470 Book REVIEWS

Section 1 of the book (400 pages) provides descriptions
of 18 systems, starting at 1975 with Pygmalion and
ending with systems still under development in 1992.
The complete list, with dates and authors, is
Pygmalion (1975, Smith), Tinker (1979, Lieberman), A Predictive
Calculator (1982, Witten), Rehearsal World (1984, Finzer and
Gould), SmallStar (1984, Halbert), Peridot (1987, Myers),
Metamouse (1988, Maulsby and Witten), TELS (1988-9, Witten
and Mo), Eager (1990, Cypher), Garnet (1988 onwards, Myers),
The Turvey Experience (1990, Maulsby), Chimera (1990,
Kurlander), The Geometer’s Sketchpad (1991, Jackiw and Finzer),
Tourmaline (1990-2, Myers), A History-based Macro by Example
System (1991, Kurlander and Feiner), Mondrian (1991, Lieberman),
Triggers (1991, Potter) and The AIDE Project (1992, Piernot
and Yvon).

As a reader with little previous experience in the field,
I found the descriptions generally interesting and occa-
sionally fascinating. To give an idea of the range of
systems included: Rehearsal World allows users to create
applications by manipulating ‘actors’ that respond to
‘cues’, Eager attempts to predict users’ intentions and
asks to take over when it thinks it can help, Peridot is
a tool to help non-programmers create graphical inter-
active interfaces, and Chimera is an editing system that
provides global search-and-replace facilities for graphics.

Sections 2 and 3 (100 pages) provide nine short
Chapters that look in more detail at specific issues and
implementation techniques. The book is rounded off by
three Appendices (a short chronology of developments,
a test suite and a glossary), a bibliography, a list of
contributors and an index.

Overall, this is a useful and readabtie collection of
information about Programming by Demonstration.
Unlike many books arising from conferences or work-
shops, the quality is uniformly good and the style is
consistent. I became more enthusiastic as I read
through it.

H. BrowN
Kent University

JEFFREY D. ULLMAN
Elements of ML Programming. Prentice-Hall, 1994,
£19.95, 320 pp. softbound, ISBN 0-13-288788-6

From humble beginnings, the programming language
ML has grown greatly in popularity to its position
today, where there are a variety of implementations of
the language and many adherents. This book aims to
teach the rudiments of functional programming in ML,
to programmers proficient in a conventional imperative
language such as Pascal or C.

The book is divided into three sections. The first
section is an introduction to ML, with the emphasis on
the understanding of concepts rather than complete
detail. Thus in this section we are introduced to ML’s
type system and the binding of identifiers to values. The
latter is treated thoroughly, with a discussion of the
difference between assigning a value to an identifier in
ML, and assignment in an imperative language. This

section also introduces lists, functions (including recur-
sion) and patterns. Throughout this section, new con-
cepts are introduced by careful example, with occasional
analogies drawn from imperative programming.

The second section introduces more advanced features
of ML such as polymorphism, higher-order functions,
type definitions, references and ML’s module system.
The power of ML is illustrated by the use of non-trivial
examples, such as binary search trees and hash tables.
Again, concepts are presented with many details post-
poned until later.

The third and final section fills in the gaps left by the
preceding sections. In this section we find chapters on
matches, exceptions, curried functions and also chapters
on practical issues such as creating executable files. The
book is rounded off with a complete summary of ML
syntax.

The book contains numerous examples ranging from
simple declarations to an ML implementation of a
numeric integration algorithm. The ML code for all the
examples is available by anonymous FTP, so that
readers may experiment with them. Each chapter also
includes several exercises of varying difficulty, and
selected answers are included.

The book’s greatest drawback is that the concept of
curried functions is postponed to Section 3. Setting aside
the importance of currying itself, this means that the
treatment of higher-order functions becomes needlessly
complicated, and the full power of functions such as map
and filter cannot be demonstrated.

This aside, the book is a well-written introduction to
ML. The author succeeds in making concepts, which at
first appear complex, quite simple. The treatment of type
definitions and ML’s module system, is particularly
impressive, and was a pleasure to read. For programmers
experienced in imperative programming who desire a
practical introduction to the language ML, this would
be an appropriate text.

P. MUKHERJEE
Birmingham University

Bruce HiLLAM

Introduction to Abstract Data Types using Ada. Prentice-
Hall, 1994, £19.95, 662 pp. softbound, ISBN 0-13-
124215-6

Producing a textbook requires substantial care and
dedication. To produce an Ada textbook of 662 pages
is a major undertaking. Unfortunately, the high standard
that the reviewer thinks one should expect from a major
publisher has not been attained. Virtually every page
contains some misprint or small error. To publish the
book in this form is a disservice to the student purchasers
and surely cannot be in the long-term interest of the
publishing industry.

Since every lecturer has at least half a textbook in
his/her course notes, the temptation to publish is irresist-

THE COMPUTER JOURNAL,

Vor.37, No.5, 1994

¥20z Iudy €0 uo 1senb Aq 979G61€/0.1/S/ L€ /8101 e/|ulWwoo/wod dno-ojwepeoe//:sdiy wolj papeojumoq





