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The Guide language is an object-oriented language dedicated for programming distributed applications
on top of the Comandos platform. This language faithfully reflects all the capabilities of the Comandos
model. It combines the facilities of a strongly typed object model with a powerful computational model.
Key features of the language are: separation between types and classes, conformant subtyping,
distribution transparency, concurrent activities, synchronization mechanism for shared objects, and
exception handling. This paper presents the design choices for the Guide language and discusses
programming experience gained from the use of the language for the construction of distributed

applications.
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1. INTRODUCTION

Comandos (Construction and Management of Distrib-
uted Open Systems) is a co-operative project under the
ESPRIT European program aiming at providing an
integrated development environment for distributed appli-
cations (Cahill et al., 1993). To achieve this goal,
Comandos provides a conceptual model of a distributed
environment, encompassing both computation and data
management. This model presents the functionality of
the Comandos platform to application programmers
and system administrators. The model is abstract in
the sense that it does not require the use of any program-
ming language. Technically it consists of two major
components:

• A computational model, which allows distributed
programs to be defined. This model provides the
application designer with a distributed multi-processor
virtual machine, in which parallelism is apparent and
distribution is hidden.

• A common and extensible type and data model. The
type model captures the type systems of various
object-oriented programming languages and allows
interoperability between them. The data model
provides abstractions for modelling collections of
objects, relationships between collections and classi-
fication structures.

Both to facilitate the use of the Comandos model and
to encourage its adoption, the model is provided to
application designers through one or more programming
languages. The uniformity of the Comandos model
results in programming languages in which a uniform
treatment of both transient and persistent data; of both
passive and active entities; of both local and remote
services are all potentially available.

This strategy differs from more classical approaches in
which tight coupling of a programming language with
support for persistence and distribution is not available.

Typically, in the classical approach, a set of languages is
used for building programs where one language is used to
describe persistent types and a further different language
is used for interface definition and communication.

The provision of programming language support that
integrates all these features is a key aspect of the
Comandos project. It is obvious that the features of the
model are particularly exploitable by object-oriented
programming languages. Two different approaches to
the provision of programming language support were
considered in the framework of the project: the use of
existing languages (i.e. C++ and Eiffel) and the definition
of a new language environment.

The first approach allows existing programming
environments to be exploited and existing code to be
reused when appropriate. The choice of C++ and Eiffel
was motivated by their industrial and academic success.
However, because of the constraints imposed by using
(or modifying) existing compilers, some features of the
Comandos model cannot be fully integrated within an
existing language. In contrast, defining a new language
allows full access to the facilities of the Comandos virtual
machine. Both approaches are, however, complementary
in that objects written in various programming languages
can be combined within a given application.

This paper describes the key features of Guide, an
object-oriented language designed for the programming
of distributed applications on top of the Comandos
platform. The run-time support of this language is
provided by an object-oriented distributed operating
system (the Guide system). The Guide system and
language implement most of the distributed object-
oriented architecture defined by Comandos. Guide was
designed and implemented as a joint project between
University of Grenoble and Bull Research Centre (Baiter
et al., 1991; Freyssinet et al., 1991).

Object-oriented languages have attracted much atten-
tion in recent years, especially in relation with databases
and distributed operating systems. We believe that many
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concepts in these two areas could be unified through
object models and languages, and our design is an effort
in that direction. A major design decision of Guide was a
close integration of the different aspects of the system:
programming language, execution structures and long-
term storage of information. This integration has been
achieved through the uniform use of the object para-
digm. As a matter of fact the object in Guide is the unit of
modelling and programming, the unit of sharing, the unit
of protection, and the unit of storage.

This paper is organized as follows. Section 2 gives an
overview of the Guide computation model. Then,
Sections 3, 4 and 5 describe three key features of the
Guide language, i.e. separation between types and
classes, synchronization through shared objects, and
exception handling. Section 6 presents an overall
evaluation of the language, based on a number of
experiments carried out both inside and outside of the
project. Finally, section 7 describes the current status and
the future of this work.

2. OVERVIEW OF THE GUIDE
COMPUTATIONAL MODEL

As stated above, the Guide language has been designed
to faithfully reflect all the capabilities of the Comandos
computational model. The main abstractions provided
by this model are summarized in this section.

2.1. Object model

Objects are the units of modelling and programming. An
object encapsulates a set of data, the state of the object
and a set of operations, or methods, which operate on
this data. Every object is an instance of a type, where the
type describes the behaviour of this object. Every object
also possesses a class which describes an implementation
of a type, that is the representation of that object and the
code of its methods. The properties of types and classes,
as well as their relationship are detailed in section 3.

To create an object, a generic New operation is
provided by all classes (classes are first-class objects).
This operation creates a new object and returns a
reference. Thereafter, methods may be invoked on this
object by calls using this reference. A reference contains
object identity information (i.e. a system-wide unique
identifier) and possibly location hints.

Objects are accessed through variables. Variables may
be considered as containers for object references. More
than one variable may be used to access a given object. A
variable possesses a type; when accessing an object
through a variable, only the interface described by the
type of that variable may be used.

The construction of complex structured objects is
achieved by embedding references to objects within the
state of other objects. This mechanism allows composite
structures of arbitrary size to be built from component
objects, and allows objects or sub-structures to be
shared. Since references provide a system-wide naming

scheme, composite structures, as opposed to individual
objects, may be distributed on several nodes.

Object composition is usually done through predefined
constructors such as arrays, records and lists, which are
the main building blocks for the construction of complex
structures. For example the body of a document object
may be defined as a list of chapters, each of which is a list
of paragraphs, etc. Several documents may share a
chapter (or a sublist of chapters).

Distribution is, by default, transparent. From the
programmer's point of view, remote and local invoca-
tions are indistinguishable. In particular, the public
attributes of remote objects can be accessed in the same
way as for local objects. However, the language also
provides constructs to force the creation or execution of
an object to take place at a specified node.

Persistence is usually provided in languages for
databases [FAD (Bancilhon et al, 1987), Galileo
(Albano et al., 1985)] and distributed systems [Emerald
(Black et al, 1986)]. Other languages [Trellis/Owl
(Schaffert et al, 1985), Eiffel (Meyer, 1992)] provide
persistent objects as an add-on feature. Objects in Guide
are potentially persistent. However, only objects which
are reachable from a persistent root are made persistent
by the run-time system; other objects are subject to
garbage collection. It would be conceptually attractive to
treat all objects as persistent in order to define a uniform
object model (as for instance in Smalltalk). However, the
management of persistent objects involves an overhead
that would not be admissible for small objects such as
integers, strings, etc. Therefore, Guide provides two
other kinds of objects that are managed in different ways:
internal objects, which are parts of another object's state,
and transient (or run-time) objects, which are allocated
on the execution stack. These objects are introduced to
allow programmers to explicitly control the use of system
resources according to the requirements of applications.
Internal and transient objects are defined by specific
declarations in the Guide programming language.

2.2. Execution model

An important design decision is how to relate objects to
execution structures. Two main orientations may be
taken: (i) to associate execution structures with objects,
i.e. to define active objects, each object containing a
fixed or variable number of processes, and (ii) to separ-
ate objects from execution structures, i.e. to define
passive objects being executed by independently defined
processes.

We did not find strong logical arguments in favour of
either solution. Both have been adopted by existing
object-based systems [e.g. active objects in Argus
(Liskov, 1985), Eden (Black, 1985) and Emerald;
passive objects in Clouds (Dasgupta et al, 1990),
Amoeba (Mullender et al, 1990), and SOS (Shapiro et
al, 1989)]. The choice is mostly influenced by considera-
tions of efficiency and adequacy for the hardware and
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application domain. The applications that we contem-
plate involve creating many (usually small) objects and
building large compound structures out of object
components; the parallelism is likely to be coarse-
grained. An active object model may be conceptually
simpler, since a single abstraction encompasses the two
concepts of processes and data structures. On the other
hand, the cost of creation and management is higher for
active objects and object composition leads to nested
virtual memory structures. This led us to adopt a passive
object model, in order to reduce the cost of object
creation and to avoid the complexity of managing
compound active objects.

In order to specify the relations between objects and
execution structures, we denned a multiprocessor virtual
machine called a job. A job represents the processing
(possibly in parallel) of objects and consists of one or
more sequential threads of control, called activities. A
job is created by an activity of another job to invoke a
specified method on some object. A new job initially
consists of a single activity.

The execution of an activity consists of nested
invocations of methods on objects. Each invocation
may take place on any node in the system. Objects (i.e.
their code and internal data) are dynamically bound in
the virtual address space of the current activity. Thus a
job may also be viewed as an addressing window on the
global object space, by mapping a set of objects which
are shared by the activities. The set of objects mapped
within a job is called its context. The composition of the
context may dynamically change as objects are mapped
or unmapped. See Figure 1.

The concepts of job and activity are similar, respec-
tively, to those of task and thread in the Mach system
(Accetta et al., 1986); however, an important difference is
that we do not specify an association between a job and a
node. Jobs and activities may span several physical
nodes; actually, they may dynamically extend themselves
or shrink, according to the pattern of object invocations.
Distribution is basically hidden from the user of a job.

There is no explicit communication through message
passing between activities. Communication and synchro-
nisation between activities (within the same job or
belonging to different jobs) is achieved through the
sharing of objects. The Guide language provides powerful
and flexible capabilities for the expression and control of
shared objects. This issue is detailed in Section 4.

In addition to the above mentioned features, which are
part of the basic Comandos model, Guide also provides
additional capabilities for exception handling and for
protection. Exception handling is described in Section 5.
The protection model is not addressed in this paper.

3. SEPARATION BETWEEN TYPES AND
CLASSES

The introduction of strong typing in object-oriented
languages is recent. Examples of typed object-oriented
languages are Emerald, Trellis/Owl and Eiffel. All of
them combine static type checking and dynamic binding.
Explicit separate definition of types and implementations
is present in Emerald and in the conceptual language
Galileo (in the form of 'abstract' and 'concrete' types).

3.1. Types

A type is essentially the description of an interface. This
interface specifies a behaviour that is common to all
objects of the given type, in terms of operations
applicable to these objects; this is the usual concept of
an abstract type. Each operation (or method) in a type
description is defined by a signature, which specifies the
name of the method, the types of its parameters, and
whether each parameter is an argument (IN) or a result
(OUT). A type may specify a component of the state of the
object (i.e. a variable) as visible. Such a visible variable is
also called an attribute.

The following example defines a document description:

TYPE Document_descri IS
key: Integer;
t i t l e , author: String;
date_borrowed, date_returaed : REF Date;
METHOD Ini t ; //set initial

/ / values
METHOD Consult; / /display infor-

//mation about the document
METHOD Get_text; REF Document;//gives access to

/ / the text of the document, defined by type
//Document (not specified here)

END Document_descr.

In the above definition, the keyword REF <type>
defines a reference for an object of type <type>. The
semantics of REF parameters in method signatures is
essentially call by reference. Call by value is also possible,
but is restricted to internal objects (for the time being,
internal objects are defined as objects of elementary
types, such as In tege r , Char, etc.). The keyword
SIGNALS specifies that a named exception may be
raised under specified conditions.

3.1.1. Subtyping

Subtyping is a well-known way of specifying shared
behaviour between types. Informally, type T2 is a
subtype of type Tl (and Tl is a super type of T2) if the
interface of T2 provides at least the same operations
(including attributes) as the interface of Tl (it may

THE COMPUTER JOURNAL, VOL. 37, No. 6, 1994

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/37/6/519/518761 by guest on 09 April 2024
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provide more operations). The subtyping relationship
defines a hierarchy between types. In the current design
of Guide, this hierarchy is simple, i.e. a type has only one
super type.

Thus Book_descr may be denned as:

TYPE Book_descr SUBTYPE OF Document_descr IS
volume.number: Integer;
publisher: String;

METHOD Get_text: REF Book; //gives access to the
//text of the book this type defines two
//additional attributes, no additional explicit
//method, but overloads Get_text method

END Book_descr.

3.1.2. Type conformance

Object-oriented languages go one step further than
modular languages by allowing assignment of a variable
to objects of different types. For instance, a variable in
Smalltalk-80 [Goldberg, 1985] can be assigned any
object; however, no static type checking is performed,
and possible errors (e.g. non-existent method) may only
be detected at run-time. We want to allow some of the
flexibility of Smalltalk, while performing type checking
at compile time as far as possible.

The conditions for such an assignment have been
explored (Cardelli and Wegner, 1985). Let ref be a view
of type Tl. Then, an object of type T2 may be safely
assigned to ref if T2 conforms to Tl. 'Safely' means that
subsequent operations on ref, allowed by its type Tl,
will be legal if applied on the object of type T2.
Conformity is denned as follows:

• For each method denned in the interface of Tl, there
exists a method of the same name in the interface of
T2.

• Each method of T2 has the same number of arguments
(IN parameters) and of results (OUT parameters) as the
corresponding method of Tl.

• For each method m, the type of its arguments in Tl
conforms to the type of its arguments in T2.

• For each method m, the type of its results in T2
conforms to the type of its results in Tl.

• For each method m, the signal s in T2 exists in Tl.
• Every type conforms to itself.

This definition implies that for each attribute in type
Tl, there must exist an attribute of the same name and
type in type T2. This agrees with the notion of type
extension, that applies to the special case where types Tl
and T2 are records (i.e. they only specify attributes, and
no explicit methods).

Note that conformity is a purely syntactic relationship
that involves no semantic equivalence, since it only relates
the signatures of the methods, not the specifications.

In the Guide language, we specify, by definition, that a
subtype must conform to its super type. As a consequence,
methods may be overloaded in subtypes, provided
that the conformity conditions are respected. The
method Get_text of the super type Document_descr is

overloaded, and the type of the result parameter is
changed (we assume that Book is a subtype of Document).
This is legal according to the conformity rule, as the range
of a result parameter is narrowed.

Since the conformity relationship may be statically
checked, the language is strongly typed. Conformity has
been used in at least two object-oriented languages
(Emerald and Trellis/Owl). In Guide, the use of confor-
mity is not limited to subtyping.

3.2. Classes

A class specifies a particular implementation of a type. A
class definition is common to all instances of the class. It
includes a description of the internal state of the object,
as a set of instance variables, and the program of the
methods. The attributes declared in the type definition
are automatically included as instance variables.

For instance, a possible implementation of type
Library is defined as follows:

CLASS Library_list IMPLEMENTS Library IS
doc_list: REF List OF REF Document;
METHOD search (IN key: Integer; OUT doc:REF

document);SIGNALS not_found;
BEGIN

<program of search using l i s t represen-
t a t ion

END search;
END Library_list.

As usual in object-oriented languages, an instance of a
class is created by calling the method New of the class.
For instance, if l i b is a variable of type Library, the
statement: lib:=Library_list.New creates a new
instance of class Library_list and assigns it to l ib .
Thereafter, methods may be invoked on this object by
calls like l i b . s ea r ch ( . . . ) . The reference may be
reassigned to another object of type Library, possibly
with a different representation (e.g. an instance of class
Lib.array), but the calling sequence is unchanged.

3.2.1. Inheritance

The subclassing hierarchy allows sharing of physical
properties (i.e. attributes and method implementations).
If class Cl implements Tl, a class C2 which implements T2
may be constructed by inheritance from Cl as follows.

• C2 inherits all the instance variable definitions present
in Cl and additional instance variables may be defined
inC2.

• C2 inherits all the methods defined in Cl and an
inherited method may be overloaded in C2. Additional
methods may be defined in C2, i.e. those which are
part of the interface of T2 and which are not included
in the interface of Tl.

As usual, when an inherited method is overloaded, the
overloaded method is still accessible within the new
program (through a pseudo-variable SUPER).
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3.3. Type/class relationship

In the Guide language as in modular languages, it has
been decided to separate the interfaces of abstract
structures which represent the types and their imple-
mentations which represent the classes. Modular design
is enhanced by this approach since information about
implementation details remains hidden to the program-
mer, who only accesses the features denned in the types.
The type/class separation was an innovative concept
when Guide was designed. Today it is recognised that
this approach provides substantial benefits (Lalonde,
1991).

Subtyping is quite different from subclass inheritance.
The subtyping relationship defines hierarchy between
types. Informally, type T2 is a subtype of type Tl if T2
specializes the behaviour of Tl (T2 provides at least the
same methods as the interface of Tl). Subclassing defines
a common implementation, in terms of data structures
and executable code. It is expected that there will usually
be a one-to-one correspondence between types and
classes (a type having exactly one implementation) and
in most cases the class hierarchy copies exactly the type
hierarchy. However, we give below several examples
where it makes sense to construct the two hierarchies
differently.

3.3.1. Types without implementation

Types can be used as access filters, as shown in the
following example, where Chanln and ChanOut imple-
ment restrictions on the use of the type Chan.

TYPE Chanln IS
METHOD input;

END Chanln.

TYPE Chan IS TYPE ChanOut IS
METHOD input; METHOD output;
METHOD output;

END Chan.

CLASS TTY
IMPLEMENTS Chan IS
//implementation
END Chan.

canal: REF Chanln;
canal:= TTY.New // canal is implemented by class

TTY
// and TTY's type Chan conforms

to Chanln
canal.input; / / valid instruction
canal.output; / / illegal instruction

/ / output is not part of the
Chanln type

3.3.2. Types with more than one implementation

Using several implementations for a type can be used for
handling heterogeneity, as shown below:

TYPE Window IS
READ height: Integer = 0;
READ width: Integer = 0;
METHOD resize (In h,w: Integer);

END Window;

CLASS MyWindow
IMPLEMENTS Window IS
CONST hmax: Integer = 600;
CONST wmax: Integer = 400;

METHOD resize (IN h, w: INTEGER);
BEGIN
IF (h<=hmax) THEN
height := h;

END;
IF (w<=wmax) THEN
width := w;

END
END resize;

END MyWindow.

CLASS YourWindow
IMPLEMENTS Window IS
CONST hmax: Integer = 500;
CONST wmax: Integer = 500;

METHOD resize (IN h, w: INTEGER);
BEGIN

IF (height+h<=hmax) THEN
height := height + h;

END;
IF (width+w<=wmax) THEN
width := width + w;

END;
END r e s i z e ;

END YourWindow.

A Window variable can then take one of the following
forms:

window: REF Window;
window :« MyWindow.New;

// or window YourWindow.New;

3.3.3. Inheritance versus subtyping

When the type of the subclass conforms to the type of the
superclass, the interface of the subclass contains the
interface of the superclass and instances of a subclass can
be used wherever instances of the superclass are
expected.

The notion of containment may be viewed as similar to
that of conformity (Lalond, 1991). However, it is
sometimes desirable that the interface of a subclass is
not strictly a superset of that of its superclass. An
interesting design facility consists in inheriting some
methods from the parent class and restricting other
methods (the code of these methods is overridden). An
example of restriction is when arguments of a method in
the subclass must be a subtype of the type of the
corresponding arguments in the parent class. As a
consequence, the subclass interface does not contain
the interface of the parent class, and the subtype does not
conform to its supertype. This is a typical case where
inheritance is not subtyping.

A typical example of this usage is when a method must
take an argument that is of the same type as SELF, as
shown below. In this example, the type Chapter does not
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conform to the type Document, although the class
Chapter inherits from the class Document.

TYPE Document IS
METHOD Concat (IN REF Document);

END Document.

CLASS Document
IMPLEMENTS Document IS
1 : List OF REF Top;
METHOD Concat (IN w: REF Document);
BEGIN
1.Append(w);

END Concat;

END Document.

TYPE Chapter IS
METHOD Concat (IN REF Chapter);
METHOD Modify;

END Chapter.

CLASS Chapter
SUBCLASS OF Document
IMPLEMENTS Chapter IS
// inherit all the characteristic
// of Document in order to reuse
// some algorithms
// Override Concat
METHOD Concat (IN c: REF Chapter);
BEGIN
c.Modify
l.Append(c) ;

END Concat;
METHOD Modify;

END Chapter.

The Concat method of the class Chapter overrides the
method inherited from the class Document while at the
same time introducing an additional restriction: a
chapter can only have children which are themselves
chapters. One might want to do this because insert will
invoke another method (like Modify) on each of the
inserted children.

The type Chapter does not conform to the type
Document. This is because chapters allow other chapters
to be inserted as children, whereas documents only allow
other documents. A chapter cannot be passed to any
arbitrary piece of code that expects to receive a document
because it may try to add a child document to it that is a
document rather than a chapter.

Inheritance is not subtyping and a class exports only
methods defined in its type: a class Chapter exports only
the methods defined in the type Chapter and not all the
methods defined in the class Document.

4. SYNCHRONIZATION OF SHARED
OBJECTS

4.1. Rationale and objective

Many synchronization tools have been proposed for

modular or distributed environments (an overview is
available in Grass and Campbell, 1986). These mechan-
isms include monitors, constructs based on synchronous
message passing and guarded commands, such as DR
(Brinch Hansen, 1978) or CSP (Hoare, 1978), and path
expressions (Campbell and Habermann, 1974).

In comparison, few synchronization mechanisms have
been proposed for object-oriented systems, mainly
because a few O-O systems support concurrency and
shared objects. Emerald provides a 'monitor' construct
allowing mutual exclusion to a set of data and associated
methods. Trellis/Owl (Moss and Kohler, 1987) proposes
a similar tool, based on locks and wait queues. In Hybrid
(Nierstrasz, 1987), delay queues allow scheduling activi-
ties in the same way as condition variables in monitors.
All these mechanisms are limited and do not allow
canonical synchronization schemes to be expressed
easily.

The 'mediator' (Grass and Campbell, 1986) is a power-
ful synchronization mechanism, based on guarded
commands with statements allowing mutually exclusive
service calls (the exec statement), or asynchronous calls
(the spawn statement), and return with the release
statement. These statements allow the activity schedul-
ing within an object to be controlled. Guards express pre-
conditions that can be programmed using the variables
of the mediator, the service requested by the client (name
of the service, value of the parameters and key identi-
fying the client) and the status of the pending requests.
This tool is very powerful, but is very difficult to
implement efficiently. In addition, it is far too complex
for most of the usual synchronization schemes.
This analysis motivated us to define a mechanism
with an expressive power between the locks and the
mediators.

In Guide, synchronization is specified as a set of
constraints associated with objects, not as primitives
appearing within activities. This is fully consistent with
the object approach, since the specification of the
synchronization constraints is concentrated in the class
that describes the object instead of being spread out in
methods that use the object. In addition, this synchro-
nization specification is shared by all instances of the
class.

Synchronization is specified as a set of activation
conditions, which are similar to Dijkstra's guarded
commands: an activation condition is attached to a
method, and must be satisfied before the execution of this
method may start. This condition is expressed as a
function of the internal state of the object and the
parameters of the invocation. If no activation condition
is attached to a method, then the execution of this
method is unconstrained.

4.2. Basic synchronization model

In our language, the activation conditions are grouped in
a control clause at the end of the class description. The
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syntax of the control clause is as follows:

CONTROL
[<method name> : < a c t i v a t i o n condi t ion>]*

where <activation condition> is a boolean expression
which may contain the following parameters: instance
variables which represent the internal state of an
instance, actual parameters of the method and synchro-
nization counters. Synchronization based on counters
was introduced in another context by Robert and Verjus
(1977).

Synchronization counters are internal data that
specify, for each method of a given object, the total
number of invocations, the total number of completed
executions, the current number of pending invocations,
etc. These counters are automatically updated by the
run-time system. The following counters are denned for
each method m:

invoked(m) : number of invocations of method m
started(m) : number of accepted (non-blocked)

invocations of method m
completed(m) : number of completed executions of

method m
current(m) = started(m) - completed(m) : number of

current executions of method m
pending(m) = invoked(m) - started(m) : number of
activities blocked on method m

In addition to this basic mechanism, activation
conditions can be expressed by predefined synchroniza-
tion policies (mutual exclusion and reader/writer
schema).

The use of activation conditions is illustrated by the
following example, which implements a buffer used for
communication between activities (the type Producer-
Consumer is supposed to have been introduced else-
where):

CLASS FixedSizeBuffer IMPLEMENTS ProducerConsumer IS

CONST size=100;
buffer : ARRAY[0..size-1] OF Element;
first, last: Integer =0, 0;
METHOD Put (IN m: Element);

BEGIN buffer[last]:=m; last:=last+l MOD size;

END Put;
METHOD Get (OUT m: Element);

BEGIN m:=buffer[first] ; first:= first +1 MOD size;
END Get;

CONTROL

Put: (completed(Put) - completed (Get)<size) AND
current (Put)=0;

GET: (completed (Put) > completed (GET)) AND
current (Get)=0;

END FixedSizeBuffer.

For each control statement, the compiler produces a
prologue and an epilogue section which are attached to
the corresponding method. This code is executed in
mutual exclusion before entering and when leaving the
method. The implementation of this synchronization
scheme is described in Decouchant et al. (1991).

Since there is no limitation for subclassing, there is no
rule for overloading an activation condition. The
application programmer may choose either to inherit
(and possibly complete a parent class definition), or to
define a new activation condition.

It should be noted that activation conditions are
expressed using only boolean expressions. Modification
of internal variables or more general algorithms are not
allowed. As a consequence, some synchronization
schemes cannot be directly expressed and must involve
the use of additional methods.

4.3. Extended synchronization model

The above mechanism was used intensively for the
construction of many classical communication and
synchronization schemes. The experience drawn from
these experiments showed that the use of the synchro-
nization counters is sometimes cumbersome and thus
prone to errors. For this reason, a number of shorthand
forms and new mechanisms have been introduced. Some
of these extensions are described now:

• the value of a counter associated to a method can be
designated by the variable my. counter_name,

• the notation current (op_l, op_2) can be used
instead of current (op_l)+current (op_2),

• macros can be defined to factorize expressions within
the control clause,

• abstract counters are counters associated to a set of
methods.

To illustrate the expressive power of this extended
synchronization model, we describe below the specifica-
tion of a 'bounded buffer' communication scheme with
various management policies. A BoundedBuffer class
may be specified as follows:

CLASS BoundedBuffer IMPLEMENTS ProducerConsumer IS

...// same implementation as FixedSizeBuffer

CONTROL

Nbltem = completed(Put) - completed(Get);

// macro

Put: Nbltem <size AND current (Put)=0;
Get: Nbitem >0 AND current (Get)=0;

END BoundedBuffer.

The following class implements the 'Readers first'
policy (priority is given to the get operations):

CLASS ReadersFirst SUBCLASS OF BoundedBuffer ...
// Implementation is inherited
CONTROL

Put: INHERIT AND (pending(Get) = 0);
/ / the control statement for Get is inherited

by default;
END ReadersFirst.

In the Nopriority policy, a Put request may only be
executed after completion of all Puts and Gets prior to it.
Conversely, a Get request may only be executed after
completion of all Puts prior to it. When a Get is in
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progress, any incoming Gets are processed until a Put
request arrives. We must therefore be able to memorize
pending invocations of Puts during the execution of both
primitives. This is achieved by using the value of invoked
counter for each method.

CLASS NoPriority SUBCLASS OF BoundedBufifer . . .
/ / Implementation i s inherited
CONTROL

Get: INHERIT AND completed(Put) =
my. invoked(Put) ;

Pu t : completed (Put , Get) = my. invoked (Put, Get) ;
END NoPr io r i t y .

The last example consists of adding a new method
GetRear, which extracts a buffer item from the tail of the
buffer. In addition, we want to allow GetRear and Get to
run concurrently, as they do not operate on the same
buffer item (note that this is allowed if and only if the
current number of items in a buffer is greater than 1). If
there is only one item in the buffer, GetRear is not
allowed.

CLASS ExtendedBuffer SUBCLASS OF BoundedBuffer . . .
METHOD GetRear (OUT m: Element);
BEGIN m := Buffer[last]; last := last-1;

END GetRear;
CONTROL

Nbltem = completed(Put) -completed(Get,

GetRear)// macro

// GetRear and Put use the same variable: last
//GetRear and Get are not exclusive, they

don't consume the same element
GetRear : Nbltem >1 AND current (Put, GetRear)

=0;

Get : Nbltem >0 AND current (Get) =0;
Put : Nbltem <size AND current (Put, GetRear)

=0;
END ExtendedBuffer.

Using abstract counters, the ExtendedBuffer activa-
tion conditions can be expressed as a specialization of the
BoundedBuffer's activation conditions:

CLASS BoundedBuffer
CONTROL

// abstract counter
Produce = -(Put};

Consume = {Get};

MdLast = {Put};
MdFirst = {Get};

// macro

Nbltem=completed(Produce)-

completed(consume);

Get: Nbltem >0 AND current (MdFirst)=0;

Put:NbItem<size AND current (MdLast)=0;

END BoundedBuffer.

CLASS Extended Buffer...

CONTROL

// Produce and MdFirst are

// inherited by default

Consume = {Get, GetRear};

MdLast = {Put, GetRear};

// Nbltem is inherited by default

// Get and Put are inherited

// by default

GetRear : Nbltem >1

AND current (MdLast) =0;

END ExtendedBuffer.

As shown in these examples, activation conditions may
be modified incrementally using the inheritance mechan-
ism. Thus, the restriction applicable to a given method in a
superclass can be supplemented by additional restrictions
for the same method in subclasses.

5. EXCEPTIONS

Exception handling has been refined in the last decade
and is now an integral part of most high-level languages.
Exceptions provide a means to separate a 'normal' flow
of control from an 'exceptional' one, where the semantics
of 'normal' and 'exceptional' may be predefined in the
language or specified by the programmer. The advan-
tages are twofold: the textual separation of the exception
handling code from the normal one greatly improves the
structure and readability of the program, while the
semantic separation ensures that the normal flow is
stopped when an exception occurs, and may resume only
after the proper exceptional handling code has been
executed.

This section describes the main characteristics of
exception handling in Guide. A complete description of
the exception model is available in Lacourte (1991).

5.1. Exception declaration

Experience with exceptions in object-oriented languages
is still limited. The integration of an exception mechan-
ism in an object-oriented model should be consistent
with the structuring principles of that model. Thus we
think it is natural to associate the exception handling
mechanism at the object invocation level. Exceptions in
Guide are defined at the operation level, so that an object
invocation can either terminate normally returning a
result, or abort signalling an exception.

In our approach an exception can be viewed as an
exceptional variation of the invocation, allowing the
dialogue between caller and callee to be enriched. In
guide, this dialogue is specified by the interface (i.e. the
type signature) of the called object. Consequently the
type model is extended to include exception declarations.
This in turn affects the conformance rules checked by the
compiler as exception are now part of the signature.

Guide exceptions are identified by symbolic names
(system exceptions and hardware traps have reserved
names). It is sometimes useful to attach complementary
information to an exception. In Guide, this capability is
achieved through the use of the output parameters in the
invoked method This solution has the advantage of
enabling the passing of parameters when signalling an
exception, while keeping the simplicity of exception
raising and the attachment of an exception to a type.
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When an operation cannot fulfil its requirements, it
raises an exception (using the keyword RAISE). Control
is then transferred to a calling entity which provides an
exception handler for this exception. The handler
executes some code ('exceptional' flow of control) and
then the 'normal' flow of control is resumed, according
one of the following policies: the resumption approach
resumes the execution at the level of the signalling entity;
the termination approach resumes the execution at the
level of the handling entity; the propagation approach
signals a possibly different exception to a higher calling
entity.

A termination model has been adopted in Guide: the
interrupted method is stopped, the control is transferred
to an exception handler which executes the code specified
for this exception, and then execution is resumed at the
level of the handler. An unexpected exception is
transformed into a pre-defined system exception which
is propagated to the invoking method.

5.2. Exception handling

Conceptually, handlers are associated with method
invocations (and not with any block of statements such
as in traditional approaches). A handler specifies a
specific procedure for handling expected exceptions. A
handler may also be associated with a class, in which case
the specified handler is used for all methods of the class.

TYPE Page is
METHOD Getchar : Char;
SIGNAL end_of_line, end_of_page;

END Getchar;
END Page.

CLASS Editor IMPLEMENTS Editor IS
METHOD PrintPage; // of class Editor
BEGIN
WHILE TRUE DO output.WriteChar(currentPage.

GetChar);
EXCEPT
end_of_line FROM Page: REPLACE '\n';
//gives a newline character

end_of_page FROM Page: RETURN;
END PrintPage;

END Editor.

In this example, the handlers defined in the EXCEPT
clause are syntactically associated with the two method
invocations of the WHILE statement. This usually allows
exception handling to be factorized for a number of
method calls. However, when it is necessary, the keyword
FROM allows exceptions raised by invocations on various
object types to be distinguished (e.g. here the handler is
associated only with exceptions raised by the invocation
of the GetChar method of the type Page).

The keyword REPLACE allows a handler to substitute a
result to a failed call. When the call currentPage. GetChar
raises an end_of_line exception, the handler supplies
a replacement value (replace is discussed later) and
PrintPage continues with a call to output. WriteChar

to print it. The conformity relationship between the
replacement value and the result expected from the
operation is checked at compile time.

In some cases, a handler may decide to reexecute the
failed invocation. This is achieved using the RETRY
keyword. This capability allows general fault recovery
policies to be specified. To prevent the risk of infinite
loops due to recursive calls to the same handler, the
system ensures that a handler cannot be called again
while it has not terminated.

In the following example, the handler associated with
the class Editor tries to recover from a failure of the
Obj ectManager (called in method CreateNewPage).

CLASS Editor IMPLEMENTS Editor IS
METHOD Garbage;
page: REF shadowPage;
BEGIN
page := shadowPages.First;
WHILE page DO

IF page.isDirty
THEN shadowPageManager.Free(page); page :=

shadowPages.Delete;
ELSE page := shadowPages.Next;

END;
END Garbage;
EXCEPT
noObjectLeft FROM ShadowPageManager.Get:
SELF.Garbage; RETRY;

END;
END Editor.

5.3. Restoration

Our exception handling mechanism allows application
programmers to implement alternate or retry policies as
needed. However, it does not ensure that the called
object is in a consistent state after raising an exception.
Therefore the RESTORE keyword allows a restoration
block to be defined. This block is executed only if the
method exits abnormally (raising an exception). The
block is executed just after the raising of the exception
and prior to the execution of the handler. Recursively, if
the handler propagates an exception, then a restoration
block of the calling object is executed before the search
for a new handler. A restoration block may be associated
with a given method or with the entire class.

In the following example, a restoration block
associated with the class Editor allows the dirty Pages
of the Editor to be saved whenever it exits abnormally.

CLASS Editor IMPLEMENTS Editor IS

RESTORE
page: REF ShadowPage; shadowDocument;
REF Document;

BEGIN
page := shadowPages.First;
WHILE page DO

IF page.isDirty
THEN shadowDocument. pages.Append(page);
ELSE shadowPageManager.Free(page);
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page := shadowPages.Delete;

END;

IF shadowDocument.pages.nbltem > 0 THEN

output.WriteStringC'abnormal exit\n'');

output .WriteStringC 'modifications saved
in'' + <name>);

END;

END;

END Editor.

6. EVALUATION

The Guide prototype—including the Guide language
and its run-time system—has been intensively used both
inside and outside of the Comandos consortium for
experimentation. Altogether the pilot applications built
on top of Guide represent about 150000 lines of Guide
source code, 60% of which have been developed outside
of Grenoble. These applications include a number of
simple demonstrators aiming at illustrating specific
features of the Comandos model, as well as large scale
real world distributed applications in the field of office
and business systems. They include:

• Services, such as a distributed directory service,
compliant with X-500, and a distributed monitoring
facility, primarily targeted at the observation and
debugging of a distributed environment.

• A distributed mail system, and a distributed diary.
• A multi-user distributed spreadsheet.
• A cooperative document editor, which allows the

cooperation of several authors for the production of a
common document in a distributed environment.

• A workflow application dealing with the intelligent
circulation of documents and folders within an
enterprise (see chapter 8 of Cahill et al., 1993).

This section intends to draw some lessons from these
experiments. In a first step we briefly analyse some
statistics regarding the use of objects, types and classes.
Then we summarize the main conclusions from a
qualitative point of view.

Table 1 gives some preliminary figures about the use of
types and classes. For each category of applications,
Table 1 gives the number of types, the number of classes
and the number of lines of source code.

Object granularity has always been a big debate as
it strongly influences the overall architecture of the

TABLE 1.

Services
Bull-IMAG applications
(mailer, diary and

spreadsheet)
Workflow and

cooperative editor
Test programs

No. of types

177
78

163

251

No. of Classes

171
79

120

269

Lines of code

52300
27100

58 500

18000

run-time system. From our experience, it appears that
objects are usually small, as demonstrated by the figures
below:

• Classes: 63% of them are smaller than 10 Kbytes (and
86% smaller than 15 Kbytes); this is mainly due to the
fact that a Guide class does not contain inherited code
or Unix library code which are linked dynamically.

• Objects: 89% of them have a size less than 512 bytes
and only 5% have a size greater than 2 Kbytes.

In the rest of this section, we point out the major
benefits expected from the use of the Guide model and
language, based on the current experience.

• Type and class model. The separate definition of types
and classes was found an extremely useful feature. It
provides the power of abstraction (separation
between type and representation) while keeping the
flexibility of an object model. This works in both
ways: provision of multiple implementations (classes)
for the same interface allows easy and transparent
implementation modifications, while provision of
multiple interfaces for the same class, via type
restriction, is a very natural way of filtering access
to a shared data structure.

• Execution model. The execution model provides a
higher abstraction level than the simple client-server
model which is supported in classical approaches. On
the one hand, this facilitates the design of a distributed
application; on the other hand this leads to more
structured and modular programming. In addition,
the execution model allows an easy modelling of
sophisticated communication and synchronisation
policies. The approach considered in Guide, which
consists in defining activation conditions and excep-
tion handling at the object invocation level, is
consistent with the object paradigm and greatly
assists the programmer in structuring and debugging
her application. In addition, the availability of pre-
defined synchronization policies (e.g. mutual exclu-
sion, reader/writer) allowed most of the usual cases to
be covered without any additional code.

• Persistent objects. Using persistent objects frees the
programmer of the burden of explicit save and restore
operations on files. Indeed, the notion of a file system
entirely disappears. This freedom has a price in terms
of performance. Using internal objects greatly
improves performance at the expense of flexibility,
since this amounts to a form of static linking of part of
an application. A development method that we found
convenient is to develop and debug an application
using fine-grained persistent objects, and to restruc-
ture it to use internal objects for small, clustered units
(such, for example, as directory entries in the mail
application) once the code is stable. Such restructur-
ing only involves a moderate amount of change.

• Distribution transparency. Location transparency is
ensured by the object management system, and object
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locations are usually invisible to the application
programmer. By default, the actual location of the
object is controlled by the system, according to an
independently defined policy. There is no distinction,
at the language level, between local and remote
method calls. As a consequence, it is easy to develop
and debug an application on a single node and to
transfer it to the network without change. All the
applications were developed in this way. However,
explicit control on object location may still be applied
if needed, for example to implement server applica-
tions in which the service is to be provided by a
specified node or set of nodes.

• Multiple granularities of objects. The Comandos
technology supports multiple granularities of
objects. The use of references allows the construction
of complex objects as composed of smaller objects.
Furthermore a given object may be shared between
different compound objects. In addition, any of the
components of a complex object can be distributed
over the network. This is especially suitable for
supporting distributed hyper-text (or hyper-media)
applications.

To summarize, shared, transparently distributed
objects, with high level language support, were consid-
ered an extremely useful tool by the programmers of
distributed applications, in contrast to explicit messages.
In addition to the benefits specific to the language (strong
typing, conformity, multiple implementations of a type,
etc.), the main advantages mentioned were: the higher
degree of abstraction for the expression of distribution
(an application developed on a single node could be
ported to a network without change); the ability to build
large structures with embedded object references and the
ability to share substructures; the separate expression of
synchronization constraints for shared objects; and the
implicit management of persistence.

The users also had some critical remarks. Programming
with persistent objects needs a change in programming
practice; while transparent distribution is convenient, it
also has less desirable aspects (debugging is more
complex; some applications still need explicit control on
object location); the purely synchronous invocation model
has its limitations (dealing with asynchrony is possible but
leads to awkward constructs).

7. CONCLUSION

A major advantage of the Comandos technology is
the combination of the well-known advantages of the
object technology with advanced features for the
expression and control of distributed and cooperative
computations.

The provision of programming language support that
integrates these features was a key aspect of the
Comandos project. Two different approaches to the
provision of programming language support were
considered in the framework of the project: the use of

existing languages and the provision of a new language
environment called Guide.

This paper has presented the basic features of the
Guide object-oriented language, as well as preliminary
lessons gained from its use for programming distributed
cooperative applications. Two prototypes of the lan-
guage and its run-time environment are currently
available: the first prototype (named Guide-1) runs on
top of Unix; a second prototype (named Guide-2) is built
as a server on top of the Mach 3.0 micro-kernel and
interworks with the OSF-1 server. Both prototypes
provide full coexistence with a Unix environment, so
that existing applications can be reused.

The compiler for the Guide language produces C code
which is in turn compiled by a standard C compiler. This
approach has two main advantages: on the one hand it
allows C code to be easily integrated within class
definition; on the other hand it allows the Guide
compiler to be easily ported. For each type, the compiler
produces a type descriptor which is used during the
compilation of other types and classes.

For each class, the compiler produces the correspond-
ing C code and a class descriptor which is used in the
compilation of further classes. Descriptors are stored in
the Unix file system. The output of the C compiler is
post-processed to produce a Guide binary, which is
stored in the Guide storage system.

To assist the development process, a set of develop-
ment tools have been designed and implemented. These
tools are fully integrated into a coherent development
environment through the use of control integration
mechanisms using Guide abstractions. The cooperation
between the tools within this integrated environment
allows a rapid development and debugging of distributed
applications. The tools currently available are: a desktop
that provides a uniform access to the development
facilities; a syntactic editor for the Guide language, based
on Emacs; a type and class browser; the Guide compiler;
an error browser; and an observer and a distributed
debugger.

In the near future it is intended to work in the
following directions:

• Revision of the type model to be compliant with the
Interface Definition Language (IDL) specified in
OMG's CORBA. In addition it is intended to use
the IDL type model as an intermediate representation
to allow interworking between Guide programs and
C++ programs.

• Revision of the execution model, based on our
experience, and to better integrate cooperative
applications requirements.

• Consolidation of the development environment.
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