
Combining Object-oriented Systems and
Open Transaction Processing

PAUL TAYLOR*, VINNY CAHILL* AND MICHAEL MOCKJ

*Distributed Systems Group, Department of Computer Science, Trinity College, Dublin 2, Ireland
^Research Center for Computer Science (GMD), Schlofi Birlinghoven, D-53757 Sankt Augustin,

Germany

Atomic transactions are now a familiar paradigm for distributed programming and have been provided in
a number of object-oriented languages. Much effort has also been expended on developing open
transaction processing systems which support distributed transactions involving multi-vendor database
systems. This paper addresses a number of issues that arise in combining object-oriented distributed
programming with open transaction processing. We describe an approach to supporting transactions
which can access objects and other resource types, such as files and records, consistently, and which is
independent of the use of any particular object-oriented programming language. We discuss both the
design of a generic run-time interface which provides language independent support for atomic objects
and transactions and, following the X/Open model for open transaction processing, the design of an
interface between the transaction manager and a resource manager which is suitable for the requirements
of object-oriented systems. We illustrate our approach by describing the transaction sub-system of the
Amadeus/RelaX implementation of the Comandos platform which supports a number of popular object-

oriented languages and has been integrated with an existing relational database system.

Received April, 1994

1. INTRODUCTION

Atomic tranactions are now a familiar paradigm for
the construction of reliable distributed applications.
Transactions usually provide the well known ACID
properties of Atomicity, Consistency, Isolation and
Durability (Gray & Reuter, 1992). These properties allow
applications to take the distributed state of the system from
one consistent state to another consistent state despite
failures and concurrency. Nested transactions (Moss, 1981)
extend the transaction paradigm by providing the
independent failure property for subtransactions and
support the modular construction of applications.

Many systems have been developed that successfully
combine transaction processing with the object-oriented
programming methodology [e.g. Argus (Liskov and
Scheifler, 1983), Arjuna (Parrington, 1990) and Avalon/
C++ (Detlefs, et al., 1988)]. These systems offer rich
transaction functionality including support for nested
transactions and provide a powerful linguistic base for
developing reliable distributed programs. However these
systems are restricted in that they typically only support a
single language and do not allow consistent access to data
other than objects.

The more traditional domain for transaction pro-
cessing is in database systems. Generally these systems
do not allow for nesting of transactions or support
concurrency within a transaction. On the positive side,
standards for open transaction processing have been
developed with the aim of allowing a transaction to
access data from multi-vendor database systems. The
work being down by the X/Open Company in developing

a reference model for distributed transaction processing
(X/Open Company, 1991) is particularly important in
this respect. In the X/Open model, Application Programs
(APs) access shared resources (e.g. database records)
provided by a number of Resource Managers (RMs)
under the control of a Transaction Manager (TM). The X/
Open XA-interface defines the interface between the TM
and a RM and allows different XA-compliant database
systems to be involved in a transaction controlled by an
XA-compliant TM.

In this paper we discuss a number of issues involved in
combining object-oriented systems and open transaction
processing so that the guarantees made by the trans-
action system can hold not only for objects but for other
resource types used by an application. We describe the
transaction sub-system of the Amadeus/RelaX imple-
mentation of the Comandos platform (Cahill et al.,
1993), which provides language independent support for
atomic objects and transactions, and allows objects and
other resource types to be accessed consistently within
the same transaction.

In Amadeus/RelaX the Generic Run-time library (the
GRT) provides the interface to existing object-oriented
languages in such a way that a language can be extended
to support distribution and persistence as well as
atomicity without necessitating changes to its compiler
or dictating the way in which this functionality is made
visible to the programmer (Cahill et al., 1993).

1 This work was partially supported by the Commission of the
European Community under ESPIRIT contracts 834 and 2071.

T H E COMPUTER J O U R N A L , V O L . 37, N o . 6, 1994

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/37/6/487/518746 by guest on 09 April 2024



488 P. TAYLOR, V. CAHILL AND M. MOCK

The transaction model provided offers the function-
ality of an object-oriented system including fully
distributed nested transactions as well as providing
enhanced functionality such as allowing the possibility
of relaxing the isolation property of transactions (Nett et
al., 1986; Nett and Mock, 1993).

The implementation is structured according to the X/
Open model: Amadeus/RelaX acts as a collection of APs
and RMs that interact with the RelaX TM (Kroger et al.,
1990) which is responsible for distributed transaction
management via an interface which extends the X/Open
XA-interface. Pure XA-compliant RMs can still be
integrated into the system.

In this paper we focus on the design of the major
interfaces concerned with transaction management: the
(subset of) the GRT interface2 concerned with support
for atomic objects and transactions and the TM-
interface. We discuss the separation between generic
and language-specific aspects of atomic object manage-
ment and describe a TM-interface suitable for the
requirements of object-oriented systems.

The remainder of this paper is laid out as follows.
Section 2 gives an overview of Amadeus/RelaX. The
issues involved in supporting atomic objects and
transactions in a language independent manner are
discussed in Section 3 where the GRT interface is
described. In Section 4 we show how other resource
types may be used and describe the TM-interface.
Section 5 discusses the performance of the main
operations related to the management of atomic objects
and transactions. Some related work is described in
Section 6, and Section 7 presents a summary and some
conclusions.

2. AMADEUS/RELAX

This section presents an overview of the Amadeus/RelaX
system focusing on those aspects that are related to
transaction management. Further details may be found
in (Mock et al., 1992; Cahill et al., 1993a,b; Taylor,
1993). Section 2.1 describes the computational model;
the transaction model is described in Section 2.2 and the
internals of Amadeus/RelaX are described briefly in
Section 2.3.

2.1. Computational model

In line with the Comandos model, Amadeus/RelaX
supports persistent, global and atomic objects. A
persistent object is an object that exists beyond the
lifetime of the application that created it. So called
persistent objects are only potentially persistent in that
only those which are reachable from a designated set of
root objects actually persist, others being considered
garbage. A global object is an object that is remotely
accessible. An atomic object is an object for which the
ACID transaction properties can be guaranteed. Such

! Of the Comandos Virtual Machine Interface (VMI).

objects are the units of concurrency control and
recovery; an atomic object can be taken from one
consistent state to another within a transaction.
Applications may use a mixture of local volatile objects
and global, persistent or atomic objects.

Distributed processes are supported in the form of jobs
and activities. A job consists of a number of contexts
(address spaces), one on each node visited by the job, and
one or more activities. Activities are lightweight
processes that may be distributed over a number of
nodes. A job or activity is created to perform a specific
invocation on some object. An activity terminates when
this initial invocation has completed and a job terminates
when all activities belonging to the job terminate.

2.2. Transaction model

The transaction model provides standard distributed and
nested transactions and has been extended to provide
more flexibility (Nett et al., 1985). The most obvious
extensions to support object-oriented programming
concern support for concurrency within transactions:
both full nesting, with concurrent subtransactions, and
concurrent activities inside each individual
(sub)transaction are supported. A model based on
single writer/multiple reader locks is used for the
synchronization of concurrent activities inside of a
single transaction. By combining nesting with support
for concurrent activities, concurrency at different nesting
levels is possible. In addition, nesting of transactions for
recovery purposes alone is possible. In this case the
synchronization level of a parent and its subtransaction
are the same but the subtransaction is able to abort
independently from its parent.

In contrast to conventional transaction systems,
isolation of transactions is not mandatory although the
usual transaction guarantees of atomicity, consistency
and durability hold. The system provides a means for the
controlled use of uncommitted data in order to increase
the concurrency and efficiency of the system. A
transaction that uses uncommitted data depends on the
transaction that produced the data. Such a transaction
cannot commit or abort independently and may, once
terminated, be required to wait for the commitment of
any transaction on which it depends before committing.
The system checks for and keeps track of dependencies
between transactions. These are then taken into account
during the execution of the commit protocol in order to
achieve a transaction consistent system state.

The system can distinguish between the successful
termination of a transaction and its commitment so that
transactions can terminate in an additional state other
than the committed or aborted states, i.e., the completed
state. A completed transaction may be committed later in
a (potentially distributed) group commit. Note that, in
contrast to the database notion of group commit,
delaying commitment does not imply preventing access
to the results of the transaction.

THE COMPUTER JOURNAL, VOL. 37, No. 6, 1994

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/37/6/487/518746 by guest on 09 April 2024



COMBINING OBJECT-ORIENTED SYSTEMS 489

Concurrency control between transactions is imple-
mented using non-strict two-phase read/write locking
(Eswaran et al., 1976). The lockpoint indicating the
beginning of the shrinking phase of the transaction is not
necessarily combined with its commit point. Premature
release of locks allows the results of the transaction to be
made available before its commitment. Note that this
feature does not result in dirty reads since consistency
and atomicity are still guaranteed.

2.3. System structure

The goal of Amadeus/RelaX has been to allow
persistence, distribution and atomicity to be added to
languages whose base versions do not support these
features, in particular, without necessarily requiring
changes to the language's compiler nor imposing
entirely new constructs and models on the language.

Typically, a language to be supported will already
have its own execution structures implemented by a
compiler or preprocessor and a Language-Specific
Run-time library (LSRT). These individual LSRTs are
supported above the GRT which provides the support
for persistence, distribution and atomicity which is
required by a range of language implementations but
which is independent of any particular language (Cahill
et al., 1993a). Whenever language-specific information
or actions are required, the GRT makes an upcall to code
supplied for the particular language; in some cases this
code will be specific to the class of object being
manipulated. The GRT has been designed specifically
to interface to a LSRT rather than to provide an API for
application programmers to use directly.

The GRT is supported by the kernel. While the GRT is
a purely local component, linked into the address
space(s) of each application, the kernel is a distributed
component providing secondary storage management,
location services, security mechanisms, distributed
processes, and load balancing. In some sense, the GRT
may be seen as the interface between a LSRT and the
underlying kernel. The kernel is currently implemented
above UNIX3 as a collection of trusted servers with an
associated library which is linked with each application
(Cahill et al., 1993b).

2.3.1. Support for atomic objects

The GRT makes use of a number of generic modules
provided by RelaX which support concurrency control
based on read/write locking of overlapping fragments of
resources, recovery control, interfacing to the RelaX
TM, and logging. These generic transaction support
components (the so-called RM-library) are resource and
language independent.

The key to the resource independence of these modules
lies in the abstraction of the actual resource type making
it opaque to the RM-library. A resource is identified by

1 UNIX is a trademark of UNIX Systems Laboratories, Inc.

an (opaque) identifier and is expected to implement some
low-level operations, for example to take or restore a
recovery point, which can be called by the RM-library.
In the case of Amadeus/RelaX, the resources are objects
and the required operations are provided in the GRT in a
language independent way (Mock et al., 1992).

Accesses to atomic resources are assumed to be
bracketed with calls to the RM-library for concurrency
and recovery control. These checks are based on the
identifiers of the current transaction and of the resource
being accessed, and the mode (read/write) of the
attempted access. These parameters are assumed to be
passed to the RM-library which then handles the
transaction-related aspects of accessing the resource in
a language independent way. The detection and report-
ing of such accesses are discussed in Section 3.

The RM-library cooperates with the RelaX TM to
achieve transactional properties, such as establishing
consensus about the outcome of a transaction, that
require global coordination and thus cannot be handled
within the RM-library alone. The interface between the
RM-library and the TM is described in Section 4.

3. THE GRT INTERFACE

In this section, we address the issues involved in
supporting atomic objects and transactions in a
language independent object support system. In parti-
cular we identify the support that can be provided by the
GRT and that which is required from the language layer.
Section 3.1 discusses issues related to supporting atomic
objects, and Section 3.2 discusses issues related to
creating and controlling transactions.

3.1. Atomic objects

The support for atomic objects in the GRT must meet
the following goals:

• The support must be independent of any language.
• Each language must be free to choose how atomic

objects are presented, if at all, to application
programmers (e.g. accesses to atomic objects should
be possible using the same syntax as for accesses to
non-atomic objects).

• The overheads associated with using atomic objects
should be minimized.

• The support should not effect the performance of
accesses to non-atomic objects.

The use of transactions incurs overheads for commit
processing, concurrency control and recovery. However,
the transaction properties may not be required by all
applications or for all objects manipulated by a given
application. Therefore only a subset of objects need be
atomic. Atomic and non-atomic objects may be
manipulated in a transaction, but the transaction
properties are only ensured for atomic objects; nothing
is guaranteed about the consistency of non-atomic
objects.

THE COMPUTER JOURNAL, VOL.37 , No. 6, 1994

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/37/6/487/518746 by guest on 09 April 2024



490 P. TAYLOR, V. CAHILL AND M. MOCK

3.1.1. Creation of atomic objects

There are a number of possible choices for how a
language can present atomic objects to programmers.
Atomic types could be supported so that all instances of
some specified types are atomic. Alternatively, the
decision as to which objects should be atomic and
which non-atomic could be made at object creation time,
independently of the object's types. Both of these
approaches force an early decision to be made about
which objects are to be atomic and which not. A more
general approach would be to allow the decision to be
deferred until later, i.e. to provide a means of conversion
between non-atomic and atomic objects and, possibly,
vice versa.

Since the GRT is intended to be language indepen-
dent, a fundamental aspect of the support for atomic
objects is that, at the GRT level, atomicity must be
orthogonal to type. Thus, the GRT supports atomic
promotion allowing a non-atomic object to be converted
to being an atomic object. This does not prevent a
language providing atomic types or other methods of
indicating which objects are to be atomic, e.g. by
performing promotion at object creation time.

Note that the inverse conversion, atomic demotion, is
not permitted in order to avoid consistency problems
with shared atomic objects. If an atomic object could be
demoted, and subsequently modified, outside of a
transaction, this could lead to inconsistency if the
object was locked by some transaction at the time of its
demotion.

In promoting an object to being atomic some
language-specific operations may be necessary, for
example binding of different class code to the object as
discussed below in Section 3.1.2. Thus, an upcall from
the GRT to the LSRT, which is called by the GRT when
an object is being promoted, is provided. The GRT
interface concerned with atomic promotion is thus as
given in Figure 1.

3.1.2. Access detection and reporting

Atomic objects differ from non-atomic objects in that
each access to an atomic object must be detected and
reported to the underlying concurrency control and
recovery systems. Thus, the GRT provides a prologue
operation that must be called immediately before each
access to an atomic object. The information passed to
this operation includes the identifier of the object being
accessed and the mode of access (i.e. read or write).

Since the transaction model supports non-strict two-
phase locking, there must be a way of indicating when an

grt_make_atomic(Object) -> ack
/* promote object to being atomic */

upcall_make_atomic(Object) -> ack
/ • perform language specific operations

for atomic promotion • /

FIGURE 1. GRT interface for atomic objects.

access to an atomic object has completed (so that locks
can be released). Further, to support concurrency within
a transaction, single-writer/multiple-readers locks for
atomic objects are required. Thus, an epilogue operation
is also provided and must be called immediately after
every access to an atomic object.

The major decision here concerns the level at which
access detection should be performed: in the kernel, in
the GRT or at the language level.

At the kernel level, one possible approach is to use
virtual memory faulting techniques provided by modern
operating systems [e.g. Mach (Rashid, 1986)]. In such a
scheme, any page that contains (part of) an atomic object
would be locked as soon as the page is accessed. This
technique can be used, not only for access detection, but
as the basis for recovery. Using such an approach has
several disadvantages. First, it places a dependency on
the underlying system. The Amadeus/RelaX platform is
currently implemented above UNIX which does not
provide such advanced virtual memory facilities as
Mach. Second, the granularity of concurrency control
and recovery would be a virtual memory page, rather
than an individual object. Third, notification of when an
access to an atomic object is complete would be difficult
to achieve, thus not supporting non-strict two-phase
locking and concurrency within a transaction. Finally,
recent work suggests that the use of such virtual memory
techniques to detect accesses to atomic objects is costly
due to the overhead of trap generation and processing
(Hosking and Moss, 1993).

An alternative method that could be implemented in
the GRT is to provide wrapper objects (Baker, 1992).
Here, all accesses to an object are directed to a wrapper
object which forwards the invocation to the real object
and also calls the prologue and epilogue operations
appropriately. Wrapper objects do not support atomic
promotion well since a test must be performed to
determine whether the object is atomic or non-atomic,
thus affecting the performance of accessing non-atomic
objects. Another problem is that an objects self value
cannot be passed to other objects. Other problems
associated with wrapper objects are discussed in Baker
(1992).

In extending a language to provide atomic types the
most common and simplest approach to access detection
is to require explicit notification of all accesses. This
approach is used in the language support for Camelot
(Eppinger et al, 1992), Avalon/C++ (Detlefs et ai, 1988)
and Arjuna (Parrington, 1990). The advantage of this
approach is that applications have control over when locks
are acquired (and in what mode) rather than relying on
system defaults. This approach, though simple, requires
extra work from programmers to explicitly declare all
accesses to atomic objects. This gives greater scope for
programming errors which could undermine the properties
of atomic objects (e.g. only acquiring a read lock before
modifying an object). There is further scope for errors if
programmers also have to deal with epilogue operations.

THE COMPUTER JOURNAL, VOL. 37, No. 6, 1994

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/37/6/487/518746 by guest on 09 April 2024



COMBINING OBJECT-ORIENTED SYSTEMS 491

As an alternative for languages that provide atomic
types [e.g. Argus (Liskov and Scheifler, 1983)] the
compiler (or preprocessor) can insert the prologue and
epilogue operations around accesses to atomic objects.
Similar to the explicit approach, the compiler can decide
whether a lock is acquired and the correct mode of access
depending on certain conditions. The advantage of this
approach over the explicit approach is that the compiler
can guarantee that all accesses are detected and that the
correct mode is used. Of course when extending a
language, a disadvantage is that modifying a compiler to
insert the extra code may be difficult.

One uncommon aspect of the support for atomic
objects in Amadeus/RelaX is the ability to promote an
object from being non-atomic to being atomic. An
approach to access detection which supports this aspect
is to associate two sets of class code with each object: the
non-atomic code and the atomic code. A non-atomic
object is bound to the non-atomic code which provides
normal access to the object with no performance
overheads. When the object is promoted to being
atomic, the object is bound to the atomic code which
provides the same interface to the object except that the
atomic code includes the appropriate calls to the
prologue and epilogue operations. The atomic code
would be produced by the language's compiler or
preprocessor and the (re)binding done in a language-
specific way in response to the make_atomic upcall.

There are two ways of implementing such atomic code.
First, the atomic code, could be a complete copy of the
(normal) non-atomic code with extra code inserted for
the prologue and epilogue operations. This has the
advantage that the compiler can make better decisions as
to when to acquire locks and which mode to use (similar
to compiler generated in-line code). The disadvantages
are that modification of compilers or preprocessors to
produce this code may be difficult and there would be an
increase in the volume of code required by an
application.

Second, the atomic code could contain only the calls to
the prologue and epilogue operations and just forward
invocations to the non-atomic code. This is similar to the
use of wrapper objects but without the associated
problems because there is only one object. Modifying
compilers or preprocessors to produce this type of
atomic code should be easier because only the class
definitions need to be examined. Also, the increase in the
volume of code produced would not be significant.

It can be seen that while numerous mechanisms exist
for trapping access to atomic objects, the most feasible
require support from the language level. Hence, in
Amadeus/RelaX access detection for atomic objects
must be performed at the language level. This approach
allows the language designer the full freedom to choose
between the use of explicit (i.e. hand written) and implicit
(i.e. compiler/preprocessor generated) access detection
mechanisms as appropriate for the particular language.
The interface to the GRT consists only of the prologue

grt_prologue(Object, AccessMode) -> ack

grt_epilogue(Object, AccessMode) -> ack

FIGURE 2. GRT interface for access detection.

and epilogue operations which must be called before and
after each access respectively (see Figure 2).

3.2. Transactions

The main issue here is how language independent
support for transactions can be provided which allows
for correct program continuation after a transaction
abort.

Typically, programmers are provided with three
primitive operations: BEGIN, COMMIT and ABORT. The
BEGIN and COMMIT operations clearly define the bound-
aries of the transaction and provide points for computa-
tional rollback in the case of transaction aborts. When a
transaction aborts, computation should continue at the
statement immediately following the COMMIT operation.

With nested transactions, some systems distinguish
between creation of top-level transactions and creation
of nested transactions while others provide a single BEGIN
primitive such that the outermost BEGIN creates a top-
level transaction and nested BEGINS create nested
transactions. While the former approach has the
disadvantage to reducing the modularity of the system,
nevertheless, some mechanism must be supplied for
creating independent top-level transactions from within
a transaction.

In supporting transactions in the Amadeus/RelaX
system the following goals were identified:

• Language independence.
• Allowing for correct program continuation.
• Supporting the modular construction of applications

while allowing the creation of independent top-level
transactions from within a transaction.

3.2.1. Transactions in Amadeus/RelaX

In general, transaction support can be provided by either
embedding the support into a new language or by
extending an existing language. An example of the
former approach is the Argus language which provides
linguistic constructs for the creation of top-level and
nested transactions. This approach offers powerful
linguistic constructs which, because of their tight
integration with the underlying system, can provide a
fine degree of control. For example, invalid use of the
constructs can be detected at compile time. Managing
transaction aborts in this approach is simple because the
language constructs can be tailored to the underlying
system.

If an existing language is being extended, the language
can either be augmented by preprocessing or macro
facilities or a library of operations for transaction
control can be provided. The former approach offers
the same advantages as embedding the support in a new

THE COMPUTER JOURNAL, VOL.37 , No. 6, 1994

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/37/6/487/518746 by guest on 09 April 2024



492 P. TAYLOR, V. CAHILL AND M. MOCK

grt_create_transact ion(invoc_desc)
-> COMMITTED | COMPLETED I ABORTED

gr t_abor t_ t ransac t ion( ) -> ack

FIGURE 3. GRT interface for transaction control.

language except that the support is not as tightly
integrated into the system. Providing a set of library
routines is the simplest approach but does not offer a fine
degree of control for transaction aborts because there is
no linguistic link between the start and end of the
transaction. In both of these cases the language cannot
prevent the transaction's thread of control from running
outside the boundaries of the transaction. For example,
in the C language support for Camelot (Eppinger et al.,
1992), programmers are advised not to execute goto,
break or continue statements that transfer control out
of (or into) the body of a transaction block.

In Amadeus/RelaX, the method of creating (and
ending) transactions must be generic but must ensure
correct program continuation when a transaction aborts.
Therefore, we decided to use object invocations as the
denning boundaries for transactions (see Figure 3). That
is, a transaction is created at the start of the invocation
and ends when the invocation completes. This provides
an intuitive way for programmers to define transaction
boundaries. An advantage of this approach is that
programmers can write classes without having to know if
the code is to be used with transactions. Users of the class
can decide by choosing whether to perform invocations
on instances of the class within transactions or not. One
added benefit of this method is that no explicit COMMIT
operation is required.

Providing correct program continuation is simple
since all that is required is the premature termination
of the invocation. For the application, an abort is
translated into an exceptional return from the invocation
which is propagated in the appropriate language-specific
manner.

In order to provide modular support, there is no
distinction between creating a top-level transaction and
creating a nested transaction. Top-level transactions are
created by default, but inside a transaction, all new
transactions are created as nested transactions. Indepen-
dent top-level transactions may be created by first
creating a job and then creating a transaction in the
new job. Thus, jobs created within a transaction are not
considered part of the transaction.

A transaction may be aborted at any time by the
system and applications may explicitly abort the current
transaction. Unhandled exceptions also cause the current
transaction, if there is one, to abort.

4. DIFFERENT RESOURCE TYPES

The key to open transaction processing lies in isolating
resource independent transaction functionality (such as
distributed commit and abort protocols or the handling
of site failures and restarts) from resource dependent

Application Programs (APs)

Ji
Resource

Managers

(RMs)

Transaction

Manager

(TM)

Operating System

FIGURE 4. The RelaX architecture.

transaction functionality (such as saving or undoing the
changes to a specific resource made by some trans-
action). In order to allow different resource types to be
supported the interaction between these two aspects of
transaction processing — in effect between the TM and
individual RMs — must be defined by a standard
interface. These basic ideas are reflected in the X/Open
model for distributed transaction processing which
defines a standard for the interface between a TM and
a RM — the so-called XA-interface (X/Open Company,
1991) — as well as in the RelaX architecture depicted in
Figure 4.

In the X/Open model RMs were expected to be
database management systems providing non-nested,
standard ACID transactions. In order to support more
general applications and, in particular, to fulfill the needs
of object-oriented systems with respect to nesting and
concurrency control, Amadeus/RelaX provides extended
transaction functionality (see Section 2.2) which requires
that an enriched interface between the TM and the RMs
be provided. In other words, the XA-interface as
currently defined is not capable of supporting the
extended transaction functionality provided, since:

• The XA-interface assumes a flat transaction model.
Supporting nested transactions requires additional
information about the nesting structure to be passed
via the TM-RM interface.

• The XA-interface does not specify the behaviour of
the TM nor of the RM with respect to concurrency
control. Extensions are needed to allow for concur-
rency control mechanisms to exchange information
via the TM-RM interface.

• The XA-interface associated accesses to resources
with transactions based on the 'thread of control'
which carried out that access. This causes difficulties
when trying to combine RMs with different inter-
pretations of what a 'thread of control' is.

THE COMPUTER JOURNAL, VOL.37, No. 6, 1994

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/37/6/487/518746 by guest on 09 April 2024



COMBINING OBJECT-ORIENTED SYSTEMS 493

/* - transaction control - */
join_ta( tid ) -> ack
local_complete(tid, parent . t id , sync_tid )

-> ack
local_abort( <tid, sync_tid> ) -> ack

/ • - transaction global synchronisation - * /
local_setlockpoint( t id )

/ • - committing transactions - * /
local_prepare( c r i , <tid> )

-> PREPARED I FAILED
local_commit( c r i ) -> ack
local_abortcr( c r i ) -> ack

/ * - r e s t a r t handling - * /
prepared_cr( <cri> )

FIGURE 5. The RelaX TM-interface.

• The XA-interface only addresses single transactions,
group operations are not supported.

The following sections describe the extensions to the XA-
interface provided by the RelaX TM-interface in order to
support object-oriented systems. We show how the
Amadeus/RelaX system is seen as a set of RMs from
the TM's point of view, and sketch how a standard
database system [Informix (Informix Software, 1991)],
conforming to the XA-specification, has been integrated
into the Amadeus/RelaX system and the resulting
restrictions on the use of the database system.

4.1. The TM-interface

The following sections describe the RelaX TM-interface
and its relationship to the XA-interface in greater detail.
It should be noted however that the enriched interface
provided by the RelaX TM still allows XA-compliant
database systems to be supported as will be described.

The RelaX TM-interface is shown in Figure 5. A RM
informs the TM that it is participating in a transaction by
calling join_ta. The operations local_complete,
local_abort, local_setlockpoint are used to inform
the RM when a transaction completes, aborts or sets its
lockpoint, respectively. Note that announcing the setting
of the lockpoint (local.setlockpoint) or the completion
of a transaction (local_complete) relates to the extended
transaction functionality discussed in Section 2.2. Setting
the lockpoint is a global event for a transaction which is
scheduled consistently on all nodes by the TMs. Notifying
the RMs about the setting of the lockpoint is an example
of including information related to concurrency control in
the TM-interface. Completing a transaction without
committing is a prerequisite for supporting group
commitment. As the completion of a transaction is also
a global event detected by the TMs, the RMs must also be
informed about this event via the TM-interface.

The RelaX TM-interface also includes additional
information about the nesting structure of transactions.
In Figure 5 the parameter t i d identifies the transaction
concerned, parent_tid identifies its parent transaction

and sync_tid identifies the next ancestor transaction
with the same synchronization level. Note that the RelaX
TM-interface supports committing and aborting a group
of transactions in a single protocol execution by passing
lists of transaction identifiers in the relevant cells.

The operation local_prepare requests that the RMs
which are participating in the specified transactions
stably store the after-images of those transactions and
associate them with the commit request identifier cr i . In
response, the RM returns PREPARED if the effects of the
transactions are stably stored and FAILED if not. The
TMs determine the outcome of the commit request by
executing a distributed commit protocol and inform their
local RMs about the outcome through the loca l ,
commit and local_abortcr routines. The RMs then
perform the appropriate actions (i.e. replace the
committed state with the prepared after-image in
case of a commit or discard the prepared after-image in
case of an abort) and reply to the TM when completed.

The TM keeps track of the progress of a commit
request on a stable outcome log. As the resources are
maintained by the RMs, this log only contains outcome
records for commit requests, i.e. it has no data entries.
Before writing a prepared record to its outcome log, the
TM must make sure that all effected RMs have prepared
the corresponding transactions. It may write the
prepared record to the outcome log only if all the
required RMs return PREPARED. In the restart phase after
a site crash, the outcome log is scanned for incomplete
commit requests. These are resumed by the TM and their
final outcome is forwarded to the RMs. If a RM recovers
individually, it informs the TM via the operation
prepared_cr about the commit requests that it has not
yet completed.

The X/Open XA-interface (see Figure 6) provides the
xa_abort, xa_precom and xa_commit operations to
abort, prepare and commit a single trans-action. These
are superseded by the operations local_abort, local_
prepare and local_commit in the RelaX TM-interface.
The X/Open operation xa.recover is called in the
restart phase and is subsumed by the prepared_cr
operation. The X/Open gtrid_reg operation registers a
RM as a participant in a transaction and is the
counterpart of the join_ta operation.

/* - transaction control - */
xa_abort abort a transaction

/* - committing transactions - */
xa.precom prepare a transaction
xa_commit commit a transaction

/* - restart handling - */
xa.recover get the list of prepared transactions

/• - announce RMs and threads - •/
gtrid_reg register a RM in a transaction
xa_start associate a thread with a transaction
xa_end disassociate a thread from a transaction

FIGURE 6. The XA-interface (extract).

THE COMPUTER JOURNAL, VOL.37, No. 6, 1994

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/37/6/487/518746 by guest on 09 April 2024



4 9 4 P . T A Y L O R , V . C A H I L L AND M . M O C K 

The XA-interface provides operations related to the 
association of application programs and transactions. 
The operation x a _ s t a r t associates the 'thread of 
control' that executed that operation with the trans­
action identifier which is passed as a parameter. The RM 
associates every subsequent operation by that 'thread of 
control' with that transaction identifier until xa_end is 
called from within the same 'thread of control'. The 
definition of the notion of 'thread of control' is not part 
of the XA-specification, but is left open to the individual 
RMs. A 'thread of control' might be, for instance, a UNIX 
process or a thread within such a process. 

In contrast, in Amadeus/RelaX, the association of an 
application program in execution with a transaction 
identifier is handled in a library linked to the application 
program and consequently, does not appear at the RelaX 
TM-interface. The library maintains state information 
such as the name of the current transaction, which is 
encoded in the form of a pathname denoting nested 
transactions, and therefore allows accesses to resources, 
whether they are local or remote, to be tagged with that 
transaction identifier. This approach leads to greater 
flexibility in the construction of systems with com­
ponents that have different notions of'thread of control.' 

4.2. Informix-integration 

To integrate Amadeus/RelaX into the structure pre­
scribed by the RelaX architecture required a mapping 
between the components related to object management 
and the components of the architecture, i.e. APs and RMs. 

The resulting process structure — in terms of UNIX 
processes — can be captured by the RelaX architecture 
but to some extent exceeds the process model that is 
supported in the definition of the X/Open model. In 
Amadeus/RelaX, a context, which is actually realised by 
a U N I X process, acts as a RM for the objects mapped in 
the context. Activities that access these objects execute 
within that context. Note that these activities potentially 
belong to different transactions. Thus, a single UNIX 
process plays the role of a R M and a number of APs at 
the same time. In terms of the XA-specification, the RM 
recognises each activity to be a separate 'thread of 
control.' In terms of the RelaX TM-interface, this does 
not cause confusion as long as the guarantee that all 
accesses to resources are tagged with the correct 
transaction identifiers holds. This is easy to achieve by 
having each activity hold the current transaction 
identifier for that activity. 

When integrating the Informix database, the weakness 
of the X/Open 'thread of control' concept comes to light. 
In the case of the Informix database, a 'thread of control' 
is a U N I X process. Thus, a U N I X process can only be 
associated via x a _ s t a r t with one transaction on the 
Informix database at a time. In contrast, multiple 
transactions can be executed concurrently within an 
Amadeus/RelaX context (which is also a U N I X process) 
because the 'threads of control' within that RM are 

Application Program (AP) 

Generalized 

Functionality 

RM 
Transaction 

Manager 

(TM) 

RelaX Interface 

RelaX to XA Converter 

FIGURE 7. Integration of RMs. 

represented by activities. Thus, combining different RMs 
with different interpretations of the notion of 'thread of 
control' can lead to inconsistencies in the X/Open model. 
Since the Informix system could not do any better in this 
point than the X/Open model would allow, we had to 
disallow concurrent accesses to the Informix database 
from different transactions running in the same context. 

As depicted in Figure 7, all RMs, i.e. RMs supporting 
extended transaction functionality and the full RelaX 
TM-interface, and standard RMs supporting only the 
XA-interface, look alike from the TM's point of view. In 
order to enable a standard RM to participate in 
transaction processing, a converter is linked to that 
RM in order to map the RelaX TM-interface calls issued 
by the TM to XA-interface calls for this RM and vice 
versa. This converter performs the following functions: 

• Since a standard RM only knows about top-level 
transactions, we decided that, for simplicity, only top-
level transactions are allowed to access resources 
maintained by the standard RM [although we realise 
that other more sophisticated approaches are possible 
(Gray and Reuter, 1992)]. Therefore, information 
concerning the nesting structure has to be stripped off. 

• The converter transforms group operations related to 
the abort or commit of a set of transactions into a 
number of calls for individual transactions. 

• The calls in the RelaX TM-interface to deal with 
aspects related to the extended transaction function­
ality are suppressed in the converter since standard 
RMs do not support this functionality. 

• Finally, the converter provides name conversion to 
map procedure names used in the RelaX TM-
interface to those of the XA-interface and vice versa. 

5 . PERFORMANCE 

This section presents performance figures for the main 
Amadeus/RelaX operations related to the management 

T H E C O M P U T E R J O U R N A L , V O L . 37, No . 6 , 1 9 9 4 

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/37/6/487/518746 by guest on 09 April 2024



TABLE

1

Non-atomic 21.5
Atomic 22.4

C O M B I N I N G '

1. Compilation of C** classes (all times in s)

Number of classes

10 100 200

22.3 32.8 50.2
22.1 37.2 53.1

WOO

184.6
198.5

1

20.9
21.6

OBJECT-ORIENTED SYSTEMS

Number of methods

10 100 200

21.8 25.0 28.2
22.3 25.0 27.6

1000

61.7
64.2

Read
Write

TABLE 3. Accessing a non-atomic an
(all times in /JS)

495

id an atomic object

Non-atomic object Atomic object Atomic object (no locking)

16.38 3260.0
16.29 3220.0

67.89
66.15

of atomic objects and transactions. The language used in
obtaining these results is an extension to the C++
(Stroustrup, 1991) language called C** (Distributed
Systems Group, 1992). C * * directly supports promotion
of objects to be atomic objects. Atomic objects are
supported by producing an atomic class for each class
and binding the atomic class code to the target object
during atomic promotion. Invocations on atomic objects
are intercepted by the atomic class code which brackets
the real invocation with calls to the GRT prologue and
epilogue operations.

Most of the performance figures presented in this
section were obtained from an implementation of
Amadeus/RelaX running on DEC station 5000s under
Ultrix 4.3 connected by a 10 Mbit/s Ethernet. The figures
were obtained by three different methods:

1. By using a distributed measurement system called
Jewel, also developed at GMD (Lange et al., 1992).
Jewel provides highly accurate timings with a
granularity of 10~7 s. Note that the figures from
Jewel were obtained in a different environment and
with an earlier version of Amadeus/RelaX.

2. By executing an operation a large number of times
and taking the average of the total elapsed time. Here,
the total time was measured using the UNIX
gettimeofday system call which does not provide
as fine a degree of granularity as Jewel.

3. By running a program using the UNIX time command
and taking the elapsed time output by this command.

5.1. Compilation of atomic classes

The support of atomic objects in C * * imposes a
compilation overhead because the compiler must
produce atomic classes. Table 1 compares the times to
compile a C * * source file without support for atomic
objects to the time to compile the same file with support
for atomic objects. The compilation times (which exclude
the time for linking) were obtained by using the time
command. The first part of the table shows the effect of
the number of classes on compilation time. Here, all
classes were identical, consisting of a single integer data
member and a single method. The second part shows the
effect of the number of methods in a class. Here, there

TABLE 2. Object creation and atomic promotion (all times in /zs)

Non-atomic object creation 523
Atomic object creation 999
GRT mutual exclusion locks 117

was just one class and all methods were identical (i.e.
taking no parameters and with empty bodies). The
overhead in both cases is small: an average of 6% for the
first part and 1.5% for the second part.

5.2. Management of atomic objects

The times for creating a non-atomic object and creating
an atomic object (i.e. creation followed immediately by
atomic promotion) are shown in Table 2. The gettimeof-
day system call was used to obtain these results.

The overhead of creating an atomic object is 476 fj,s.
About one third of this time is taken by the time required
to acquire and release GRT mutual exclusion locks.

The times to access a non-atomic and an atomic object
are shown in Table 3. Both objects were instances of a
class consisting of a single integer data member and two
methods with empty bodies. The gettimeofday system
call was used to obtain these results.

For the atomic object, the times for read and write
accesses are similar because the additional recovery
operations that are necessary for modifying operations
are only required for the first modification. These figures
clearly show that there is a large overhead associated
with accessing atomic objects. The last column shows
the times for just detecting an access and reporting the
access to the GRT from C * * (i.e. with empty prologue
and epilogue operations). The largest proportion of
the overhead comes from the prologue and epilogue
operations.

More detailed times for the prologue and epilogue
operations, obtained from Jewel with an older version of
Amadeus/RelaX, are shown in Table 4. The prologue
operation consumes the most time so the times for each
of its constituent parts are also shown (external
synchronization deals with synchronization between
transactions and internal synchronization deals with
synchronization between activities belonging to the same
transaction).

Obviously the synchronization and recovery opera-
tions are expensive. This may be due to the current
implementation of these operations (consisting of

TABLE 4. Prologue and epilogue operations (all times in ms)

Read Write

Prologue operation
external synchronization
internal synchronization
recovery operations

Epilogue operation

3.902
1.367
1.219
1.316
0.517

4.417
1.508
1.427
1.482
0.702

THE COMPUTER JOURNAL, VOL. 37, No. 6, 1994

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/37/6/487/518746 by guest on 09 April 2024



496 P. TAYLOR, V. CAHILL AND M. MOCK

TABLE 5. TS recovery operations (all times in us)

No. of references in object

Save
Delete
Restore
StableSave

0

58.6
11.7
27.3

341.0

2

64.1
15.6
27.3

375.8

4

62.1
15.6
35.1

1189.4

8

64.1
15.6
35.1

1269.5

16

69.6
15.6
46.6

2329.7

approximately 30 000 lines of C++ code) which provides
facilities for coping with concurrent accesses to poten-
tially overlapping fragments of objects. However, the
times for reporting accesses from C * * are reasonable
compared to, for example, the times to process a virtual
memory fault.

Table 5 shows the times for recovery operations for
atomic objects with different numbers of references. The
Save operation makes an in-memory copy of an atomic
object before the first modification of the object within
a transaction; the Delete operation removes the
in-memory copy after the transaction successfully
commits; the Restore operation overwrites the real
atomic object with an in-memory copy after the
transaction aborts; and the StableSave operation
prepares the object for writing to the log after a
transaction commits. Note that these times do not
include writing the objects to the log.

The times for Save, Delete and Restore are as expected
given the simplicity of these operations, though the times
for the Restore operation rise more sharply than expected.
The times for the StableSave operation are high because
preparing an object requires that all of its pointers to other
objects must be swizzled. These figures clearly show that
swizzling references incurs a large overhead.

5.3. Transaction management

The figures for the transaction management operations
shown in Table 6 were obtained from Jewel. In this table,
local transactions involve a single context on one node
and distributed transactions involve two nodes with one
context per node.

The figures for transaction creation are the times from
when the application calls the GRT until the target object
is invoked. Here, the values for top-level and nested
transactions are similar. These times could be improved by
the grouping of messages that are sent to the TM.

TABLE 6. Transaction management operations (all times in ms)

No. of objects involved

commit abort

Create 1 10 100 10 100

Local top-level 10.9
Local nested 9.9
Distributed top-level —
Distributed nested —

108.4 294.2 529.1 78.3 192.0 526.9
26.1 71.3 82.1 21.1 73.4 107.0

263.4 439.5 682.8 165.4 289.7 609.5
37.2 82.6 90.8 43.5 73.4 107.0

The difference between top-level and nested trans-
action can be seen in the times for committing and
aborting transactions. The figures shown are the times
from when the GRT is requested to commit or abort the
transaction until control is returned to the application.
As expected, top-level transactions are more expensive
that nested transactions because the effects of top-level
transactions must be durable which requires the use of
the log. Commitment of transactions here uses group
commitment of ten transactions. That is, the first nine
transactions end in the completed state and the 10th
transaction commits with the result that all 10 trans-
actions are committed at the same time.

This table shows two surprising results. First,
transaction aborts have similar times to transaction
commits (sometimes even greater). This is unexpected
since there is no two-phase commit protocol executed for
aborting transactions. Second, as the number of objects
involved (i.e. modified) in a transaction increases, the
time for committing the transaction increases substan-
tially and, in addition, the ratio between the times for
local and distributed commit processing decreases even
more substantially. Both results seem to indicate that the
costs of local processing predominate over the com-
munication costs in the execution of the distributed
commit protocol.

Finally, the times for setting a transaction's lockpoint
are shown in Table 7. Setting a transaction's lockpoint is
a global event which is reliably broadcast to all
participating RMs. In this table, there is one partici-
pating RM (i.e. an Amadeus/RelaX context) on each
node. The times were obtained using the gettimeof day
system call. Obviously this is an expensive operation due
to the broadcast. One possible optimization would be to
remove the broadcast if the transaction was only
involved in one context.

6. RELATED WORK

In this section we briefly describe some systems which
have influenced our work. These systems fall into two
categories: those that support transaction processing in
object-oriented systems and those that support open
transaction processing.

6.1. Argus

Argus (Liskov and Scheifler, 1983) is an integrated
object-oriented programming language and transaction
system that supports the construction of robust

TABLE 7. Setting a transaction's lockpoint (all times in ms)

No. of
nodes

234.4
429.7
468.7

T H E C O M P U T E R J O U R N A L , V O L . 3 7 , N o . 6, 1994

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/37/6/487/518746 by guest on 09 April 2024



COMBINING OBJECT-ORIENTED SYSTEMS 497

distributed applications. The transaction model provides
fully nested transactions and allows independent top-
level transactions to be created. Argus separates atom-
icity from durability by providing atomic objects and
stable data. Atomic objects are instances of either built-
in or user-defined atomic types. User-defined atomic
types are built using linguistic constructs and provide a
means of increasing the amount of concurrency allowed.
Argus is a closed system, both in terms of only
supporting a single language and not allowing consis-
tent access to other resource types.

6.2. Arjuna

The Arjuna (Parrington, 1990) system supports the
construction of fault-tolerant, persistent and distributed
applications in a C++ programming environment. A
class hierarchy is used as the basis for all properties of
objects (thus the C++ language has not been modified).
Type specific concurrency control and recovery are
implemented by redefining operations of certain base
classes. A class is also used for creating transactions. The
transaction model supports nested transactions. Arjuna
is also a single language system and does not support
access to other resource types.

6.3. Camelot

Camelot (Eppinger et al., 1992) is a distributed
transaction facility layered on top of the Mach
operating system and based on the client/server model.
Both clients and servers can create transactions and
access data provided by one or more servers. The
transaction model is flexible, supporting a number of
commit protocols and logging strategies. A C language
interface is provided to access the Camelot facilities.
More sophisticated linguistic facilities are provided in the
Avalon (Detlefs et al., 1988) language which is an
extension of the C++ language. Avalon is heavily
influenced by Argus and, like Arjuna, uses the C++
inheritance mechanism to provide certain properties for
objects. Though multiple languages can use the facilities
provided by Camelot, access to resources provided by
external database systems is not permitted.

6.4. Encina

Encina (Transarc Corporation, 1991) is a commercial
system supporting open transaction processing. It is
layered on top of the Open Software Foundation's
Distributed Computing Environment (DCE) and has
extended the RPC mechanism to be aware of transaction
semantics. The transaction model provides nested
transactions and allows concurrency within trans-
actions. Access to resources provided by other database
systems is supported with the XA-interface. An interface
to the facilities of Encina for the C language is provided.
However, Encina does not provide any integrated
support for object-oriented languages.

6.5. Tuxedo

Tuxedo (UNIX System Laboratories, 1991) is another
commercial system supporting open transaction pro-
cessing which has been widely accepted. The transaction
model only allows flat transactions and does not allow
concurrency within transactions. Access to other
database systems is supported with the XA-interface. A
C library is available to provide access to Tuxedo's
transaction facilities. As with Encina, Tuxedo has not
been combined with object-oriented languages.

7. CONCLUSIONS

This paper described the integration of object-oriented
systems with open transaction processing and described
the transaction support provided in Amadeus/RelaX —
a platform for the construction of distributed, persistent
and reliable applications.

In particular we described the design of the interface to
a Generic Run-time Library providing language inde-
pendent support for atomic objects and transactions
while allowing different languages to adapt the support
provided to their own requirements.

We also described the interface between a TM and a
RM, based on the X/Open XA-interface, which supports
the integration of different RMs while providing support
for the use of nested transactions and other enhanced
transaction functionality.

The current implementation of the Amadeus/RelaX
system supports both C** and an extension to the Eiffel
language called Eiffel** (McHugh and Cahill, 1993). We
have also been able to run C** applications that access
atomic objects provided by Amadeus/RelaX and
database records provided by the Informix database
system in the same transaction.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the input of all those
who have contributed to the Amadeus/RelaX system. In
particular, the contributions related to the topics of the
paper are acknowledged: Rolf Heinl, Reinhold Kroger
and Michael Wack at GMD; Sean Baker, Neville Harris,
Gradimir Starovic and Brendan Tangney at TCD.

REFERENCES

Baker, S. (1992) System Issues in Persistent Programming and
OODBMS Integration. PhD Thesis, Department of Com-
puter Science, Trinity College Dublin.

Cahill, V., Baker, S., Starovic, G. and Horn, C. (1993a) The
Amadeus GRT: Generic runtime support for distributed
persistent programming. 00 PS LA 1993 Conf. Proc, 28,
144-161.

Cahill, V., Baiter, R., Harris, N. and Rousset de Pina, X. (eds)
(1993b) The Comandos Distributed Application Platform.
Springer-Verlag, Berlin.

Transarc Corporation (1991) Encina — Enterprise Computing
in a New Age.

Detlefs, D., Herlihy, M. and Wing, J. (1988) Inheritance of

THE COMPUTER JOURNAL, VOL.37, No. 6, 1994

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/37/6/487/518746 by guest on 09 April 2024



498 P. TAYLOR, V. CAHILL AND M. MOCK

synchronisation and recovery properties in Avalon/C++.
Computer, 21(12), 57-69.

Distributed Systems Group (1992) C** Programmer's guide —
Amadeus 2.0. Technical Report TCD-CS-92-02, Department
of Computer Science, Trinity College Dublin.

Eswaran, K., Gray, J., Lone, R. and Traiger, I. (1976) The
notions of consistency and predicate locks in a database
system. Commun ACM, 19, 624-633.

Eppinger, J., Mummert, L. and Spector, A. (1992) Camelot and
Avalon: A Distributed Transaction Facility. Morgen Kauf-
mann, San Mateo, CA.

Gray, J. and Reuter, A. (1992) Transaction Processing Systems:
Concepts and Techniques. Morgan Kaufman, San Mateo,
CA.

Hosking, A. and Moss. J. (1993) Protection traps and
alternatives for memory management fo an object-oriented
language. In Proc. 14th Symp. on Operating Systems
Principles, pp. 106-119, Ashville, NC.

Informix Software, Inc. (1991) Informix-TP/XA: Transaction
Manager Interface, User Manual.

Kroger, R., Mock, M., Schumann, R. and Lange, F. (1990)
RelaX — An extensible architecture supporting reliable
distributed applications. In Proc. 9th Symp. on Reliable
Distributed Systems, pp. 156-164, Huntsville, AL.

Lange, F., Kroger, R. and Gergeleit, M. (1992) JEWEL: design
and implementation of a distributed measurement system.
IEEE Trans. Parallel Distributed Syst.

Liskov, B. and Scheifler, R. (1983) Guardians and actions:
Linguistic support for robust, distributed programs. ACM
Trans. Programming Languages Syst., 5, 381-404.

McHugh, C. and Cahill, V. (1993) Eiffel**: an implementation
of Eiffel on Amadeus, a persistent, distributed object-

oriented applications support environment. In Magnusson,
B., Meyer, B. and Perrot, J.-F. (eds) TOOLS 10, pp. 47-62,
Versailles, France.

Mock, M., Kroger, R. and Cahill, V. (1992) Implementing
atomic objects with the RelaX transaction facility. Comput.
Syst., 5, 259-304.

Moss, J. (1981) Nested Transactions: An Approach to Reliable
Distributed Programming. PhD thesis, MIT.

Nett, E., Grosspietsch, K., Jungblut, A. et al (1985)
PROFEMO — design and Implementation of a Fault Tolerant
Distributed System Architecture. GMD-Studie 100, GMD.

Nett, E., Kaiser, J. and Kroger, R. (1986) Providing
recoverability in a transaction oriented distributed system.
In 6th Int. Conf. on Distributed Computing Systems,
Cambridge, MA.

Nett, E. and Mock, M. (1993) Generic action support for
distributed cooperative applications In Workshop on High
Performance Transaction Processing (HPTS), Pacific Grove.
Also available as GMD-Arbeitspapier 785.

Parrington, G. (1990) Reliable distributed programming in
C++: the Arjuna approach. In USENIXC++ Conf, pp. 37-
50, San Francisco, CA.

Rashid, R. (1986) Threads of a new system. Unix Rev., 4(8),
37-49.

Stroustrup, B. (1991) The C++ Programming Language, 2nd
edn. Addison-Wesley, Reading, MA.

Taylor, P. (1993) Transactions for Amadeus. Master's thesis,
Department of Computer Science, Trinity College Dublin.

UNIX System Laboratories (1991) The Tuxedo System: Product
Overview.

X/Open Company Limited (1991) Distributed Transaction
Processing Reference Model: The XA Specification. Berkshire.

THE COMPUTER JOURNAL, VOL. 37, No. 6, 1994

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/37/6/487/518746 by guest on 09 April 2024


