels as
output channels of a («, iy * i — ) and vice versa (f, 0 — ).

This transition models the creation of an object pro-
duced by a predicate call made in the context of another
object (x). The new object is represented by adding a
new pair to the first component of the current configura-
tion, given by a new name (f) and a set of initially
empty goals. In fact, this set should include the predicates
in U,, corresponding to the providers of the class d.
However, to avoid infinite loop transitions derived from
recursive class definitions, we add these predicates only
when the object B receives the first message (see the
rule (c), corresponding to the message processing).

(b) Private predicates. The reduction of a goal depends
on the environment in which is must be solved:

C;=(h«<F, after(t;): B) € My(,)(g0,)
t<t' <t+ Tpmax

Ll 8}, 0, 1) > {(a; g + Zy wait(Ci, t + 1))}, 0, 1)

The resolution method applied to solve a private
predicate is given in two parts. Firstly, all candidate
clauses, C;, are considered, adding them to the initial
goal. For each clause C; we also consider the time when
it will be ready to proceed. This time is given by the
current time (t) plus the time expressed in the guard (t;).
It is assumed that this sort of transition is made in less
time than 7,,,.

The goal can be reduced by using one of the candidate
clauses when the time of some of them has expired:

Jt;=min{t;} <t
9=9Cj(g02)7 CJEh‘—FB

Al g + Z; wait(Cy, 1))}, 0, )
— {{(e; outunif(go,, h0), B)}, a6, t)

The clause with the minimum time is selected, and
the second component of ¢ is modified by the substitu-
tion 6. The new goals generated are the clause body,
and the ouput unification of the original goal and the
cluster head. The output unification is given by:

30 =umg,(g, h)
{{(e;; outunif(g, h), B)}, a, t) = {{(; B)}, a0, t)

(c) Messages on an output channel. Messages can be sent
along self, or an output channel, including the channels
corresponding to the input channels of suppliers (objects
defined in the state section). Mesage processing along
output channels is modelled in a similar way to private
predicates. So, the candidate extended clauses are again
considered as in the previous rule.

a3(0)(0) = B, a4(B)(p) =0, b=T(P), n=061(p)
C;=(p?h < after(t;), F: B)e M, ,(ma,, p)
t<t' <t+Tmax

Al 0'm), (B; G}, 0, 1)
- {(; 0'm + Z; wait(Cin, t + t;)), (B; G)}, 0, ')
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The processing of the message m, sent along an output
channel, can succeed after all wait atoms have been
generated:

=B, 04(B)(p) =0, b=T(B), n = 0:(p)
Eltj=mm{t,-}<t
0 =0c;(ma,), C;=
B/={B,U,,siG=@

BsiG#
o' =o{f, x>t}
(o olm + Z; wait(C, t;))

p?h<~ F:B, X becomes {

(B G)}, 0, 8)
- (e [D), (B G, B)}, 0’0, 1)

In this case, the clause C; is chosen for processing
the message m because its suspension time has expired.
The clause body is added to the list of pending goals
in the object f, and if § has been recently created (P =
&) the goals in U, are also added. The state is modified
by the becomes primitive and the substitution 6.

(d) Messages on self. Another way to send messages is
by using the special variables self, super or an inherited
class. When the send primitive !’ is used with some of
these entities, the messages are put on the self channel,
to be consumed by the object itself. The difference in
each case is the scope of the candidate clauses search.
Only the rule corresponding to self messages is presented

here:
a=T(), n=0,(x)
= (?h < F, after(t;): B) e M, ,(mo,, self (a))
t <t <t+ Tpax
(o self! m)}, o, t>
- {{(o; self! m + Z; wait(C;n, t;)

)}’ o-’ t’>

Note that the candidate clauses are considered from
M, ,. So, if the message is sent to self the whole inherit-
ance graph is used to find a convenient clause. In other
case, when the message is sent by using one of the
inherited classes, ¢ € H,, candidate clauses should be
inspected in M,,. The super entity corresponds to
UcGHa Mc.n-

When all candidate clauses to process the message
have been found, we choose a clause C; with a suspension
time less than or equal to the current time. The new
state will be given by the becomes operation of the
clause, and by the substitution generated by the
unification.

3t;=min{t;} <t, C;=7h« F:B, X becomes
0 = 0c,(ma,)

o' =a{f, x>t}

(o self! m + Z; wait(Cy, t,);)}, 0, t)

- {{(x B)}, 0’6, t)

(e) Interleaving. The parallel execution will be modelled
by interleaving. Firstly, the objects can progress in
parallel (inter-objects parallelism), as shown by the
following rule:

(X,0,t) <X, d,1')

(XuYot)-{(X VYo, t)

On the other hand, the inner activity of an object can
progress concurrently, because the goal conjunction is
also modelled by interleaving:

Ll G uY,0,t) > G oY, a1
<{(a’ Gl’GZ)} v Ya0-3 t>_)<{(a’ ,1’G2)}UY/7 0-/» tl>

In fact, part of the goals to be solved in the context
of an object can proceed independently, as the previous
rule illustrates.

3.4.3. Observables

The transition rules previously defined do not provide
information, at least directly, about deadlock or failure
situations, and infinite computations. In order to incorp-
orate this kind of information we define the following
notion of observables.

Let, for St = St* U St*- {0} USt® and 0 denoting fail
(or deadlock), the function

O :T - P(St7),
be given as follows:
s€ (1({X, 6)),

with (X, 0,t)e " if and only if one of the following
conditions is satisfied:

(i) s=04°0,* ... 0, (n=0) and
3 Xo, X1 -ees Xus Loy ty, -5 b, SUCh that

(X, 0,t) =Xy, 09, t5) >, ... >.{(X,, 0p, t,», and
(X,, 0,,t,» 1s terminal.

(i) s=0p°0,° ... *0,°0 (n=>0) and

3 Xo, Xis--es Xp» to, ty, .-, t, SUCh that
<X’ g, t> = <X09 00> [0>_’r _’r<Xm Op, [">74”
and <X, a,, t,> is not terminal.

(iii) s=04°0,* ... and 3 Xy, ty, X;, t; ... such that
X, 0,t) =<Xo, 00, to) = {X1, 01, 11> > ...

Note that each case corresponds to one of the three
parts of St. If se St* (case i), it stands for a finite
normally terminating computation; if seSt*-{d}
(case ii), it reflects a finite abnormally terminating com-
putation, which is indicated by the symbol ¢ (fail or
deadlock); and if s € St (case iil), it represents an infinite
computation.

Definition 5 (Operational semantics) We define
O:P(At)—> 2(St5) b
“G) = ;(KX, 0,0)),
where X = {(W(J, T); G)} and 6 = (id, ¢, id, id, {v(&, T)}).
The first, third and fourth components of ¢ correspond
to functions with empty support, i.e. totally undefined.
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This operational semantics gives information about
the sequence of states produced by an initial query at
the time t=0. This initial call is considered in the
context of the special class T. Each state corresponds to
a timed transition, and stores the inner state of all
objects in the system, and their relation with each other.
The logic component is given by the substitutions
corresponding to the second component of the state.
So, in terms of logic programming, the success set
for a sequence of goals Ge P(At) is given by
O, P(At)— P(Subst):

(,[G]={0,:3s€eSt* s-0e€0(G), g+#0d}

On the other hand, we can also extract the information
related to deadlock computations by defining the map-

ping:
Cu[G]={s,:5-0€ O(G)}

where s, represents the sequence derived from each
second component of s. That is, if s=0¢-s’, then
s, = 0, s5. Finally, a map modelling infinite computa-
tions could be defined in a similar way.

3.5. An example

The features of the proposed environment are exempli-
fied by simulating the control of a level crossing with a
gate or barrier, by defining the behaviour of some objects
and their relations. The example simulates the message
flow established between a train and a gate by means of
a controller. To obtain a more realistic situation, we
have also considered cars. The train, car and gate objects
are characterized by their state: a train can be ‘travelling’,
‘approaching’ the gate or ‘ingate’ (crossing the gate); the
only interesting states of a car are ‘travelling’ and ‘ingate’:
and a gate can be ‘down’ or ‘up’, depending whether the
train is ‘ingate’ or not (Figure 3).

When a car is ‘ingate’ and a train is ‘approaching’, a
dangerous situation is produced. In this case, the train
must be stopped. Thus, the state ‘stop’ must be added
to a train.

The vehicle class defines the common behaviour of
trains and cars. So, a vehicle will have an input (default)

train

travelling \

ingate

/

approaching

controller

and an output channel, to receive and send messages,
respectively. A vehicle can receive an init message, which
will initialize its state to ‘travelling’ and it will start the
vehicle. The argument of the init message represents the
distance to the gate. The movement of the vehicle is
produced by the travel message, which updates the state
D (by means of becomes) and continues to move the
vehicle.

vehicle ; M
state D
messages

? init (Dist) « self!travel (Dist), D becomes
travelling.

? travel (Dist) « self! (update (Dist), cont(Dist)).

? update (Dist) « D = =ingate, outgate (Dist) :
M!measure (travelling), D becomes
travelling.

? update (Dist) « Dist < 20 :

M!measure (ingate), D becomes
ingate;

? update (Dist).

? cont(Dist) «D/==stop:
step (Dist, New_Dist),
self!travel New_Dist).

? cont(Dist) «D==stop : true.

end.

The two kinds of vehicle considered, trains and cars,
have the following behaviour:

train inherits vehicle
messages

? alarm «D becomes stop.

? travel(Dist) « D= =travelling, Dist <2000 :
M!measure (approaching),
self!cont (Dist),

D becomes approaching;

? travel(Dist)  « self! (update (Dist), cont (Dist)).

mode outgate (?)

outgate (Dist)  « Dist < —20.

mode step(?, ).

step (Dist, NwD) « NwD is Dist-4.

end.
car inherits vehicle

car

travelling

H

FIGURE 3. The interaction between a train, a car and a gate.
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messages
mode outgate (?).
outgate(Dist) «Dist< —10.
mode step(?, *).
step (Dist, NwD) « NwD is Dist-1.
end.

Both classes inherit from the vehicle class. In the first
case, the travel messsage is redefined, and the possible
values for the state D are ‘travelling’, ‘approaching’,
‘stop’, ‘ingate’. So, for example, when the distance to the
gate is less than 2000 units, and the state is ‘travelling’,
then this changes to ‘approaching’, and a message is
sent to the controller reporting the change along the
channel M. In the two classes the step predicate is used
to simulate the speed of the vehicles: in this example, a
train runs four times faster than a car. The outgate
predicate is used to detect the moment when the gate
has been left behind.

Another object integrated in the simulation is the
controller, whose behaviour was described in the previ-
ous section. An instance of that class receives messages
from the train and from a device enabled to detect the
cars crossing the gate. A controller can send messages
to the gate and to the train. Thus, the previous class
definition includes two input channels and two output
channels. Its state is composed of a variable containing
the value ‘ingate’ if a car is crossing the gate.

An instance of the controller class can receive the
message measure from a train reporting its state: if the
train is approaching, a down message is sent to the gate,
and it waits for a confirmation. Similarly, when the train
changes its state from the ‘ingate’ to ‘travelling’, the up
message is sent to the gate. In both cases, the wait
predicate is used to raise an exception if the confirmation
arrives later than the established time. If the gate has
some problem in going up an error message is sent to
the gate, and if the gate has some problem in coming
down or there is a car ‘ingate’, then an alarm message is
sent to the approaching train (the alarm message stops
the train).

Finally, the gate class is defined.

gate
message
? up (Ok) «—go_up & Ok =ok.
? down(Ok) «go_down & Ok = ok.
? error «write(‘'The gate is down’).
end

go_up and go_down predicates correspond to external
processes simulating the physical actions of a gate, and
they can be implemented as C functions.

A goal showing a particular simulation could be:

«train([init(90000) |T], M1), car(C, M2), gate(G),
controller M1, M2, G, T), C!init(5000).

A train T is created with the message init(90000) (note
that the input channel of the train is treated as a list).
At the same time an instance of car is created due to
the message init(5000). The controller takes care of the

safe working of the gate. In the example, if a dangerous
situation is produced an exception is raised, but if there
are no problems the computation does not finish.

If we want to create objects in different processors,
we would make the following call:

«train ([init (90000) | T], M1) @ hostl,
car (C, M2) @ hostl, gate(G) @ host2,
controller (M1, M2, G, T) @ host2, C!init(5000).

In this case, the train and car objects are created in
hostl, and the gate and controller instances are created
in host2.

4. IMPLEMENTATION ISSUES
4.1. Distributed implementation

The environment has been implemented in a Sun-4
workstation network, by using TCP/IP for communica-
tion among hosts. A virtual machine can be created from
each host in the network, and these machines can share
resources by using servers. When a virtual machine is
created an interpreter process is started in each host in
the network.

These interpreters are connected by sockets in order
to exchange system information. The interpreter of the
root host also tries to create a communication channel
with the other systems (root interpreters) in the network
to manage server information. The structure of each
interpreter is shown in Figure 4.

The interpreter of the root host also has a server
module described later in this section. For now, the
function and structure of each module and process in
the interpreter is briefly described:

® Jncoming calls. When the communication module
receives an incoming metacall the channel sockets
and the corresponding logic variables are created,
and the process name and the variables are passed
to this module. This module creates a local metacall
that is executed by the execution module.

® Qutgoing calls. This process is in charge of managing
the creation of a remote process. When a remote

Incoming
calls

Outgoing
calls

comm. module_l

process execution module

FIGURE 4. Interpreter structure.
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predicate call is detected by the execution module a
message is passed to this module which will interact
with the communication module and with the remote
host to execute the process. If the Host variable in
the remote metacall is free, then this module is in
charge of the assignment of a host for its execution.

® Sockets manager. This process is in charge of the
assignment of socket numbers to variables and of
maintaining the socket-variable table. The structure
of this table is the following:

(Variables, ?/*,Host-sock. number)

When a variable is destroyed the socket is closed but
can be reused.

® Communication module. This module is composed of
the following processes:

— System messages process. As there are some chan-
nels for communicating with the system inter-
preters and with the root hosts of other systems,
this process sends and receives these messages from
the other modules.

— Transmission process. This process is initiated
when any variable of the socket-variable table is
instantiated, and it sends the value of the variable.
If it contains free variables (incomplete messages)
these variables are sent to the socket manager for
the assignment of new sockets (its value is transmit-
ted instead of the socket number).

— Reception process. This process is iniiiated when
any data arrives and it instantiates the variables
to this received data.

— Process execution module. This is an interpreter for
the concurrent logic language Parlog. It also imple-
ments the real-time and distributed execution prim-
itives interacting with the rest of the modules of
the interpreter.

In the case of the interpreter that runs in the host of
the system there is another module in charge of server
management. This server manager creates the server and
merger processes after the execution of create_server
(process) primitive (Figure 5).

The server manager maintains a table with the name

FIGURE 5. Server process.

and the rights of each server (not all the hosts in the
network can access a server). When a request for a
server is received new variables are created and sent to
the merger processes. After this, these variables are sent
to the communication module to obtain socket numbers.
If the service is granted a system message is sent to the
host which asked for the service, including the socket
number.

Termination and deadlock detection are other import-
ant issues in the distributed implementation. In our
model termination detection is achieved by the root
processor, in the same way as in a uniprocessor imple-
mentation. An execution is finished when all the pro-
cesses in the root processor have finished (including
remote metacalls). A remote metacall finishes when the
Status lists are closed.

Deadlock can easily be detected in a uniprocessor; if
there is no process ready for execution and there are
processes suspended in variables then a deadlock exists.
Deadlock detection in distributed systems is more com-
plicated. Because of the messages in transit we cannot
immediately determine if a process is suspended because
there is no remote producer for the variable or because
there is a message still in transit. Deadlock detection in
CLLs has been solved in different ways (Ichiyoshi et al.,
1987; Foster and Taylor, 1990). Usually, deadlock detec-
tion algorithms for distributed implementations of CLLs
are based on distributed termination detection algo-
rithms. A network of processes is deadlocked if all the
processes have finished and some processes still remain
suspended. We have implemented deadlock detection in
a similar way to Ichiyoshi et al. (1987). Previous versions
of the system used a technique based on diffusing
computation with the remote metacall, as is explained
in Diaz and Troya (1993), but this approach is less
efficient.

4.2. Real-time extension

All the real time primitives are implemented in Parlog
except the after primitive that is implemented as a built-in
function. These primitives are implemented by using
timed guards, i.e. clauses containing after primitives in
the guards (Troya and Diaz, 1992). As an example, this
is a naive implementation of timeout:

mode timeout (?, ?, ).
timeout (Pred, Time, St) «call(P, St, _) : true.
timeout (Pred, Time, St) « after (Time) : St = timeout.

To implement real-time primitives it has been neces-
sary to modify the usual CLL scheduling algorithm
implementations. In a CLL implementation there is only
one queue for all the processes and the scheduling
algorithm is defined to make the execution more efficient
(i.e. taking into account tail recursion).

In our implementation we have defined three priority
levels and three execution queues. The scheduling algo-
rithm is as follows:
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® A process that can be reduced with a predicate with
timed guards is considered a real-time process and it
always has maximum priority. This allows the accur-
ate measurement of the time expressed in the guards.
If more than one of these processes is created at
the same time the scheduling time is the same for all
the processes. All these processes are queued in the
maximum priority queue.

® The second queue (medium priority queue) is ordered
by the dealiness of the processes. Once a real-time
process is reduced, if a timed guard succeeds, the
process deadline is computed and the process is
inserted in this queue in order of deadlines.

® The third queue is for non-priority processes.

® A process is scheduled from a queue only if the higher
priority queues are empty, or the deadlines of the
second queue allow it.

® A process can be suspended at the same time in a
variable and in timed guard. If the variable is
instantiated the process must be deleted from the
execution queue and if the time guard expires the
process must be deleted from the suspension queue
of the variable.

This algorithm works quite well if the charge of the
processor is not very high and it succeeds in meeting
time constraints in the order of 0.1 seconds. In any case,
the system can lose a time constraint for different reasons
(processor overload, garbage collection, ...) and in these
cases the environment reports the loss of this deadline.

4.3. Garbage collection

One of the most important problems that arises in the
distributed implementation of CLLs is garbage collec-
tion. Some algorithms for garbage collection in distrib-
uted systems do exist (Ichiyoshi et al, 1987) but a
common drawback of many of them is that the computa-
tion has to be stopped to achieve global garbage collec-
tion. There also exist algorithms that collect garbage
incrementally, but they incur very high costs. In our
model, there are no remote references to variables and
garbage collection can be achieved locally, in the same
way as in a monoprocessor implementation.

The efficiency of garbage collection algorithms is
especially important in real-time systems because a
garbage collection phase can cause real-time process
deadline loss. Some proposals also exist for real-time
garbage collection algorithms (Armstrong et al., 1993).

In our environment we have used the stop & copy
garbage collection algorithm (Baker, 1978) with some
modifications. In the original algorithm a garbage collec-
tion phase starts when the heap or the arguments stack
is full. In a real-time environment it is necessary to take
into account process deadlines before starting a garbage
collection phase. We have defined a critical threshold,
that depends on the amount of free space in the stack
and heap, and on the number of processes ready for
execution. A garbage collection phase will start only if:

® There is no process with maximum priority.
® The deadlines of real-time processes allow a garbage
collection phase without the loss of any deadline.

A garbage collection phase can also start if all the
processes are of low priority. In order to implement this
algorithm it is necessary to know a limit for the max-
imum time of garbage collection.

There are other approaches to improve garbage collec-
tion in real-time systems, as in that of Bekkers and
Ungars (1992), which makes partial garbage collections.
This is better in meeting time constraints, but is less
efficient.

5. CONCLUSIONS

We have proposed a distributed declarative environment
incorporating real time primitives and object-oriented
mechanisms. The environment is based on CLLs, par-
ticularly on the Parlog language, which has been
extended for distributed, real-time and object-oriented
programming. The extensions have been made by put-
ting forward an integrated view of each paradigm, by
giving a global operational semantics. Transition systems
have been used to define the behaviour of our environ-
ment, by taking into account the different mechanisms
which have been incorporated into the language: inherit-
ance, message passing, time guards, etc. An observability
notion is introduced to model finite (success, deadlock
and fail) and infinite computations. Although they have
not been considered in the present paper, we are also
interested in the development of other theoretical
aspects. In this sense, we think the approach used by
Pimentel and Troya (1992, 1993) to define a declarative
and a compositional semantics for a concurrent object-
oriented logic language could be extended, in order to
obtain similar results when a real-time extension is
included.

Implementation aspects have also been considered. In
this sense, we have modified the communication mechan-
ism between processes in different hosts, and we have
implemented a remote metacall for distributed program-
ming. The real-time extension has made the modification
of the CLLs execution model necessary, including prior-
ities and a new scheduling policy. Other implementation
aspects have also been considered such as garbage
collection, and termination and deadlock detection.
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