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1. INTRODUCTION

This paper discusses the functionality that should be
offered by an object-oriented (OO) distributed system in
order to support the programming of distributed, and
parallel, applications in a hardware environment con-
sisting of a collection of workstations connected by a
local area network. The discussion is based on our
experience of programming several substantial applica-
tions on the Amadeus platform (Cahill et al., 1993a, b).

Although the description of the applications given
here is in terms of their implementation on Amadeus we
hold that the lessons learned, in terms of the function-
ality that an OO distributed system should provide, are
of general applicability.

The layout of the paper is as follows, Section 2
describes the pertinent features of the Amadeus model,
Section 3 describes how the application programs were
structured to run on Amadeus. The key part of the paper
is Section 4, in it we discuss the main features we think an
OO distributed system should provide. The paper
concludes with a look at some related work in the area.

2. THE PROGRAMMER'S VIEW OF THE
AMADEUS PLATFORM

Amadeus is a distributed OO programming environment
developed at Trinity College Dublin and is the reference
implementation of the Comandos1 platform. An over-
view of Comandos is given in a companion article in this
issue and an in depth discussion of all aspects of the
project can be found in Cahill et al. (1993) as well as in
the other articles in this issue. This section focuses on
those features of the Comandos Virtual Machine Inter-
face and Computational Model that Amadeus imple-
ments which are relevant to the current discussion.

Comandos aims to provide support for distributed
and persistent objects in a heterogeneous environment.
Objects are generic and opaque and so can be bound to
different language-specific object models. Objects are

1 Comandos was partially supported by the Commission of the
European Communities as ESPRIT projects 834 and 2071.

passive—in that they do not change their own state—
and are manipulated by active processing entities known
as activities. An activity is a multi-node lightweight
thread of execution which appears to move between
nodes as it invokes various objects. When an activity
visits a node, for the first time, it is said to diffuse to that
node. Persistent objects are stored in the storage system
(SS) and are brought/mapped into (virtual object)
memory (VOM) when they are used. Communication
and synchronization between activities is achieved by
invoking on shared objects.

One of the goals of Amadeus is to support multiple
languages. This is done through the provision of
language-specific run-times which interface to a generic
run-time layer (Cahill et al., 1993). Two languages are
currently supported: C** a slightly extended version of
C++, and Eiffel**, a slightly extended version of Eiffel.
The applications described in this paper were coded in
C**.

The most relevant features of the Comandos compu-
tational model are elaborated on in the following
paragraphs.

• Jobs and activities. Class method invocations can be
'forked' as heavyweight processes (Jobs) or light-
weight threads {activities).

• Global objects. Member functions marked with the
C** keyword global can be accessed remotely. Such
operations can be invoked transparently from any
node in the system, i.e. Amadeus provides access
transparency.

• Persistence. Object persistence, the ability of an object
to outlive the program that created it, obviates the
need for much of the traditional I/O code necessary to
preserve information between executions of the
program. C** objects are marked as persistent using
the permclass keyword. (Note that an interesting
feature of Amadeus is that persistence and global
access are orthogonal to each other.)

• Ousters. One of the problems faced in the implemen-
tation of any OO system is to make the accessing of
objects efficient. This is particularly problematic in a
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distributed system where target objects can be in local
or remote memory, or on disk. Amadeus uses the
concept of a cluster to group objects together. Objects
within a cluster share a lot of the overhead state
information that must be maintained to access objects
(thus making small objects feasible) and are the unit of
transfer between storage and memory. Furthermore, a
cluster is only mapped at one node at any one time. If
two activities invoke on objects within the same
cluster then one, or both, of them will have to diffuse
to the node at which the cluster is mapped. Currently
clusters are not replicated nor is migration used once a
cluster has been mapped. A single application (or
activity) may of course use more than one cluster
during execution.

• Load balancing. In Amadeus load balancing is
provided by performing dynamic assignment of
activities to nodes as they are created. The normal
benefits of load balancing in a distributed system
follow on from this.

2.1. Support for parallelism

Clustering and load balancing are central to the support
for parallelism that Amadeus provides. Extensive use of
both is made in the applications described below, so they
are now described in a little more detail.

2.1.1. Explicit clustering

In loosely coupled systems it is not possible to provide
'performance transparency', i.e. while accessing a remote
object may appear the same as accessing a local one
there is a performance penalty to be paid. This issue is
crucial to the way in which parallel programs are
structured. This has also been recognized as an issue
in shared memory systems with non-uniform access
memory, e.g. Fleisch (1988). A commonly used solution
to the problem is to force the programmer to explicitly
partition the data within the application code.

In Amadeus the solution adopted is to utilize the
concept of a cluster, which was introduced to diminish
the overhead of mapping objects to and from storage.
The idea is that objects within a cluster should exhibit a
strong locality of reference. This allows different clusters
within a parallel application to be placed on different
nodes. A good assignment of objects to clusters will yield
a good computation to communication ratio allowing
for reasonable speed-up to be obtained.

The following cluster control primitives are
provided to allow applications to explicitly control
which clusters objects reside in. (Default action is taken
by the system if they are not used.) Examples of their use
are given in the next section.

• newcluster. This directs the system to start a new
cluster and make it the current default cluster. All
subsequent newly created objects are assigned to the
current cluster.

• setcluster. This directs the system to change the
default cluster. The cluster id returned on starting a
new cluster is used to indicate which cluster to change to.

• unmapcluster. Clusters are automatically unmapped
when the application that was using them terminates.
This primitive is provided to allow an application to
explicitly unmap a cluster before termination.

It is important to emphasize that the application is only
responsible for expressing which objects go together, it is
up to the system to decide where to place clusters. The
system should ensure that with the possible exception of
performance, there is no difference between an applica-
tion running with all its activities and clusters on a single
node or on multiple nodes.

2.1.2. Load balancing

The traditional advantage of load balancing is to
redistribute (monolithic) jobs so as to improve resource
utilization, etc. If, however, applications are structured
as a number of cooperating activities then load balancing
offers additional benefits in that the various activities
may be assigned to different nodes allowing a single
application to execute in parallel.

The mechanism is fair in that during periods of heavy
load the application will be confined to one node and not
impact on other users.

Clustering plays an important part in the effective load
balancing of multi-activity programs (Tangney and
O'Toole, 1991). Load balancing assigns a (preferred)
node to each activity when it is created. When the activity
faults objects (clusters) into memory they are placed at
the preferred node. However when an activity invokes on
objects that are already mapped, these objects are not
moved, but instead the activity diffuses to the appro-
priate node.

If all the objects used by the application are in the
same cluster then it will be mapped into memory at a
single node and that is where all the computation will
take place. Therefore the onus is on the programmer to
partition the objects into clusters in such a way that
activities spend most of their time executing within a
single cluster with only occasional forays abroad to other
clusters for synchronization.

Examples of this will be seen in the applications that
follow.

3. APPLICATIONS

This section outlines how four different applications
were structured to run on Amadeus. The programs
include examples of both functional and data parallel
algorithms as well as complex hybrid structures. The
demands they make on the underlying system are also
discussed.

3.1. Lehmer-Lucas

Numbers of the form (2P) — 1 are known as Mersenne
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FIGURE 1. Simple master/slave topology.

numbers and the Lehmer-Lucas test is used to determine
whether numbers of this form are prime or not (Knuth,
1981). The test is computationally intensive taking O(p3)
time to discover if (2P) — 1 is prime. The amount of
communication involved in the solution is quite small
when compared with the amount of computation
required for non-trivial values of p.

The problem is a good example of the 'give me work1

scenario, which frequently crops us in parallel program-
ming. It can be parallelized along master/slave lines with
each slave being given a single value of p to test for. The
execution time of slaves differs dramatically so the
master loops waiting for workers to complete handing,
out more work as the slaves request it, i.e. slaves petition
the master with 'give me work' requests.

3.1.1. Amadeus implementation

Figure 1 shows the master/slave configuration that was
used in the Amadeus implementation of the Lehmer
program. The master object was declared to be global so
that workers could invoke on it from anywhere in the
system. The master took responsibility for creating the
workers which were automatically distributed around
the system using load balancing.

It is necessary to ensure that the objects used by each
worker, and by the master, are assigned to separate
clusters so that load balancing can be effective in
distributing the computation around the system. The
master object uses the newcluster ( ) call prior to
initializing each slave's objects. The clusters are then
unmapped using unmapcluster() so that as each slave
is created the load balancer is free to choose the node at
which to place it. The following fragment of C** shows
this in practice.

for (int i = 0; i < no.slaves; i++) {

cluster_id = amadeus.newcluster(SIZE);

amadeus.setcluster(cluster_id);

slaves [i] = new kehmer (i, this) ;

amadeus.unmapcluster() ;

/ / loop checking for activities to terminate
II and starting new ones to process each number
II
while (i < N) {

for (k2 = 0; k2 < no_slaves; k2++) {
if (ended (k2)) { / / has the activity terminated?

count < ' 'Slave'' < k2 <£ " is done\n'';
i i = next_prime(i);

if ( i i >N)
break;

cout C ' 'Creating slave with ' ' < i i < " \ n ' ' ;
set_start(k2) ; / / mark slave as active
II launch new activity and remember id
slave_fts[k2] = new activity (slaves[k2], i i ) ) ;

The structure of this program is very common in parallel
applications, not just in its master/slave layout but in the
initialization phase, done at the master's node, followed
by a computation phase done by many workers, spread
around the system.

3.2. Ray tracing

A more substantial but similarly structured problem is
that of ray tracing. Ray tracing is essentially an exercise
in data parallelism with the program again being
structured along classic master/slave lines. Output data
(an image) is synthesized, by many workers, from two
sets of input data—a model of the scene and a camera
model.

The image can be broken up into a number of
subsections (rectangles) each of which can be processed
in parallel by a slave worker without any reference to its
neighbours. Once the rectangle is complete it can be sent
back to the master to be stored as a persistent object—or
as was done in our case displayed directly on a screen.

A slave is created for each rectangular sub-image.
Each slave needs its own copy of the input models and
the number of slaves can be equal to, greater than or less
than the number of processors. Conceptually, the master
gives each slave an empty sub-image object and the slave
manages the computation of that rectangle. The slaves
return their completed sub-images for collation and/or
display.

Thus far the application is identical in structure to the
Lehmer program previously described. However the
problem of ensuring good performance is more difficult
to solve in this case than it was in the Lehmer example.
There are two reasons for this and they crop up in many
distributed applications.

• Computation versus communication. The speed-up
obtained by the application will be limited by the
ratio of the time spent actually computing the prob-
lem to that spent in communicating between the
various activities. This ratio is dependent on the
nature of the algorithm and the underlying commu-
nication cost of the system. In the ray tracer this
manifests itself as a lower limit on the size of a sub-
image that is worth farming out to a slave—too small
an image implies too frequent communication and too
high a communication to computation ratio.

• Work redistribution. As the total computation time of
a parallel application is limited by the completion time
of the last task it is necessary to distribute work as
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FIGURE 2. Dynamic work (re-)distribution.

evenly as possible. In some cases this can be done by a
straightforward partitioning of the data but in ray
tracing, as in many applications, equal sized units
of data, i.e. sub-rectangles, can take substantially
different amounts of time to process. Accordingly it is
necessary to perform dynamic work re-distribution
within the application. When a slave completes its
work it reports this to the master. The master directs
the most overworked (i.e. slowest) slave2 to split its
remaining work and hand half over to the newly freed
slave for completion. Thus the program must be able
to exploit both system load balancing and dynamic
load re-distribution within the application.

Figure 2 shows how the splitting might proceed in a
typical execution.

3.2.1. Amadeus implementation

Figure 3 shows the organization of the ray tracer on
Amadeus. As in the Lehmer example the master is a
global object which workers invoke on to return their
results and current status. As slaves need to commu-
nicate with each other to off-load work the slave object
must also be made global.

As previously stated, each worker must have access to
the input data. As Amadeus does not currently support
automatic replication, and the cost of remotely accessing
a centralized copy was too high, this necessitated
creating multiple copies of the input objects.

From the performance point of view this application is
not too serious as the amount of data in question is small
and is not modified during execution, but obviously the
question of supporting replication has to be addressed.

3.3. ATC

The Air-Traffic Controller (ATC) program is a simula-
tion of flying activity over Europe. The system comprises
of three programs. The first builds a complex database in
the persistent store. This database contains objects which
embody the information about the airports and their
inter-connections. The second program uses these
objects to provide a simulation of air-traffic control.

2 Determining the slowest slave can be done by slaves periodically
reporting to the master or by the master explicitly polling the slaves
when the information is needed.

The third program is a real-time graphical display of the
system.

The display part of the system is of no relevance to this
paper, and will not be discussed further. The other two
parts are built around the same library of class
definitions. The two main classes are airspace and
flightplan.

The database is built from a textual representation of
the topology of the component parts. The resulting
structure is a graph of interconnected objects in the SS
mirroring the physical connections between airports.

In the simulation program, airspace objects control all
flights in the geographical region they represent. Each
flight is represented by a flightplan object and airspace
objects hand over flights to adjacent airspaces as they
leave their area of control. In a production system
flightplans would probably be owned by airplane objects,
but in this simple prototype an airplane class is not
necessary.

In simulation/testing usage there is a central source for
both new nights and synchronization. In real-world
usage there would be no central synchronization and new
flights would be generated locally. The classes in the
model need not be changed, however.

3.3.1. Amadeus implementation

In Amadeus, the autonomy of each airspace is
maintained through Amadeus's support for parallelism,
i.e. each airspace object has (at least one) activity running
it. The airspace class is a base class for two derived
classes: airport and air_corridor, one motivation for this

Nodel

Node 4

o •Cluster
- < — > - = "work completed/request more"

— —•>- = "split remaining work"

FIGURE 3. Master/slave with slave-slave communications.
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FIGURE 4. The structure of the ATC program.

being to facilitate a smaller granularity of parallelism, by
increasing the number of active objects in the model, see
Figure 4.

This application makes heavy use of persistence and
transparent distribution. This allows the simulation to be
stopped and re-started (possibly on different machines)
transparently to the objects in the simulation.

In Amadeus the simulation is run in parallel for one
time unit as follows:

• The simulation controller object invokes the Control-
Airspace member function on each airport and
air_corridor object as an activity.

• Each airport and air_corridor proceed in parallel,
communicating with one another to hand-off fl ight -
plans.

• Eventually the activities complete the computation for
the clock period and the process repeats.

3.4. A problem for computational linguistics

The next problem comes from the area of computational
linguistics. It involves finding a domain (D), and value in
that domain (x,y, z), such that the following formula3

holds for the binary relation F:

F(x,y)&F(y,x)*F(z,x)

«*• ̂ F{z,y) & F(z,z) & ̂ F(x,y)

The solution to the problem involves beginning with a
domain containing the single element 1 and checking to
see if the formula can be satisfied from that domain. If it
cannot then the domain size is increased by 1 and the
formula tested again. The algorithm for testing the
formula is a 'little complex' and involves using the
disjunctive normal form of the original formula plus a

3 Where the domain is the set of natural numbers and * can be read as
'conjunction' and •» as 'gives the same result as'.

substantial amount of backtracking. Full details of the
algorithm can be found in Burke (1993). What is of
interest to this discussion is that (i) the algorithm is
horrendously expensive both in terms of computation
time—O(n2(n — 1))—and memory space required for
large domains, and (ii) there are a number of different
ways in which it can be partitioned to execute in parallel.

3.4.1. Amadeus implementation

The current Amadeus implementation is based on a
Prolog coded version of the algorithm, i.e. it implements
backtracking. This allowed easier development of the
classes needed for the problem as well as verification of
the algorithm against the original. Because of the OO
approach, the classes developed provide a basis for
investigating other strategies. Figure 5 shows the struc-
ture of the Amadeus implementation. Again explicit
clustering and load balancing were used. One chosen
allocation of object to nodes is shown, but this
partitioning is by no means the only possible approach
having been chosen to allow verification of the language
port rather than maximizing parallelism.

This (slightly parallel) C** version is considerably
more memory efficient than the Prolog one. It can
explore domains up to size 16 as opposed to 6 for the
Prolog program. To go beyond this however, requires
even greater exploitation of parallelism, e.g. putting a full
pipeline on each node and implementing the kind of
pruning required to work on domains large enough to
contain solutions (analytically determined to be n > 25,
which entails a search-tree of depth 15 000).

3.4. Performance

As the hallmark of any useful parallel system is improved
performance, this section briefly reports on the results
achieved for one of the applications described above, i.e.
the ray tracer.
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FIGURE 5. The structure of the CL program.

Figure 6 shows the speed-up curve obtained for the ray
tracer running on a number of Sun workstations,
SPARC Classics with 96MByte of memory, while
Figure 7 shows the speed-up curve obtained for a
number of Digital DS2100 machines with 12MByte of
memory. A number of points are worth noting about
these curves. Firstly both curves show that significant
speed-up can be obtained from the system. Furthermore
applications benefit in another way in that the problem
domain size can be increased as more nodes, or more
powerful ones, become available. This phenomena is
known as scaled speed-up (Gustafson, 1988) and two
examples of its effect can be seen in the curves. Super-
linear speed-up is obtained on the early part of the
DS2100 curve due to the extra memory made available
over the (overworked) single node case. On moving to
the more powerfully configured Sun machines the image
data size can be greatly increased, from 6002 to 11002

pixels. In both curves the speed-up begins to level off
around six nodes. Further scaled speed-up can be
obtained by increasing the data size so that there is
enough work to keep all the nodes busy.

4. REQUIREMENTS

Using the examples just described as illustrations, this

section discusses what we hold to be more important
requirements on a distributed programming platform.

4.1. Object-orientation

The many supposed advantages of the OO approach are
well documented in the literature, e.g. Cox (1986) and
Nierstrasz (1986). In brief the principles are that three
key techniques {encapsulation, inheritance and poly-
morphism) are claimed to yield three important bene-
fits, i.e.

• Re-use through the use of extensible classes.
• Clarity and simplicity of code as a result of

polymorphism and inheritance.
• Robustness of design in the face of changes to the

specification.

In our experience these advantages are true in practice.
We can see examples of the first two from the ray tracer,
which had the advantage (from this perspective) of
having a previous incarnation of a C program running
on hyper-cubes. The earlier program was 4000 lines of C
compared to only 2000 of C**. Because this reduction in
code-volume is due to code re-organization and re-use,
rather than recoding, the result is empirically simpler: it
is not a matter of terseness to the point of obfuscation. In

3 4 5
Number of nodes used for the computBUOD

FIGURE 6. Sun speed-up curve. FIGURE 7. Dec speed-up curve.
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REQUIREMENTS FOR PARALLEL PROGRAMMING 505

the case of the other programs under discussion there can
be no direct comparison, as they were written using OO
from the beginning, however the programmers are
confident that the principle holds for these too.

In parallel, and distributed, programming the issue of
design-robustness is crucial if the sequential and parallel
facets of the design are to be separated. (In Amadeus this
is done through the use of global objects, which isolates
the global communications strategy and allows it to be
altered without changes propagating to the non-global
objects.) Parallel program designs must be robust
because, at present at least, mapping an algorithm onto
the underlying hardware is a difficult task and may
require a number of interations. A good example of this
is in the ray tracer where the initial model of the dynamic
work reallocation involved the slaves reporting their
progress to the master at intervals. It transpired that it
was better with the current implementation of Amadeus
(i.e. less prone to bottlenecks) to poll all the slaves
whenever one finished. The algorithmic politics are not
of interest here, what is significant is that these policy
decisions could be investigated quickly and easily
because the changes required were localized (one
member function in each of the master/slave classes).

Inheritance and polymorphism make it possible to
build a type hierarchy which embodies various parallel
strategies, e.g. master/slave, ring or pipeline computa-
tions. Programmers can specialize (i.e. derive) from these
classes when writing new applications, and if the chosen
base class is inappropriate they can substitute another
without impacting on the rest of the design.

4.2. Transparency

The pros and cons of transparency, and the appropriate
level of transparency to provide, in distributed systems,
are well documented in the literature (Popek et al., 1983).
All the applications described previously rely heavily on
the fact that access to remote objects, be they in memory
or secondary storage, is fully transparent.

In comparison to some parallel systems, e.g. Intel
Corporation (1986), applications are not tied to any
specific node address or number of nodes. A multiple
activity program will run just as correctly with all its
activities assigned to the same node as it would if they
were assigned to separate nodes.

4.3. Global objects

At present parallel programs are frequently custom-
made for each parallel architecture. Our approach to
parallel programming is that the parallel structure of a
program can be made orthogonal to an (OO) design, if
adequate support is available from the language and/or
run-time. This has the benefit of separating the parallel
concerns from the sequential ones.

The first and most important extension is to allow
interaction between objects in non-shared memory. In
the programs we have implemented Amadeus' global

objects are communication points between groups of
non-global objects.

In the programs discussed in this paper global classes
are a minority. In the ray tracer, for example, the only
global classes are the master and slave classes (two out of
33 classes), while in the ATC only airports and air-
corridors are invokable globally (two out of 16 classes).
While global classes constitute a minority of the total
number of classes, global objects make up an even
smaller minority of the actual object instances: less than
30 compared with several million in the case of the ray
tracer. Because the ATC is a simulation the numbers of
objects it produces is open-ended. However, the numbers
of global objects are fixed at start-up (at around 100)
while the non-global objects number more than 500 and
are produced continuously. The Computational Linguis-
tics application is, if anything, more extreme: a handful
of global objects and a virtually unbounded number of
smaller objects representing the formulae.

These applications lend support to an approach
whereby non-global is the default. In a loosely coupled
system the alternative strategy of making global the
default incurs far too much overhead to justify the
benefits to the programmer. However it is very important
to ensure that extending a class to be global should be
easy, e.g. inserting a keyword.

4.4. Persistence

As noted previously, the addition of persistence to the
programmers arsenal reduces the amount of routine I/O
code that must be written. As a concrete example, the
programs discussed in this paper required no code to
output to disk and very little code to perform input.
(Where input code was written it was to allow non-
Amadeus data to be brought into the persistent store.)

4.5. Load balancing

Although explicit placement of activities was used to
achieve the speed-up curve shown in Section 3.5 similar
results were obtained using automatic load balancing in
a quiescent system. In effect load balancing combined
with transparency allows a distributed system to be used
as a cost effective parallel processor which supports
multiple simultaneous users.

4.6. Explicit clustering

Application level control of clustering was used in all of
the applications described to ensure that computation
could actually be spread over multiple nodes and we hold
that the programmer must be able to exercise such
control over the grouping of data.

In the applications discussed the unmap () primitive
was used extensively at the end of the initialization phase
to allow worker's data to be defaulted in at the nodes
assigned to each worker. An alternative way to achieve
the same effect would be to provide for migration of
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clusters. This would necessitate marking the cluster as
being fixed or movable, a property that could be
expected to change during the course of execution.
Migration of clusters is, however, problematic if an
activity is actually executing within the cluster.

A related issue is that of object migration. A case can
be made that individual objects should be able to move
after they are created, e.g. aircraft objects in the ATC.
Our current approach is to do long-term reclustering
based on statistics gathered by the garbage collector as
we are wary of allowing too much object movement
during execution of programs.

4.7. Replication (and fragmentation)

Encapsulation, one of the primary planks of the OO
credo, encourages designers to stress the hiding of
internal data in order to limit dependencies between
conceptually unrelated pieces of code. In systems with
multiple address spaces (i.e. most parallel and all
distributed systems) the sharing of encapsulated objects
automatically becomes an issue. Actually, this is not
a problem with encapsulation per se, but with the
physically divided address space, because access times
are markedly different between local and remote access.

In non-OO code, however, the data that needs to be
shared would probably be global4 variables in the
executable in each address space. So, given that
(uncompromised) OO is worth pursuing, what can be
done to bridge this gap between having each object as an
indivisible encapsulated unit and the desire to have local
access to it on several nodes ?

In common with many others we believe the answer
lies in transparently replicated objects. If you have one
object and multiple nodes there are three cases:

• Normal (local to one node).
• Replicated (local to several nodes).
• Fragmented {parts of object are local to several

nodes).

To understand this in concrete terms, consider the ray
tracer, a simple functional computation. It has input
data and output data. This is easily modelled as an input
data object, a computational object and an output data
object, as seen in Figure 8. Parallelizing this will usually
involve placing a copy of the computational object on
each node but where should the input data object go?
Obviously, each node needs it locally, yet it remains
conceptually one object. The answer is to maintain the
impression of a unique input object while (transparently)
replicating it.

One can make a similar case for the output object,
parts of which are being computed on each node, yet it
too remains conceptually one object. It could be
(transparently) fragmented, though this is much more

World Ray-tracer Film

FIGURE 8. Simplest view of ray tracer.

complicated than replication, although this is the
approach favoured by Makpangou et al. (1991).

Figure 9 shows one way in which replication and
fragmentation could be utilized in the ray tracer example.

Our experience suggests that fragmentation can be
foregone in favour of separate objects per fragment, with
some other object collating the pieces. We suggest,
therefore, that while transparent replication is a require-
ment for parallel programs on distributed systems,
fragmentation may be useful but is not proven to be so
by our examples.

4.8. Multi-cast

If replicated objects are to be supported it follows on
automatically that some form of multi-casting must be
provided.

Furthermore, in all the applications discussed in this
paper, the situation arises where the same invocation is
applied to a group of objects of the same class. In the ray
tracer this occurs when the master is inquiring about the
progress of the slaves, determining which is the slowest.
In the ATC it occurs when the simulation controller
initiates a simulation period in all the airports and air-
corridors. These situations, too, could be better handled
by some form of multi-cast.

4.9. Low overhead of run-time

It is important that the functionality provided by a
system such as Amadeus should not impact performance
of sequential computation. In Amadeus and other OO
paradigms this means that it should be possible to have
objects which have none of the overheads associated with
persistent and global properties. These are two reasons
why this is an important criterion for a parallel
programming platform.

Ray-tracer A

Ray-tracer B

Ray-tracer C

World is logically one
object, physically it is
replicated.

Ray-tracer D

Film is conceptually one
object, actually composed
of fragments.

4 Here we mean global in its traditional sense and not as a C**
keyword.

FIGURE 9. Replication and fragmentation possibilities in the ray
tracer.
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Firstly, it is obviously of paramount importance to the
parallel programmer that the performance of the serial
parts of the program should not be adversely affected by
the use of the parallel-enabling facilities.

Secondly, it encourages one to develop in the
paradigm from the beginning in order to leave open the
possibility of incorporating distribution and persistence
facilities later. If it is not the case, then programmers or
designers have to justify using persistence and global
objects from the beginning of the project. If such
justification were not forthcoming the project would
proceed in development in some other paradigm, and
build up inertia against moving from it (even if
persistence and distribution were shown to be necessary
later).

4.10. Application-level locking

In multi-threaded programs, such as the ones we have
described here, it is important that synchronization be
efficient. In systems which use system-level locking the
cost of obtaining or relinquishing a lock is often two
system calls. In such cases, the programmer will have to
choose the lesser of these two evils:

• Lock when necessary and pay the performance price.
• Lock less often, resulting in unnecessary lock-out.

Performance tuning of programs with such sub-optimal
locking strategies is hard to do and increases with the
numbers of parallel processes competing for the locked
resource, leading to sharp declines in performance.

We encountered this problem in the ray tracer where
the activity performing the computation in the slave
needs to synchronize with the activity requesting that it
split its work.

4.11. Summary

Obviously the list of items just discussed is not exhaustive
and, depending on the application domain, other issues
such as fault tolerance and security could be very
important aspects of the system. Nevertheless we hold
that the functionality just discussed should be central to
an OO distributed system.

5. RELATED WORK

Our major research goal has been to define a language-
independent layer providing the necessary support for
programming parallel and distributed applications in
loosely coupled distributed systems. This language-
independent layer allows a number of existing OO
languages to be used to write such applications. To this
end we have tried to identify the key requirements on the
system.

Many other researchers have focused on the problem
of providing support for distributed and parallel
programs in distributed systems. In many cases this
support has taken the form of a new language in which

applications can be written: examples include Emerald
(Black et al., 1986) and Orca (Bal and Tannenbaum,
1988). In Emerald a program consists of a collection of
distributed objects and processes—where a process is a
(potentially) distributed thread of control. An important
feature of Emerald is its support for object mobility—an
object may migrate at any time. Control over migration
is provided by a number of language primitives to, for
example, move an object. The parameter passing modes
by-move and by-visit are also provided to allow a
parameter to a remote invocation to be passed along
with the invocation request. More recently the Orca
language has been proposed based on the so-called
shared data-object model which hides the location of
objects from the programmer but uses object replication
to maintain performance. The Amber system (Chase
et al., 1989) is an example of a system supporting the use
of an existing language to program parallel applications
in a distributed system.

In the case of Amber the language is C++ extended
with primitives for thread management and object
mobility similar to those of Emerald. Emerald is
targeted at supporting a single language at a time in a
homogeneous distributed system. Extensions to Amber
provide support for load-balancing.

Parallel programming in distributed systems has also
been addressed in the context of distributed shared
memory systems—a good example being Munin (Bennett
and Zwaenepoel, 1990). Munin provides a number of
mechanisms to support shared data including the delayed
updates based on release consistency and type-specific
memory coherence based on the identification of a number
of shared data object types including: write-only, private,
write-many, result, synchronization, migratory, produced-
consumer, read-mostly and read-write.

6. CONCLUSION

This paper has given an overview of the Amadeus system
and described how a number of applications were
structured to run on it. The lessons learned from the
exercise, in terms of the general functionality that a
distributed object oriented system should provide, have
been discussed and related work in the area sketched.
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