
544 BOOK REVIEWS

vision applications and to those who suspect that com-
puter vision might offer solutions to their problems but
who have no experience in the field and require a fairly
comprehensive and very comprehensible introduction.

SIMON CLIPPINGDALE
University of Warwick

JOSEPH BERGIN
Data Abstraction, the Object-Oriented Approach Using
C++. McGraw Hill, 1994, £41.95, 666 pp., hardbound,
ISBN 0 07 911691 4

This book aims to teach data abstraction, object-
oriented programming and computer science in that
order of priority. In these aims I believe the book largely
succeeds, with two qualifications described below.

The first part of the book ('Fundamentals') introduces
C + + with enough detail so that examples in the book
can be understood. (The author makes clear that the
book is not intended as a comprehensive primer for
C + + and a basic knowledge of C is assumed.) Concepts
of data abstraction, and object-oriented (OO) program-
ming are then introduced followed by an introduction
to 'high level' classes like 'object', 'magnitude' (characters,
strings, fractions etc), 'collection' (sets, bags, lists, etc),
and so on. The ideas are then applied to the design and
implementation of a deterministic finite state automaton
and to the translation of arithmetic expressions.

The second part of the book ('Implementations') gives
a relatively detailed account of representational struc-
tures including lists, sets, stacks, queues, trees, characters,
strings, heaps, graphs, with related concepts such as
sorting and recursion.

The last part ('Applications') gives examples in areas
such as program translation, recursive descent parsing,
program verification and database normalization.

One reservation I have about the book is tht it puts
what I feel is an unreasonable emphasis on data and
data abstraction at the expense of procedures and the
abstraction of procedural code. It is misleading to define
software objects as 'data elements' since, in OO lan-
guages from Simula onwards, an object comprises either
or both of data structures and procedures (methods or
functions). Inheritance, which is the key abstraction
mechanism in OO languages, applies to procedural code
just as much as it does to data structures. And structures
like lists and trees can be, and often are, used to represent
procedures as well as data (witness Lisp and OO exten-
sions of Lisp). 'Software Abstraction' would provide a
more even-handed focus for the book.

I also have a reservation about the way the book
concentrates almost exclusively on computer-oriented
concepts (lists, arrays, finite-state automata, etc) and
neglects what I believe is the great strength of the the
OO paradigm: to facilitate the modelling of objects and
classes in the world outside the computer. The author
recognises that 'object-oriented programming ... offers

the benefit of making it possible, and easy, to make the
running program more nearly model the real situation
in which the original problem arose ... every program
is a simulation or model of some phenomenon' (p. 46).
It is true, as he says, that computer-oriented concepts
may be modelled in software. But most applications of
computers are about 'real world' things like people, cars
and aeroplanes, and about procedures, processes and
rules in the world outside the computer.

OO design allows a 1:1 mapping from these kinds of
objects (and classes of objects) to corresponding 'objects'
(and 'classes') in software. Despite the attractive simpli-
city of this idea, subtle problems of analysis can arise.
In my experience, students need plenty of examples to
show how OO modelling can be applied in the design
of software to assist the management of things like
libraries, shops, clubs, warehouses, elections and so on.
It would be good if the 'Applications' section of any
future edition of this book could plug this gap.

Leaving these points aside, the book is clearly written
and well presented. It is good to have the C+ +
examples supplied on a disk. For any course which aims
to teach representational devices (lists, stacks, arrays,
etc) and associated concepts within the object-oriented
paradigm, this book will serve very well.

GERRY WOLFF
University of Wales, Bangor

KEVIN LANO and HOWARD HAUGHTON (Eds)
Object-oriented Specification Case Studies. Prentice Hall,
1994, £22.95, 236 pp., softbound, ISBN 0 13 097015 8

This book splits naturally into two main parts. These
are discussed here in reverse order. The second part
comprises of Chapters 4-10 inclusive and this contains
the specification case studies which give the book its
name. These are drawn from a number of areas. Included
are specifications of the Unix filing system written in
MooZ, a mobile phone system in Object-Z, a concept-
recognition system—a kind of machine-learning pro-
gram—in Z+ +, a variety of bank accounts and a block-
structured symbol table in OOZE, various quadrilaterals
in VDM + + and a partial specification of a process
scheduler in SmallVDM. Also included in this part of
the book is an 18-page chapter entitled 'Refinement in
Fresco'. Although this contains some small specifications
of quadrilaterals, it is predominantly devoted to the
topic of the refinement of specifications into Smalltalk
and the proof system needed for this. In my opinion,
Lano and Haughton should not have included this
chapter in their book as it has a very different emphasis
and focus from everything else that the book contains.
There is a very pronounced emphasis on object-oriented
specification languages based on Z in this part of the
book. In fact, 70% of it is devoted to discussing case
studies written in languages that are extensions of Z,
whereas only 17% is devoted to languages derived from

THE COMPUTER JOURNAL, VOL.37, No. 6, 1994

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/37/6/544/518807 by guest on 09 April 2024


