Special Issue Editorial
Process Algebra*

Concurrency theory studies parallel and/or distributed
systems, their design, specification and verification. Since
the middle of the 1980s, the term Process Algebra has
become the popular name to refer to the algebraic and
axiomatic approach to concurrency theory, but of
course, in retrospect, theories that can be considered as
process algebra exist at least 10 years before that. In 20
years, process algebra has come of age. The articles in
this special issue can tell the reader just that: process
algebra is a branch of computer science like any other,
with its own theory, tooling and applications, but also
with many connections to other topics, in the first place
within other parts of computer science, but also within
logic and mathematics.

In concurrency theory, we are concerned with many
aspects or properties of systems. To mention a few, we
can be interested to know whether a system is free of
deadlock or livelock, whether different subsystems are
scheduled in a fair manner, whether timing constraints
are met, whether or not a task will always terminate.
When we consider a particular application area, we
concentrate on the most important aspects of that area,
as it is usually undoable to consider all aspects. Now it is
possible to use a concurrency theory that is specifically
geared to the set of aspects in question In this way, we
get many different theories, each with its own favourite
application area. It is preferable to have a general
framework instead, that specialises into many different
subtheories. Algebra offers such a general framework.
Starting from a basic, general language, we can add a
number of operators that capture relevant operators,
and use a set of relevant manipulating rules in order to
reason with the language.

Most well-known in the area of process algebra since
the middle of the eighties are the theories CCS, CSP and
ACP. CCS is the Calculus of Communicating Systems of
[7], Theoretical CSP originates from [3] and the original
reference to ACP is [2]. Of these three, (T)CSP is the most
abstract (identifies more processes than the other two),
and tends more in the direction of a specification
language. The other two, CCS and ACP, are based on
the same notion of equivalence (bisimulation), and are
more operationally oriented, tend more in the direction
of a programming language. Of the two, CCS has more
links to logic and lambda-calculus, and ACP is more
purely algebraical.

This issue concentrates on algebra, on calculations
with processes. This means that very little attention is
paid to semantics, to model-based reasoning. Semantic

* This editorial should have appeared in Volume 37 number 4 of The
Computer Journal. The Publishers wish to apologise for any
inconvenience caused.

issues, in particular the use of transition systems, have
been very important in process algebra research all
along (see e.g. [4]), but here, we concentrate on the
algebra.

The considerations above motivated the choice of
articles for this issue. An additional motivation was to
achieve unity of notation as much as possible. This
introduces a bias towards ACP style process algebra
(only the first article considers CCS). The reader should
not take this to mean that other process algebras are less
worth while. This is by no means the case. The main
reason to concentrate on one particular process algebra
is not to confront the reader with differing notation or
subtly diverging meaning of very similar operators. Still,
within this particular style of process algebra, we want to
show different applications, different issues.

Finally, let us briefly review the contents. The first
article, by Christensen, Hirschfeld and Moller, discusses
decidability in process algebra. This is a line of research,
that has really blossomed the last couple of years. The
central observation is, that where language equivalence
for context-free languages is undedicable, bisimulation
equivalence for context-free languages is decidable. This
article shows that decidability is achieved in CCS, if we
disallow communication, and also if we disallow both
restriction and relabelling. The results are proved by
means of the tableau method for proof systems.

The second article, by Bergstra, Bethke and Ponse,
introduces two iteration constructs in process algebra.
Where systems are usually specified in process algebra as
fixed points of recursive equations, they can be specified
directly as terms over an algebra by the use of iteration
operators like Kleene star. The iteration operators are
given by a set of axioms, thus enabling algebraic
reasoning. A number of facts about these operators are
proven.

The third article, by Fokkink and Zantema, proves a
fundamental result about the Kleene star operator of the
previous article. It proves that the axiomatisation is
complete for the standard model, i.e. that two terms can
be proven equal using the axioms exactly when they are
equivalent in the bisimulation model. The proof of this
result requires a lot of theory from the area of term
rewriting systems.

Thus, the first three articles are theoretically oriented.
In contrast, the fourth article, by Mauw and Reniers, is
geared towards an application. It uses process algebra in
order to give a formal semantics to a graphical
specification language, Basic Message Sequence Charts.
This formal semantics is currently being standardised by
the ITU-TS (the former CCITT).

The fifth article, by Korver, gives a formal definition of
a simulator for process algebra. For many process

Tue COMPUTER JOURNAL,

VoL. 37, No. 4, 1994

¥20Z Iudy 01 uo 1senb Aq 9z/GvE /v LIS/ L /e1o1e/|ulwoo/wod dno-ojwepeoe//:sdiy wolj papeojumoq



EDITORIAL 475

algebras, simulator tools exist, but this is the first time
that a formal basis is provided for what they do, and
what equivalence they induce on process terms.

Finally, the sixth article gives a full correctness proof
for a communication protocol, a sliding window
protocol with about 10,000 states. The proof is entirely
algebraic, and is written in a process language in which
we also can talk about data types in a formal way. It
introduces novel concepts in order to modularise such
lengthy proofs.

For those readers that want to know more about
process algebra, the references below include four text
books in the area ((BaW90, Hen88, Hoa85, Milg9]). I
hope that all readers will find something to their liking in
this issue.

J. C. M. Baeten,
Eindhoven. The Netherlands

REFERENCES

[1]1 J. C. M. Baeten and W. P. Weijland, Process algebra,
Cambridge Tracts in Theor. Comp. Sci., 18, Cambridge
University Press 1990.

[2] J. A. Bergstra and J. W. Klop, Process algebra for
synchronous communication, I and C, 60, 1984, pp. 109-
137.

[3] S. D. Brookes, C. A. R. Hoare and W. Roscoe, A theory of
communicating sequential processes, JACM, 31, 1984, pp.
560-599.

[4] R. De Simone, Higher-level synchronising devices in Meije-
SCCS, TCS, 37, 1985.

[5] M. Hennessy, Algebraic Theory of Processes, MIT Press,
Cambridge MA, 1988.

[6] C. A. R. Hoare, Communicating Sequential Processes,
Prentice Hall International, 1985.

[71 R. Milner, A4 Calculus of Communicating Systems, LNCS
92, Springer Verlag 1980.

[8] R. Milner, Communication and Concurrency, Prentice Hall
International, 1989.

THE COMPUTER JOURNAL,

VoL. 37, No. 4, 1994

¥20Z Iudy 01 uo 1senb Aq 9z/GvE /v LIS/ L /e1o1e/|ulwoo/wod dno-ojwepeoe//:sdiy wolj papeojumoq



