Automated Cryptanalysis of Transposition
Ciphers

J. P. GIDDY AND R. SAFAVI-NAINI

Department of Computer Science, University of Wallongong, Northfields Ave., Wollongong 2500,
Australia

In this paper we use simulated annealing for automatic cryptanalysis of transposition ciphers.
Transposition ciphers are a class of ciphers that in conjunction with substitution ciphers form the basis
of all modern symmetric algorithms. In transposition ciphers, a plaintext block is encrypted into a
ciphertext block using a fixed permutation. We formulate cryptanalysis of the transposition cipher as a
combinatorial optimization problem, and use simulated annealing to find the global minimum of a cost
function which is a distance measure between a possible decipherment of the given ciphertext and a
sample of plaintext language. The success of the algorithm depends on the ratio of the length of ciphertext
to the size of the block. For lower ratios there are cases that the plaintext cannot be correctly found.
This is the expected behavior of all cryptanalysis methods. However, in this case, examining the output
of the algorithm provides valuable ‘clues’ for guiding the cryptanalysis. In summary, simulated annealing
greatly facilitates cryptanalysis of transposition ciphers and provides a potentially powerful method for
analyzing more sophisticated ciphers.

Received April, 1994

1. INTRODUCTION

In a secrecy system (Shannon, 1949), a transmitter wants
to send a message to a receiver over a public channel.
An enemy has access to the communication in the
channel. To hide the content of the message from the
enemy, the transmitter applies an encryption trans-
formation to the plaintext and obtains a ciphertext (or
cryptogram). An encryption algorithm is a family of
transformations indexed by a piece of information called
a key. A basic assumption in cryptography is that the
encryption algorithm is publicly known, and the key is
the only piece of information that is kept secret and
allows the communicants to encrypt/decrypt securely.
In a ciphertext-only attack, the enemy has access
to a cryptogram and tries to find the corresponding
plaintext (or equivalently the key in the case of unique
decipherment).

Two major types of cryptographic algorithms are
substitution and transposition. In the former one, every
plaintext character is substituted by a ciphertext charac-
ter, using a substitution alphabet (which is the key
information in this case), and in the latter one, plaintext
characters are permuted using a predetermined permuta-
tion (key information). The importance of these two
types of ciphers stems from Shannon’s observation that
alternating a number of rounds of substitution and
transposition implements the basic confusion and
diffusion required in a secure cipher and creates a very
strong cryptographic algorithm. This is in fact the
approach taken in all modern block cipher algorithms
such as Data Encryption Standard (DES).

A possible algorithm for the enemy, to find the plain-
text without knowing the key (also called breaking the

cipher), is to systematically generate all the keys and use
them to decrypt the intercepted cryptogram and accept
a decryption that is meaningful. (We note that the chance
of having two plaintexts mapping into the same crypto-
gram tends to zero as the length of the cryptogram
increases.) Ths is called brute force attack. A brute force
attack is highly resource expensive because it requires
execution of the decryption algorithm for every possible
key. Moreover, the process of accepting/rejecting a
decryption requires human intervention and/or imple-
mentation of sophisticated pattern matching algorithms,
dictionary searches or other methods of text recognition.
Automating this process has been a challenging area of
research in recent years. This research falls into two
main categories. In the first category, the emphasis is on
automating the text recognition part (Peleg, 1979;
Carroll and Robbins, 1987, 1989) of the cryptanalysis,
while in the second category the search for the key in
the key space is driven by a cost function (or in some
cases a fitness criterion) (Forsyth and Safavi-Naini, 1993;
Matthews, 1993; Spillman et al., 1993).

In Forsyth and Safavi-Naini (1993), a successful
application of simulated annealing to the cryptanalysis
of substitution ciphers is reported, and in Spillman et al.
(1993) and Matthews (1993) genetic algorithms are used
for the analysis of substitution ciphers and a subclass of
transposition ciphers, known as columnar transposition
ciphers.

In this paper we formulate cryptanalysis of the general
periodic transposition cipher as a combinatorial optim-
ization problem and use the method of simulated
annealing to find the global minimum. We prove the
convergence of the algorithm for a specific neighborhood

THE COMPUTER JOURNAL,

VoL. 37, No.5, 1994

¥20Z Iudy $0 uo 1senb Ag 809G1E/621/S/LE /8101 E/|UulWwoo/Wo2 dno-ojwepeoe//:sdiy wolj papeojumoq

430 J. P. GIDDY AND R. SAFAVI-NAINI

and cost function, describe a finite time approximation
of the algorithm, and give experimental results which
demonstrate the success of this approach. The method,
as presently implemented, completely eliminates human
intervention and provides an elegant and efficient
method for cryptanalysis of transposition ciphers. If the
length of the cipher is ‘short’, the algorithm might fail
to find the plaintext (this is the typical behavior of all
cryptanalytic attacks); however, it can still provide valu-
able ‘clues’ for conducting further analysis. This is mainly
done through recognizing ‘probable words’ in the output
of the algorithm due to its partial success.

In Section 2 we review the preliminary background
and in Section 3 we describe a simulated annealing
algorithm for cryptanalysis of transposition ciphers. In
Section 4 finite time implementation of the algorithm is
discussed and performance results of the algorithm are
reported. We discuss our results and directions for future
research.

2. PRELIMINARIES
2.1. Simulated annealing

Simulated annealing is a probabilistic algorithm used for
combinatorial optimization problems. Such problems
can be described by a pair (S, C), where S is a finite set
of possible configurations and C is a cost function (also
called score function) that attaches a positive real number
(cost) to every state in S. The aim of the algorithm is to
find the state with a minimal value of C, i.e. the global
minimum. The success of the algorithm in finding this
global minimum, as opposed to the iterative search
methods that can be easily trapped in a local minimum,
is in the inclusion of a randomization element that
allows probabilistic hill climbing in the search process.
Simulated annealing is successfully used in a number of
applications (van Laarhoven and Aarts, 1987). The
algorithm works by defining a neighborhood relation N
on the set of states in S, N = S x S. If 5; € S is a neighbor
of 5;€ § then s; is called adjacent to s; and is said to be
reachable from it in one move. The state space must be
connected and there exists an integer d(S, N), which
specifies the maximum number of moves required to
reach a state s; starting from a state s;, for all s;, s; € S.
At each step of the algorithm, when the algorithm is at
state s;, with the value of the cost function being C(s;),
a generation mechanism is used to probabilistically
generate a new state s;. The probability of generating
state s; from state s; at temperature T is denoted by
G;;i(T). T is a control parameter corresponding to the
temperature of annealing in metals. The value of the
cost function C(s;) at this new state is calculated and is
compared with C(s;). A transition (move) to the new
state will be made with probability A4;;(T) where,

A;;(T) = P(s; acceptable from state s;)

1, Cls;) < Clsa),

= exp<w>, Cls;) > €.

The basic step is known as a Metropolis step. T is a
control parameter corresponding to the temperature in
annealing of metals. The probability of transition from
state i to state j is denoted by P;(T), and is given by,

G;;i(T)A;(T), Vi#j,
P,(T)= |S|
() 1- Z Gil(T)Ail(T)a i=j,
I=1,1#i

where G;;(T) and A;;(T) are generation and acceptance
probabilities of state s; from state s; at temperature 7.
At each temperature, the step is repeated for
many times and then the temperature is decreased.
Mathematically, simulated annealing can be modeled
using homogeneous or inhomogeneous Markov chains
(van Laarhoven and Aarts, 1987). In the homogeneous
case, which we have considered for this implementation,
the algorithm can be described as a sequence of Markov
chains. The value of the control parameter is kept fixed
over the whole chain and is decreased between two
consecutive chains. Convergence of the algorithm to the
global minimum is guaranteed if the matrix 4;;(T) and
the generation mechanism satisfy the conditions of
van Laarhoven and Aarts (1987, p. 22, Theorem 2).

3. CRYPTANALYSIS OF TRANSPOSITION
CIPHERS

A plaintext is a sequence of characters over an alphabet
o/ ={ay, - a,}. A transposition cipher takes a block
(my, ..., m,) of n consecutive characters of plaintext and
permutes it according to an n-permutation P, to produce
the ciphertext block (cy,...,c,). In cryptanalyzing the
cipher we assume that the enemy has access to the
ciphertext and attempts to find the corresponding plain-
text without the knowledge of permutation P. It is
assumed that the size of the permutation, n, is known.
In the following we describe a simulated annealing
algorithm for the cryptanalysis of transposition ciphers.

Let (iy,i3,...,0,), 1<ij<n, 1<j<n, denote the
n-permutation that moves one to the i; th place, two to
i,th place, etc.

The configuration space, S, consists of the set of all
possible permutations of n objects, hence, |S|=n!. The
neighborhood of a state s; is the collection of all states s;
that are accessible from s; in one move. A move from a
state s; reaches a state s; and consists of an application
of a generalized transposition (G-transposition), to s;. A
G-transposition [a, I, k], is an n-permutation that swaps
two adjacent blocks in the sequence (1, 2, ..., n). The first
block starts at o« and has length | and the second one
starts at o + [and has length k. Hence the n-permutation

THE COMPUTER JOURNAL,

VoL. 37, No.5, 1994

¥20Z Iudy $0 uo 1senb Ag 809G1E/621/S/LE /8101 E/|UulWwoo/Wo2 dno-ojwepeoe//:sdiy wolj papeojumoq

AUTOMATED CRYPTANALYSIS OF TRANSPOSITION CIPHERS 431

representing [a, [, k] is
(1,2, o0+ 1+1,..,0o+l+ka+1,. .,0+l..,n)

A move from state s; using the G-transposition [, I, k]
ends in state s; where s;=[a, [, k]°s; and ° denotes
composition of n-permutations.

We note that for any G-transposition [a, [, k], there
exists an inverse G-transposition [a, [, k]!, that will
undo the action of [, [, k]. In fact [o, [, k] ' =[a, k, [].

3.1. Cost function

The cost function attaches a real number C(s) to a state
s€ S. Let p,; denote the probability of the bigram «f in
the plaintext. To compute C(s), the permutation defining
state s is used to decrypt the ciphertext and the relative
frequency of the bigram «f in the resulting output,
denoted by c,4, is calculated. We define C(s) as,

where N is the length of the ciphertext. We note that
the cost function is expected to have its minimum if s
corresponds to the permutation used for encryption.
States that are in the neighborhood of s will have at
most six bigram frequencies (determined by the applied
G-transposition).

A cost function based on bigram frequencies has the
advantages of capturing a reasonable amount of plain-
text structure and being relatively simple to compute.

3.2. Properties of state space and neighborhood function

The neighborhood relation determines the states that
are immediately accessible from the current state. The
choice of the neighborhood relation is probably the
most important decision to be made for the success of
the algorithm. In the following we review important
properties of the neighborhood relation, as defined
above, which have contributed to the efficiency of the
algorithm and proving its convergence.

3.2.1. The space is connected
Proposition 1. d(S,N)=n—1.

Proof. Consider two states s;=(py,..., p,) and s;=
(4, ---» q,) belonging to the configuration space S. We
show that there exists a sequence of at most n—1
G-transpositions IT,, I1,,..., IT, such that

(Io Iy —yoo- oIy)s; =s;

where (I, oI, o °oIly)s; = (I o IT - oo)(I1ys;). We
will construct Il; and use a recursive argument to
construct the rest. Define I1; to be the G-transposition
that generates state s;,, from state s;,

I os;=(qy, Di,» ---,Pi,,ﬂ) =Si+1

I1, can be obtained by locating g, in s;, say p, = q,, and
swapping the two blocks (py,...,p;—1) and (p;, ..., P,),
ie. I1,=[0,1,n—1]. We note that s;,, has its first

element equal to ¢, and hence at most n—2 G-
transpositions are required to take s;;; to s;. This is
true because the last element must be in place when the
second last one is placed.

3.2.2. The neighborhood relation is reflexive and
symmetric

G-transpositions [0,0,0], [0,0,n], [0,n,0] and
[n,0,0] fix elements of the state space and hence the
relation is reflexive.

If the neighborhood of a state s; = (py, ..., p,) contains
a state s;=(q,, ..., 4,), there exists a G-transposition II
such that ITes; =s;. Using I1™! we have IT™'°s; =s; and
hence the relation is symmetric.

3.2.3. The landscape of state space is smooth

A desirable property of the state space is that the terrain
of the energy/cost landscape be as smooth as possible.
‘Deep valleys should also be big valleys, while small
valleys should be shallow’ (Otten and van Ginneken,
1989). Since the cost function is defined in terms of
bigram frequencies, moving to a neighboring state should
have the least effect on these frequencies. The suggested
neighborhood function causes at most six bigram fre-
quencies per block to be changed in each move. This is
a small change compared to the case that the two blocks
are disjoint.

3.3. Probabilistic generation of neighboring states

To generate an element of the neighborhood probabilist-
ically we need to have a probabilistic method of generat-
ing G-transpositions. As noted earlier a G-transposition
is of the form [o, I, k] where o, ke {0,1,...n}. To
generate a G-transposition we use a pseudorandom
number generator (PN generator) that generates three
pseudorandom numbers in the interval [0, n]. The num-
bers are sorted in increasing order and used to define a
G-transposition. When the three outputs «, f and y (in
sorted form) of the PN generator are distinct, a unique
G-transposition [a, f —a,y —] can be defined. In the
cases that at least two outputs are the same, the lowest
value from the triple of outputs is set to zero and the
highest value is set to n. Note that, if the middle value
is 0 or n, the values will still not be distinct.

In Table 1, the first column lists the possible triple
output patterns of the PN generator. The second column
contains the probability of a pattern for specific values
of a, b and c. The third column indicates the number of
choices that exist for the values a, b and c¢. The fourth
column shows the G-transposition produced by the
three outputs of the PN generator. The fifth column
shows the type of operation performed by the G-
transposition. A rotation is a G-transposition in which
the whole block of length n is broken into two sub-
blocks and the two subblocks are exchanged. This type
of G-transposition occurs more frequently because of
the mapping of the outputs of the PN generator to a

THE COMPUTER JOURNAL,

VoL. 37, No.5, 1994

¥20Z Iudy $0 uo 1senb Ag 809G1E/621/S/LE /8101 E/|UulWwoo/Wo2 dno-ojwepeoe//:sdiy wolj papeojumoq

432 J. P. GIDDY AND R. SAFAVI-NAINI

TABLE 1. Probability of state transitions

PNG Output Individual
output probability Combinations G-transposition Action probability
{0, 0, 0} P 1
{0,0, n} 3P 1 [0, 0, n]

{0, 0. a} 3P n—1 no
{n, n, n} P 1 change (6n+2)P
{0, n, n} 3P 1 [0,n,0]
{a,n,n} 3P n—1
-1
{0, b, n} 6P T
{0, b, b} 3P ne1
{a, b, b} 3P [0.b,n—b rotate
" _2_ |] around (3n+6)P
{b, b, c} 3P (s > b
{b, b, n} 3P n—1
{b, b, b} P n—1
n—1
{0, a, b} 6P < 5) [0,a,b—a]
n—1
{a, b, n} 6P < 5 > [a,b—a,n—b] exchange 6P
n—1
{a, b, c} 6P < 3 > [a,b—a,c—b]

a,b,ce{l,2,...n} a<b<c

G-transposition described above. If after the mapping
the values are not distinct no change of state is
made. The sixth column is the probability of the
G-transposition occurring for particular values of a, b
and ¢. We have P =1/(n+ 1)>.

THEOREM 1. The simulated annealing algorithm for
transposition ciphers with neighborhood and cost function
given above is convergent.

Proof. We show that the following conditions, given
in Theorem 2, p. 22 of van Laarhoven and Aarts (1987),
are satisfied and hence the algorithm is convergent.

s, ;€ 8:Gy =G, (1)

Si, Sj, S € §:C(s;) < C(s5) < C(sg), Au(T) = A;;(T) Ay (T)
(2)

5i,8;€8:C(s;) = C(s;), A4;(T) =1 (3)

5:,5;€8, T>0:C(s;) <C(s;),0<A4;;(T) <1 (4)

As noted in Section 3 the generation mechanism is
symmetric and reflexive so condition 1 is satisfied.
Moreover, we have

T

s oxp < (Gl - as,»)
T

A(T)A(T) = exp (_ M)

< (C(s) — C(s7))
=exp| ——————

T) = Aik(T)

which proves condition 2. Condition 3 is true because a
cost decreasing transition is always allowed and finally
condition 4 is true because

for C(s;) > C(s;).

4. IMPLEMENTATION
4.1. Cost function

The cost function is a measure of the number of characters
in correct sequence. If all characters are in the correct
order, the text will have statistical characteristics similar
to other plaintexts. The frequency with which bigrams
occur in a plaintext is one such statistic. Forsyth (1992)
uses a cost function where the cost of any state is
the sum of differences between bigram frequencies in the
decipherment of the ciphertext obtained by applying the
permutation identifying the state and those in a sample
plaintext.

We have used a weighted version of this cost function.
In a typical 1000 character English message, we might
expect 27 occurrences of the bigram ‘TH’ and zero
occurrences of the bigram ‘BZ’. Because ‘BZ’ is so
unlikely to occur in English, it is reasonable to expect
that a message containing 3 ‘BZ’s is less likely to be a
valid message than one containing 24 ‘TH’s. The cost
function from Forsyth (1992) gives equal weighting to
these two differences. A simple weighting method is to
divide the absolute difference by the expected value,

THE COMPUTER JOURNAL,

VoL. 37, No.5, 1994

¥20Z Iudy $0 uo 1senb Ag 809G1E/621/S/LE /8101 E/|UulWwoo/Wo2 dno-ojwepeoe//:sdiy wolj papeojumoq

AUTOMATED CRYPTANALYSIS OF TRANSPOSITION CIPHERS 433

giving the relative error. The use of relative errors was
found to provide much better recognition of a valid
message.

A table of expected frequencies of bigrams is generated
from the sample text. The values in this table are scaled
to contain the same number of bigrams as the ciphertext.
For a bigram af, denote the expected count by p,,.

To calculate the cost of a state, a bigram table is
created that contains the actual bigram counts, c,;, for
the decipherment represented by the state. The partial
cost of each bigram «ff is |p,s — C,pl/(Pyp + €). The para-
meter ¢ is a small value used to prevent division by zero.

The total cost of a state is the sum of the partial costs
for all bigrams in the alphabet A2. For a state s, the cost
function is:

|p<z _Catil
C(s) = Z Wap — “apl
a€A BEA paﬁ+8

(5)

In this cost function, the least frequent components
have a greater effect than the more frequent components
on the final cost function. Because of this, the value of
¢ has a significant effect on the ability of the cost function
to select the correct decipherment. ¢ =0.001 places too
much significance on the least frequent patterns. Good
results can be obtained using ¢=0.1. However, ¢=1
works better for some ciphertexts, notably those con-
taining dummy characters.

4.2. Cooling schedule

To achieve a finite-time implementation of the simulated
annealing algorithm, we must specify a set of parameters
that determine the convergence of the algorithm. These
parameters are combined to form a cooling schedule.

A cooling schedule usually consists of four parameters

® start value of the cooling control parameter,

® number of moves generated at each value of the
control parameter (length of the Markov chain),

® decrement of the control parameter,

® stop criterion.

Theoretical models are based on the infinite-time
system. We try to model the behavior of an infinite-time
system as closely as possible. We attempt to choose
values for the parameters of the cooling schedule accord-
ing to well-known heuristics, in order to obtain conver-
gence in polynomial time.

4.2.1. Start temperature

Start temperature is determined by the method in Aarts
and van Laarhoven (1985).

This involves starting at a random point in the state
space. A possible move is generated and the cost differ-
ence is calculated. A value for the initial temperature is
generated by the equation,

[m, -1
Thy=AC'{In ———
myx —(1—)m,

where AC'™) is the average of all positive changes in
cost, y is the acceptance ratio, m, is the number of
negative transitions and m, is the number of positive
transitions.

The Metropolis acceptance criterion is then applied
and if accepted the move is taken. These trials are
repeated for a large number of moves (equal to the
chain length).

4.2.2. Length of the Markov chain

The length of each chain must be long enough to allow
quasi-equilibrium to be attained at each value of the
control parameter. We use a chain length equal to the
size of the neighborhood, as suggested in Aarts and
van Laarhoven (1985, equation 64),

L=|N|

3

For a period of 10, the chain length is 121; for a
period of 25, the chain length is 2601.

4.2.3. Temperature decrement

Between chains, the control parameter is decremented
by multiplying it by a value between 0 and 1. A higher
value causes the annealing to proceed at a slower rate.
Typical values for the temperature decrement ratio are
0.8 and 0.9.

4.2.4. Stop criterion

A simple stop criterion is used. If the final states of four
consecutive chains are the same, the algorithm is termin-
ated. A more complex stop criterion may allow pro-
cessing to stop earlier, but this method is efficient to
calculate and is reasonably reliable.

4.3. Evaluation

The cryptanalysis program operates under the assump-
tion that the global minimum of the cost function
corresponds to the correct decryption. This is often true,
as the cost function is a measure of a decipherment’s
conformity to the expected frequencies of bigrams in the
plaintext language. However, there is no guarantee that
the frequencies of the correct decipherment match the
expected values perfectly. Meaningful messages may vary
greatly in their statistical profiles, while it is possible to
create garbage with excellent statistics.

The redundancy available because of the repetitive
nature of a periodic cipher strongly inhibits the chances
of a meaningless message being accepted as the
decipherment. The more blocks of text that are available,
the better chance the program has of picking the correct
text. This is evident for smaller ciphertexts where the
number of complete blocks is smaller, resulting in less
correct decipherments.

THE COMPUTER JOURNAL,

VoL. 37, No.5, 1994

¥20Z Iudy $0 uo 1senb Ag 809G1E/621/S/LE /8101 E/|UulWwoo/Wo2 dno-ojwepeoe//:sdiy wolj papeojumoq

434 J. P. GIDDY AND R. SAFAVI-NAINI

The ability of the cost function to recognize a correct
decipherment is essential to the success of the program.

There are several possible improvements to the cost
function that build on the bigram table approach, while
adding better plaintext recognition. One is to use a
dictionary search to locate words in a decipherment. In
keeping with standard cryptanalysis methods, a small
dictionary containing probable words could be created
by the cryptanalyst. The appearance of these words in
a decipherment could have a weighted effect on the cost
function. Another method is to include a trigram fre-
quency comparison similar to the current bigram fre-
quency comparison in the current algorithm.

Calculation of the cost function is fairly expensive
since the move to a new state must actually be performed
to allow the change in cost of moving to the new state
to be calculated. In Forsyth (1992), the change in cost
is calculated independently of performing a move,
allowing faster generation of moves. The ability to do
this is dependent on the problem.

The cost is calculated incrementally. Only the bigrams
that are split or joined by the move are used in updating
the bigram table. The most expensive part of the code
is updating the bigram frequency table. The usual, and
largest, number of updates to the bigram table for one
move is 6¢/n, where ¢ is the number of characters in the
ciphertext and n is the period of the cipher.

The time complexity of the annealing algorithm with
the current neighborhood function can be determined
from Aarts and van Laarhoven (1985, equation 67).
Where n is the period of the cipher, the execution time
of the statistical cooling algorithm is proportional to

n+1
IN|In|S|= 3 In n!

<Cn®lnn"

=Cn*lnn

Thus the theoretical time complexity is O(n* In n). This
does not take into account calculation of the cost
function. The size of the calculation required for the cost
function is indicated above.

Implementation is in C+ +. The current implementa-
tion is written for flexibility rather than optimal code
generation. The use of classes simplifies the representa-
tion of individual states and allows efficient permutation
of the ciphertext, while maintaining the appearance of
dynamic text.

The ciphertext is stored in an allocated doubly-inde-
xed array. The first index accesses a vector of pointers,
each one pointing to a block of the ciphertext. The
second index accesses an element of the block. To allow
for fast permutation of the elements of all blocks, the
second index is usually an element from an integer
vector, representing the current permutation. This allows
moves to be made by changing the integer vector instead
of moving columns in the array. This structure is hidden

inside a class, and is accessed through an iterator class
that allows movement through the text in read order,
and also down a column (i.e. the same position in
each block).

5. RESULTS

Table 2 shows typical running times on a Sun Sparc
station SLC for various cipher lengths and block sizes.
These figures indicate a time complexity of O(n*c), which
is significantly better than expected.

The results in Table 3 are derived from a series of
tests in which style, cipher length and block size were
varied. The block sizes were 10, 15, 20, 25 and 30. The
cipher lengths were 2000, 1000, 750, 500, 250, 200, 150
and 100. Cipher lengths slightly larger than these values
indicate dummy characters added. The other parameters
were at their default values. That is, the acceptance ratio
was 0.95 and the temperature decrement ratio was 0.85.
The value of ¢ used in the cost function (see Section 4.1)
was 0.1. All ciphertexts consisted of alphabetic letters
only. The sample text was a 8171 character UNIX
manual entry.

The program was run on ciphertexts representing two
different styles: prose and UNIX manuals. Three different
ciphers of each combination of length, style and period
were deciphered using the program.

Success of the decryption was measured as the percent-
age of bigrams in the decipherment that were in the
correct order: 100% indicates that the cipher was com-
pletely solved. The median of the success rates for the
three decipherments is shown.

We note that decipherments less than 100% are likely
to provide valuable clues to the cryptanalyst. For
example, for a period of 10, a success rate of 80% means
every 10 characters contains two subsequences in correct
order. This is a good result since it means that in every
10 characters there is one correct subsequence of at least
five characters and only one other subsequence. It is
easy for the cryptanalyst to see the correct decryption
from this point. This also holds for larger periods. For
example, the following text remains only 80% solved
after an attempt to decrypt a cipher of period 20.

andsawkawkusercomman
gncannimeawkpatterns
galanguandprocessing
maprogresynopsisawkf

Although the left side is unsolved, the rightmost
13 columns appear to be in correct order. The third line
can be used to solve the rest as the word ‘language’
stands out as a probable word. In general, a success rate
of 80% can be considered to be decrypted satisfactorily.
At lower values, messages are usually unreadable,
although partial words may be detected, which may help
in further analysis.

In general, a success rate of at least 80% can be

THE COMPUTER JOURNAL,

Vor. 37, No.S5, 1994

¥20Z Iudy $0 uo 1senb Ag 809G1E/621/S/LE /8101 E/|UulWwoo/Wo2 dno-ojwepeoe//:sdiy wolj papeojumoq

AUTOMATED CRYPTANALYSIS OF TRANSPOSITION CIPHERS 435

TABLE 2. Annealing times for decryption on a Sun Sparc station

SLC
Period (n) Cipher length (c) CPU time (min:s)
10 500 0:29
10 1000 0:49
15 1000 2:31
20 1000 4:47
25 1000 8:14
30 1000 13:49

TABLE 3. Results for differing language types where the sampled
plaintext consists of 8171 letters from Unix OS manuals

Cryptanalysis of different language styles

Cipher Cipher Bigrams/ Successfully
style Period length column decrypted (%)
Prose 10 250 25 100
Unix manual 10 250 25 100
Prose 10 200 20 100
Unix manual 10 200 20 100
Prose 10 150 15 100
Unix manual 10 150 15 100
Prose 10 100 10 70
Unix manual 10 100 10 50
Prose 15 510 34 100
Unix manual 15 510 34 100
Prose 15 255 17 100
Unix manual 15 255 17 80
Prose 15 210 14 73
Unix manual 15 210 14 53
Prose 15 150 10 73
Unix manual 15 150 10 46
Prose 20 1000 50 100
Unix manual 20 1000 50 100
Prose 20 760 38 70
Unix manual 20 760 38 80
Prose 20 500 25 100
Unix manual 20 500 25 85
Prose 20 260 13 65
Unix manual 20 260 13 60
Prose 25 1000 40 100
Unix manual 25 1000 40 100
Prose 25 750 30 80
Unix manual 25 750 30 100
Prose 25 500 20 88
Unix manual 25 500 20 80
Prose 25 250 10 48
Unix manual 25 250 10 52

obtained if the ratio of the cipher length to the cipher
period (c/n) is at least 20.

Most failures to decrypt correctly were the result of
the global minimum not being the correct decipherment.

This is especially true for low ¢/n ratios. In such cases,
the simulated annealing algorithm finds the global min-
imum, but this minimum does not necessarily represent
the correct decipherment. This is in contrast to many
uses of simulated annealing, such as circuit wiring place-
ment and the Traveling Salesman Problem, where the
cost function directly measures a value to be minimized
(distance) (Kirkpatrick et al., 1983).

Ciphertexts containing dummy characters were also
deciphered poorly. Increasing the ¢ parameter may
improve the results for these ciphers.

The experiments described were repeated using a
sample text of 26 000 characters of prose. The results
for ciphers containing prose improved. Conversely, the
ciphers containing manual pages were solved less suc-
cessfully. This emphasizes the necessity of selecting a
sample text of the same style as expected in the
decipherment.

6. CONCLUSION

It has been shown that simulated annealing can be
successfully applied to the problem of cryptanalyzing
periodic transposition ciphers. Convergence of the algo-
rithm with the specified neighborhood function has
been proved.

The method has completely solved some periodic
transposition ciphers with periods of 25 and cipher
lengths of 500 characters. Where a complete solution is
not found, the results can be examined for partially
correct solutions. In most cases, solutions that are 80%
correct can be found for ciphers whose length is at least
20 times the cipher period.

The ability of the cost function to differentiate valid
text from a series of characters with ‘good statistics’ is
essential to the program’s ability to decrypt correctly.
The cost function presented in this paper provides a
significant improvement over the one used by Forsyth
and Safavi-Naini (1993). The current system may be
improved by use of a more complex cost function.

Further work may concentrate on the ability to recog-
nize a valid message with a small sample, determining
the blocksize of the cipher automatically, and using
additional knowledge of the cipher (e.g. that it is a
columnar transposition) to make the cryptanalysis
more efficient.

ACKNOWLEDGMENTS

We wish to thank Bill Forsyth for providing the source
code from his work. Much inspiration was derived from
his work and programs. Also, several procedures (the
annealing driver and the cooling schedule code) in the
transposition cipher cryptanalysis program have directly
evolved from Bill’s code. Support for this work was
provided in part by Australian Research Council grant
A49030136.

THE COMPUTER JOURNAL,

Vor. 37, No.5, 1994

¥20Z Iudy $0 uo 1senb Ag 809G1E/621/S/LE /8101 E/|UulWwoo/Wo2 dno-ojwepeoe//:sdiy wolj papeojumoq

436 J. P. GipDY AND R. SAFAVI-NAINI

REFERENCES

Aarts, E. H. L. (1992) Simulated annealing. UMAP J., 13,
79-89.

Aarts, E. H. L. and van Laarhoven, P. J. M. (1985) Statistical
cooling: a general approach to combinatorial optimization
problems. Phillips J. Res., 40, 193-226.

Carroll, C. and Robbins, L. (1987) The automated crypt-
analysis of polyalphabetic ciphers. Cryptologia, XI, 193-205.

Carroll, C. and Robbins, L. (1989) Cryptanalysis of product
ciphers. Cryptologia, XIII, 303-326.

Forsyth, W. (1992) Solving Substitution Ciphers using the
Method of Simulated Annealing. Honors Thesis, Department
of Mathematics, Statistics and Computing Science, The
University of New England, March 1992.

Forsyth, W. and Safavi-Naini, R. (1993) Automated crypt-
analysis of substitution ciphers. Cryptologia, XVII, 407-420.

Kirkpatrick, S., Gelatt, Jr, C. D. and Vecchi, M. P. (1983)
Optimization by simulated annealing. Science, 220,
671-680.

van Laarhoven, P. J. M. and Aarts, E. H. L. (1987) Simulated
Annealing: Theory and Application. Reidel, Dordrecht.

Matthews, R. A. J. (1993). The use of genetic algorithms in
cryptanalysis. Cryptologia, XVII, 187-201.

Otten, R. H. J. M. and van Ginneken, L. P. P. P. (1989). The
Annealing Algorithm. Kluwer, Dordrecht.

Peleg, S. and Rosenfeld, A. (1979) Breaking substitution
ciphers using a relaxation algorithm. Commun. ACM, 22,
598-605.

Shannon, C. E. (1949) Communication theory of secrecy
systems. Bell System Tech. J., 28, 656-715.

Spillman, R., Janssen, M., Nelson, B. and Kepner M. (1993)
Use of a genetic algorithm in the cryptanalysis of simple
substitution ciphers. Cryptologia, XVII, 31-44.

THE COMPUTER JOURNAL,

VoL. 37, No.5, 1994

¥20Z Iudy $0 uo 1senb Ag 809G1E/621/S/LE /8101 E/|UulWwoo/Wo2 dno-ojwepeoe//:sdiy wolj papeojumoq

