
552 BOOK REVIEWS

effect of the books, and the very high quality of graphic
design, layout, printing and production that has gone
into them. No library should be without these books, no
course on human-computer interaction should ignore
them and every aspiring software designer should use
them as meditation aids when contemplating how
graphics can be used to represent information and
interaction, choice and effect.

MATHAI JOSEPH
University of Warwick

ALISTAIR GEORGE AND MARK RICHES

Advanced Motif Programming Techniques. Prentice-Hall.
1994. ISBN 0-13-219965-3. £24.95. 406 pp. softbound.

The X Window System has developed rapidly in the last
few years. A fundamental tool which is needed in order
to program easily and effectively in X is a toolkit—this is
a high-level library supporting a set of widgets. Several
toolkits have been created, but only in the last couple of
years has Motif begun to emerge as a de facto standard.

The concepts on which Motif is based are relatively
simple and several good introductions to Motif are
available. These all suffer from a common problem:
Motif contains a very large (and somewhat complex)
collection of routines and even simple GUI design can be
effected in a variety of ways. Advanced Motif Program-
ming Techniques contains advice and warnings to help a
competent Motif programmer to design and write GUIs
more effectively and efficiently.

As the title suggests, this is not a book for the novice X
programmer. Although the book commences with a
short discussion of the concepts underlying X and Motif,
this is too brief to serve as a tutorial. It is assumed that
the reader can write programs using Motif and has a
good working knowledge of C. Discussion of Motif is
supplemented with many code fragments which can be
obtained either via FTP or on disk (for the latter a
nominal sum is charged).

The book is divided into two parts. In the first, the
authors discuss the Motif widgets and explain the
rationale for them. Down-to-earth advice about good
(and bad) techniques for building complex GUIs is given.
These are illustrated by numerous examples of com-
monly-encountered situations. In the second part of the
book other relevant topics are looked at, including:
drawing using Xlib, use of colour, interaction between
Motif and window managers, resources, and low-level X
event handling. Some of the paragraphs are annotated
with warning triangles, indicating traps for the unwary
programmer. I liked this approach. The authors' style is
very clear and I had no difficulty following their
discussions.

Advanced Motif Programming Techniques is not a
book to be read from cover to cover in one sitting; nor is
it a reference manual. It is a volume to be consulted for

good ideas and for common-sense. It is a valuable
complement to your favourite Motif reference books.

MIKE JOY
University of Warwick

ZHAOHUI LUO

Computation and Reasoning. Oxford University Press.
1994. ISBN 0-19-853835-9. £30.00. 228 pp. hardbound.

Type theory concerns the formal study of the idea that
entities in common use by computer scientists can be
organized into collections with uniform properties
(called types) together with rules for computing
members of types. This gives rise to a conceptual
framework for computer science. The book Computa-
tion and Reasoning is a comprehensive account of (the
meta-theory and application of) one particular type
theory, the Extended Calculus of Constructions (ECC),
developed by Chaohui Luo in his recent PhD thesis.

The ECC provides a very rich type system together
with an associated language of terms (programs). The
syntax of the ECC is introduced, along with computa-
tional rules for evaluating terms to values (the results of
programs). The formal presentation of the syntax is very
clear and the informal explanations of the type theory
guide the reader through the intended meaning of the
ECC. Results about the meta-theoretic properties of the
ECC are proved, such as principal typing and subject
reduction. The ECC is shown to be strongly normalizing,
i.e. every well typed program computes to a value in a
finite number of steps. The method of proof is based on a
well known technique (Girard-Tait reducibility) which is
adapted in an interesting and novel way for the ECC; this
proof will be of interest to the experts. The ECC contains
a higher order logic, within which one may reason about
programs; there is a concise explication of the logic
and the proof of its consistency. A set-theoretic model of
the ECC is described, which uses ideas from recursion
theory. At first sight, the syntax of the ECC will
(probably) seem quite complicated and this semantic
model will aid the reader's understanding. However, to
understand the model will require some knowledge of
category theory. Examples of how to express computa-
tional theories in the ECC are given, and there is a very
abstract account of how to specify and implement
programs in the ECC. The book concludes with a
lengthy account of a very general type-theoretic frame-
work in which other type theories (such as the ECC) may
be presented.

I found this to be a well written, thorough and
enjoyable account of the ECC. As well as a detailed
exposition of the meta-theory of the ECC, there are some
lengthy philosophical discussions about type theory in
general and its role in computer science. The author
compares and contrasts the ECC with other well known
type theories, in particular showing how the ECC extends
the Calculus of Constructions and why the ECC may be

THE COMPUTER JOURNAL, VOL. 37, No. 6, 1994

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/37/6/552-a/518910 by guest on 10 April 2024



considered as an extension of Martin Lof's theory with
universes by an (impredicative) type of logical proposi-
tions. Such philosophical discussion, together with the
fact that the ECC is quite a complex type theory and that
many of the proofs (of meta-theoretic results) are quite
involved, means that this is not a book for the beginner.
However, for someone with background knowledge of
type theory I recommend Computation and Reasoning
wholeheartedly.

ROY L. CROLE

Imperial College, London

IAN PRATT

Artificial Intelligence. Macmillan. 1994. ISBN 0-333-
59755-9. £16.99. 280 pp. softbound.

There is a continuing and sometimes heated debate in
Artificial Intelligence (AI) between the formalists and
experimentalists, often characterized as 'neats' versus
'scruffies'. The former argue for the centrality of logic in
AI and its use as a base for further research, while the
latter claim that effort is better spent on content rather
than form, and that logic can obscure and hinder
research. Pratt's book lies in the formalist camp, but
while it does indeed give a thorough grounding in the
underlying theory of many aspects of AI and concentrate
on those aspects that lend themselves to such analyses, it
also highlights some of the inherent limitations.

The book can be considered in two parts. The first
begins with an introductory chapter which sets the scene
by stating that the subject of the book is that part of AI
that is the 'enterprise of programming computers to
make inferences'. It also describes a couple of motivating
examples used subsequently to illustrate various tech-
niques, and characterizes inference as involving belief
and heuristics, key ideas which are further explored
throughout the book.

The remainder of the first part includes five other
chapters which cover search and planning, logic and
inference, closed world assumptions, defeasible infer-
ence, and reason maintenance. The thread linking the
topics of these chapters is developed coherently and
convincingly from the initial example in the introduction
concerning a robot moving around a house. Chapter 2
expands on the example by introducing technical details
necessary for a fuller account of search and planning.
Chapter 3 shows how logic can be used to formalize the
previous discussion of planning, and in so doing explores
the frame problem and possible solutions to it with
alternatives to logic. The next two chapters then develop
this further by considering topics in defeasible reasoning
including circumscription, inheritance hierarchies and
default logic. Finally, the first part ends with a chapter
detailing aspects of truth maintenance.

By contrast, a second part of the book is much less
cohesive. That this is so is less a criticism of the second
part than an appreciation of the first. Here the chapters

address such diverse topics as memory organization,
probabilistic inference, induction and neural networks.
In the preface, the author acknowledges the distinction
between these two parts as core chapters and indepen-
dent chapters, and balances the selectivity of material
against the depth of those topics covered.

Much of the material in the book is quite demanding,
and despite the appendix providing a tutorial introduc-
tion to predicate calculus, the claim made on the back
cover that the book gives a 'clear and readable'
introduction while 'assuming no prior knowledge of AI
or logic' is perhaps a little optimistic. It is certainly well
written, but covers the material to a greater depth than is
usual in introductory texts and does so very quickly.
Those without at least some prior knowledge may easily
be intimidated.

Throughout the book, each chapter ends with a set of
exercises including programming problems and sugges-
tions for further reading. The suggestions are limited,
however, and given that the material is treated in depth,
it would have been worthwhile to have included a more
extensive bibliography.

Overall, Pratt's book is an ambitious effort at a general
AI text which covers its material in detail. It is largely
successful and will certainly appeal to those who share
Pratt's logical approach.

MICHAEL LUCK

University of Warwick

MARTIN SHEPPERD AND DARREL INCE

Derivation and Validation of Software Metrics. Oxford
Science Publications. 1993. ISBN 0-19-853842-1. £30.00.
167 pp. hardbound.

In the words of the authors, software metrics is the
application of quantitative methods to software engineer-
ing. In fact, while quantitative methods lie at the heart of
traditional engineering disciplines, until 3 years ago
software metrics was widely viewed as a peripheral
subject within software engineering. There were less than
a handful of books which covered any aspect of the
subject in any depth at all. However, things are changing
rapidly. If we judge the importance of a subject by the
volume of books produced, then software metrics must
now have truly arrived into the mainstream of software
engineering. At least 30 books on software metrics have
been published in the last three years. There have been a
number of high-profile ESPRIT technology transfer
projects and a mushrooming of conferences; it appears
that metrics is a boom area.

So the question is: given this explosion of very recent
activity, does this book offer anything substantially
different? I believe it does, although inevitably some of
the ground is covered elsewhere. This book concentrates
on metrics which can be determined early in the software
development life-cycle; specifically metrics that can be
computed from designs and specifications. The authors

THE COMPUTER JOURNAL, VOL.37, No. 6, 1994

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/37/6/552-a/518910 by guest on 10 April 2024


