
VDM. (The percentages given refer to the number of
pages in this part of the book. The remaining 13% is
devoted to Fresco.)

The first part of the book consists of three chapters.
The first of these is by Kevin Lano and Mary Tobin
and it looks at what should happen in the analysis phase
of software development before a formal object-oriented
specification is written. Chapters 2 and 3 are by the
editors and Chapter 3 considers how an object-oriented
specification language can fit into the software develop-
ment life cycle.

Chapter 2 is, in my opinion, the best in the book. In
it the editors provide the reader with a brief overview
of each of the languages used in the case studies—as
well as Abrial's language Abstract Machine Notation
(AMN)—but more importantly they evaluate these lan-
guages using no less than 16 well-chosen criteria.
Furthermore, they identify the deficiencies of the various
approaches and suggest areas that need further develop-
ment. I would advise everyone working in the area of
formal object-oriented specification to carefully read and
study this chapter.

Because most of the book deals with languages based
on Z, I think that it will be of greatest interest to the
members of the Z community. One of the main problems
with Z as it exists today is that officially it only allows
flat specifications to be written. The language designers
whose languages are represented in this book address
this problem using ideas drawn from object-orientation.
I believe that Z can only benefit from being enriched in
this way.

The main omission from the book is a chapter devoted
to Abrial's AMN and its associated B-method. AMN
and B are discussed at length in Chapters 2 and 3, but
no large case study written in AMN is provided. The
book would have been even better than it is if the
chapter on Fresco had been replaced with one on AMN.

ANTONI DILLER
Birmingham University

B. SANDEN
Software Systems Construction with Examples in Ada.
Prentice Hall International Editions, 1994, £22.95,
443 pp., softbound, ISBN 0 13 288580 8

There are many textbooks about Ada. Despite the
insistence of the Ada community that learning to pro-
gram in Ada is more than learning the syntax of the
language, by far the majority of the books, whether they
are aimed at experienced programmers or at novices,
concentrate on the syntax of the language. This book
joins the small but distinguished group of texts that
seriously address the design and implementation of
software, using Ada as the language of expression. The
emphasis is on what the author calls reactive software,
more commonly known as hard real time software.

The eclecticism of the author's approach, one the
book's strengths, is made apparent in the introductory
chapter, which sets the material covered in the book in
the context of modern software engineering thinking.

The second chapter covers control structuring and is
heavily influenced by Jackson's structured programming.
An important distinction is introduced, between what
the author calls explicit mode representation, where the
current mode of execution is remembered by explicit
mode variables, and implicit mode representation, where
it is represented by the location of the flow of control
in the program text.

Modularization is dealt with in Chapter 3 and the
influence of Ada is, as might be expected, very evident
here. Ada provides probably the best modularization
facilities of any commercially supported language but
much of the discussion is valuable in a wider context; in
particular, the section on the use of independent subpro-
grams is a penetrating discussion of the ways in which
independent subprograms are commonly misused and
of the way in which such misuse arises. Chapter 4
continues the theme of modularization in the context of
object-based software construction; this again is firmly
based on Ada and includes a number of illuminating
and non-trivial examples—as well as the inevitable stack.

Chapter 5 introduces finite automata formally and
includes a number of excellent examples and exercises,
illustrating their application to software design and
construction.

Chapter 6 covers concurrent tasks and Chapter 7 the
related topic of resource sharing. Chapter 8 returns to
the topic of entity-life modelling, now in the context of
concurrent systems; it is a synthesis of much of the
previous material. The final chapter is a case study of a
flexible manufacturing system.

The strengths of this book are its eclecticism; the
excellent and realistic examples, well integrated with the
more theoretical discussion; and the discussion of prac-
tical issues and the reasons for specific design choices.
In contrast with some authors in this field, Sanden is
not (usually) content to give a single, simple answer
which raises more questions than it answers.

The book is well and clearly written, even if the
author's Scandinavian origin is occasionally apparent,
and there are few misprints. Each chapter includes a
well chosen list of references.

This book is based on two courses given in a software
engineering Master's programme at George Mason
University in the USA. It would form an excellent basis
for a second course on programming and design within
a software engineering Bachelor's degree in the UK but
it does not correspond closely to what is usually taught.
I fear, therefore, that it will not be as successful here as
it deserves. It is also a potentially very valuable book
for practitioners. Unfortunately, but probably inevitably,
its readership is likely to be limited to those who are
familiar with Ada or with languages such as Eiffel or

THE COMPUTER JOURNAL, VOL.37, No. 6, 1994

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/37/6/545/518828 by guest on 09 April 2024



546 BOOK REVIEWS

Modula-2 which share some of Ada's philosophy and
design goals. In other words, those who might learn
most from the book are the least likely to read it.

FRANK BOTT
University of Wales, Aberystwyth

BRUCE P. LESTER
The Art of Parallel Programming. Prentice Hall
International Editions, 1993, 375 pp., softbound, ISBN
0 13 074980 X

THOMAS BRAUNL
Parallel Programming, An Introduction. Prentice Hall
International Editions, 1993, 270 pp., softbound, ISBN
0 13 336827 0

It is generally accepted that the speed of computers
organized according to the von Neumann model is
reaching its physical limit. In order to overcome this
problem, efforts have been focused on the design of
parallel machines as well as languages to program them.
Especially over the last decade the significance of parallel
computing has become increasingly clear. Various archi-
tectures have been suggested and algorithms have been
developed to perform efficiently on them. For this reason,
most universities with curricula in computer science are
beginning to offer courses in this area.

Parallel programming is not an easy subject to master.
It contains subtleties and complexities and it brings
together elements from many different areas. In particu-
lar, writing a parallel program involves the design of a
parallel algorithm, its implementation in an appropriate
parallel language, debugging and performance evalu-
ation, and at the same time a thorough knowledge of
parallel computer architectures.

Many books have been written in this field, most of
which are suited as reference books or for intensive
graduate courses. In addition, the majority are mostly
concerned with only one of the areas involved, such as
parallel algorithm design or parallel architectures.

The Art of Parallel Programming by Lester is intended
for a wider range of students and provides a general
introduction and overview of parallel programming.
With only a few prerequisites, it can be used at both the
advanced undergraduate level or at the beginning of a
graduate course.

Most of the existing books on parallel programming
advocate the concept of abstract programming that
hides the underlying architecture by presenting programs
which are independent of particular machines. However,
Lester stresses the importance of considering the target
architecture while writing a program and throughout
the book there is a continual interplay between parallel
architectures, languages, algorithms and performance
evaluation. The text is clearly written, well structured
and organized according to major programming tech-
niques. The material is covered thoroughly, leaving

hardly any questions open and chapters are complete
with summaries, numerous examples of parallel algo-
rithms studied in depth as well as exercises and program-
ming projects.

The feature that makes this book unique as an intro-
duction to parallel programming is the software accom-
panying it. This software consists of an interactive and
user-friendly system which is written in Pascal. It allows
students to write their own programs in the parallel
programming language Multi-Pascal, the language used
in all examples in the text. Programs can be compiled
and debugged with the aid of a powerful debugger and
then their execution can be simulated. It is possible to
specify characteristics of the required target machine
such as the number of processors, whether the machine
has shared or distributed memory and its topology. In
this way the performance of the program can be
compared for different architectures. Multi-Pascal was
developed by the author and it consists of a simple
set of parallel abstractions powerful to represent
parallel algorithms for both multiprocessors and multi-
computers.

Thus Lester's book makes an interesting and readable
introduction to parallel programming and supplements
reading and understanding issues concerning parallel
algorithms with the experience of actually writing pro-
grams and seeing how they perform.

Braunl's book Parallel Programming an Introduction
is directed to a similar range of students. It pays particu-
lar attention to system architectures and how they can
influence the development of parallel programs.
However, whereas Lester encourages understanding of
parallel programming through experience and examples,
Braunl concentrates on presenting and discussing issues
of parallel programming. A number of interesting
examples are included in the text but they are not
discussed into much depth.

A notable flaw of the book is the following: even
though it is a successful translation from German to
English, its style makes it difficult to read continuously
and the coverage is somewhat patchy. Often it is the
case that not enough information is given to clarify
figures and program listings and occasionally the tone
becomes slightly instructional. Also, at points questions
are left open but usually references are given to sources
for further discussion. Still there are various features to
recommend this book. Most of the book is comprehens-
ible, and very informative. Problems of synchronous and
asynchronous programming and possible solutions are
covered clearly and at a well-judged level of detail. In
addition, discussions concerning automatic parallelis-
ation bring interesting insights to the subject. Unlike
Lester's book, it contains parts on specific programming
languages with information concerning their parallel
constructs. A chapter of the book is dedicated to the
introduction to Petri nets. Their significance as a tool
for the definition of asynchronously parallel tasks is
stressed but one may criticise the fact that hardly any

THE COMPUTER JOURNAL, VOL.37, No. 6, 1994

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/37/6/545/518828 by guest on 09 April 2024


