
subject which relies on precise logical formuation. For
example, the distinction between may and can seems to
have eluded the author just as it seems to elude many
undergraduates, when at times the distinction is most
important. Another omission which is rife is the hyphen
between compound words; but since this endemic per-
haps it too should be forgiven. Fortunately the style
improves and by Chapter 2 the text becomes more
interesting to read, even though many sentences remain
irritatingly terse. Another change of style occurs at the
start of Chapter 3 where the prose becomes more
decisive, indicating that the author is more confident
with the technical details of the design process than
general introductory comments.

Chapters 4-9 represent the body of the text and here
important ideas are introduced in a methodical manner.
Considerable time is spent explaining the nature and
variety of faults that can exist in real circuit implementa-
tions and how difficult it is to model all possible fault
conditions. The complexity of the arguments and ideas
increases rapidly and students of computer science may
have difficulty in keeping up with some aspects of
electronic engineering. Similarly programming concepts
such as 'a table based event driven simulator' may be
difficult to grasp by students of engineering. This is an
intrinsic difficulty of the subject and the author does
well to maintain a sensible balance for readers new to
the problems of digital simulation. Of key importance is
completeness of formulation and the astute reader will
realise that there are many subtle unanswered questions.
For the experienced reader much that is already taken
for granted is placed on a more formal footing and some
ad hoc design rules may be seen in a new light. In
particular the chapter on Models and Model Design
show just how difficult it is to model even a simple
flip-flop!

As a definitive text on the design and use of simulators
the style in the early chapters is too informal, and as an
introductory text for undergraduates it lacks any tutorial
examples. This is not to say that it is not worth reading,
since the author is correct when he points out that there
are very few texts in this area. Of considerable potential
help is the extensive list of over 150 references to related
technical papers.

DAVID C. DYER
University of Warwick

J. R. PARKER
Practical Computer Vision Using C. John Wiley, 1993,
476 pp., softbound, £24.50, ISBN 0 47159262 5
(book/disk), 0 471 59259 5 (paper), 0 471 59411 3 (disk)

This volume from Wiley is intended to provide the non-
mathematical reader with a basic, wide-ranging and
extremely practical cookbook of standard low-level com-
puter vision procedures. It is optionally accompanied by
a diskette (my review copy wasn't) which contains the

entire suite of algorithms described, written in Borland
C. Most of the core routines are also printed in the
book, about half of which is given over to code listings
which appear at the end of each chapter. Dotted through-
out the text are stripped-down code and pseudocode
listings intended to illustrate the basic structure of each
procedure.

The book is organized by increasing complexity. The
early chapters review image types and describe simple
operations on two-level images such as the measurement
of geometric properties of regions, before moving on to
greyscale images and basic operations such as threshold-
ing. Chapters on simple feature extraction, object count-
ing and classification follow, and the final chapters cover
computer-readable codes, optical character recognition
and the analysis of scientific imagery with examples from
astronomy (stellar photometry) and biology (DNA gel
electrophoresis). The three appendices contain source
code descriptions, a partial review of available imaging
software and an excellent bibliography which could
perhaps also have included the near-standard reference
to Geman and Geman in the simulated annealing sec-
tion, and some reference to the neural network literature
under character recognition and classification.

What the book is not, and does not attempt to be, is
a complete and rigorous treatment of the field of com-
puter vision. As the author writes in the preface, the
book is pitched at 'the general computing public and
students of subjects in which computer vision is a useful
tool'. The mathematical content is minimal and instruc-
tion is by copious examples which are intended to
generate intuition in the reader. Inherently mathematical
topics are omitted altogether; there is no coverage, for
example, of restoration save for a very heuristic treat-
ment of small linear masks ('Giving a higher weight to
the center pixel seems like a good idea') and median
filters. There is no general treatment of filtering; simple
filter masks are introduced on an ad hoc basis as, for
example, edge or line detectors, without reference to the
optimality criteria which characterize the more academic
signal processing approach to such problems.

While a desire for currency is commendable, the
publisher really should employ a proofreader even if it
delays publication by a week. I found quite a number
of word-substitution errors in the text which had presum-
ably survived a spelling check. There were also some
typographical errors in formulae, and figures which did
not match their captions. The author boldly states that
the DNA double helix is a string of amino acids (emphasis
his) rather than nucleotide bases, which howler
should also have been spotted before causing public
embarrassment.

These minor grumbles apart, though, the book is a
fairly clear and easy read, and provides a wide ranging
cook's tour around basic computer vision problems,
complete with a large assortment of ready-made routines
with which to tackle them. It is likely to be of utility to
those involved in programming low-level industrial

THE COMPUTER JOURNAL, VOL.37, No. 6, 1994

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/37/6/543/518798 by guest on 09 April 2024



544 BOOK REVIEWS

vision applications and to those who suspect that com-
puter vision might offer solutions to their problems but
who have no experience in the field and require a fairly
comprehensive and very comprehensible introduction.

SIMON CLIPPINGDALE
University of Warwick

JOSEPH BERGIN
Data Abstraction, the Object-Oriented Approach Using
C++. McGraw Hill, 1994, £41.95, 666 pp., hardbound,
ISBN 0 07 911691 4

This book aims to teach data abstraction, object-
oriented programming and computer science in that
order of priority. In these aims I believe the book largely
succeeds, with two qualifications described below.

The first part of the book ('Fundamentals') introduces
C + + with enough detail so that examples in the book
can be understood. (The author makes clear that the
book is not intended as a comprehensive primer for
C + + and a basic knowledge of C is assumed.) Concepts
of data abstraction, and object-oriented (OO) program-
ming are then introduced followed by an introduction
to 'high level' classes like 'object', 'magnitude' (characters,
strings, fractions etc), 'collection' (sets, bags, lists, etc),
and so on. The ideas are then applied to the design and
implementation of a deterministic finite state automaton
and to the translation of arithmetic expressions.

The second part of the book ('Implementations') gives
a relatively detailed account of representational struc-
tures including lists, sets, stacks, queues, trees, characters,
strings, heaps, graphs, with related concepts such as
sorting and recursion.

The last part ('Applications') gives examples in areas
such as program translation, recursive descent parsing,
program verification and database normalization.

One reservation I have about the book is tht it puts
what I feel is an unreasonable emphasis on data and
data abstraction at the expense of procedures and the
abstraction of procedural code. It is misleading to define
software objects as 'data elements' since, in OO lan-
guages from Simula onwards, an object comprises either
or both of data structures and procedures (methods or
functions). Inheritance, which is the key abstraction
mechanism in OO languages, applies to procedural code
just as much as it does to data structures. And structures
like lists and trees can be, and often are, used to represent
procedures as well as data (witness Lisp and OO exten-
sions of Lisp). 'Software Abstraction' would provide a
more even-handed focus for the book.

I also have a reservation about the way the book
concentrates almost exclusively on computer-oriented
concepts (lists, arrays, finite-state automata, etc) and
neglects what I believe is the great strength of the the
OO paradigm: to facilitate the modelling of objects and
classes in the world outside the computer. The author
recognises that 'object-oriented programming ... offers

the benefit of making it possible, and easy, to make the
running program more nearly model the real situation
in which the original problem arose ... every program
is a simulation or model of some phenomenon' (p. 46).
It is true, as he says, that computer-oriented concepts
may be modelled in software. But most applications of
computers are about 'real world' things like people, cars
and aeroplanes, and about procedures, processes and
rules in the world outside the computer.

OO design allows a 1:1 mapping from these kinds of
objects (and classes of objects) to corresponding 'objects'
(and 'classes') in software. Despite the attractive simpli-
city of this idea, subtle problems of analysis can arise.
In my experience, students need plenty of examples to
show how OO modelling can be applied in the design
of software to assist the management of things like
libraries, shops, clubs, warehouses, elections and so on.
It would be good if the 'Applications' section of any
future edition of this book could plug this gap.

Leaving these points aside, the book is clearly written
and well presented. It is good to have the C+ +
examples supplied on a disk. For any course which aims
to teach representational devices (lists, stacks, arrays,
etc) and associated concepts within the object-oriented
paradigm, this book will serve very well.

GERRY WOLFF
University of Wales, Bangor

KEVIN LANO and HOWARD HAUGHTON (Eds)
Object-oriented Specification Case Studies. Prentice Hall,
1994, £22.95, 236 pp., softbound, ISBN 0 13 097015 8

This book splits naturally into two main parts. These
are discussed here in reverse order. The second part
comprises of Chapters 4-10 inclusive and this contains
the specification case studies which give the book its
name. These are drawn from a number of areas. Included
are specifications of the Unix filing system written in
MooZ, a mobile phone system in Object-Z, a concept-
recognition system—a kind of machine-learning pro-
gram—in Z+ +, a variety of bank accounts and a block-
structured symbol table in OOZE, various quadrilaterals
in VDM + + and a partial specification of a process
scheduler in SmallVDM. Also included in this part of
the book is an 18-page chapter entitled 'Refinement in
Fresco'. Although this contains some small specifications
of quadrilaterals, it is predominantly devoted to the
topic of the refinement of specifications into Smalltalk
and the proof system needed for this. In my opinion,
Lano and Haughton should not have included this
chapter in their book as it has a very different emphasis
and focus from everything else that the book contains.
There is a very pronounced emphasis on object-oriented
specification languages based on Z in this part of the
book. In fact, 70% of it is devoted to discussing case
studies written in languages that are extensions of Z,
whereas only 17% is devoted to languages derived from

THE COMPUTER JOURNAL, VOL.37, No. 6, 1994

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/37/6/543/518798 by guest on 09 April 2024


