
554 BOOK REVIEWS

are especially looking for metrics that can provide early
feedback on future maintenance and implementation
costs. This is one of their key criteria for metric validity
which has to be demonstrated empirically.

The book starts with a good historical review and then
looks in detail at the validation of three very well-known
metrics: Halstead, McCabe, and Henry and Kafura's
information flow measure. This selection is rather
strange given the book's emphasis on early life-cycle
metrics, because the Halstead and McCabe metrics are
only available after coding. There has been extensive
recent activity by the likes of Kitchenham and Kemerer
dealing with validation of function points (which are
available at the specification stage). Since, function
points are also far more extensively used than the other
metrics, it is a shame that the authors did not look in
detail at their validation. The authors conclude that the
three chosen metrics are 'bad': not by bad luck but
by carelessness of approach and poor awareness of
measurement. To address these problems the authors
suggest three issues that need to be addressed:

1. The meaning of metrics (via measurement theory).
2. Model evaluation (both empirical and theoretical via

axioms).
3. The need to tailor metrics for different goals.

Thus the book contains chapters which deal with each of
these issues in turn. Based on these rigorous principles
the authors propose their own formal models of designs
and define measures which can be extracted from these.
The two type of validation (via axioms and empirically)
are performed and the results of these lead to model
refinement and ultimately to increasingly promising
results.

This is a well written book which will appeal primarily
to people who already have some experience of software
metrics. Because of the central role of the notion of
formal models and axioms, readers will need to have
some mathematical maturity if they are to really benefit
from it.

NORMAN FENTON
Centre for Software Reliability, City University

JIM INGLIS
Cfor Corporate Programmers. Wiley. 1994. ISBN 0-471-
93965-X. £22.50. 271 pp. softbound.

C is a programming language so low-level that its
identifiers designate storage, which is (they tell us) the
hardware component used to implement programming
variables. There is nothing wrong with low-level
languages (especially portable ones), in their place; but
C is also a language so execrable that any adequate
specification of it is quite sufficient to condemn it, for
those that have ears to hear. Can there be any argument
for a professional corporate programmer (a commercial,

and probably COBOL, programmer) learning or using
it? Yes; and for what it is worth, here it is.

Professional programmers are not 'professionals'; they
are, and ought to be, like professional carpenters,
artisans that exercise their skills for money. A carpenter
might properly convert from plywood work to chipboard
work: you want tacky? you want to pay for tacky? OK,
mate it's no skin off my nose. Is there money to be made,
or a job to be kept, by writing C instead of, or as well as,
our current languages? Fine, let's learn C.

If you swallow that, and you want to convert to C
from COBOL (or a similar language), you could buy a
copy of this book.

But if you love plain English, well written; or elegantly
used typography; or limpid, systematic exposition; or
shrewd and balanced judgment: you should buy two
copies and give one to a like-minded friend.

ADRIAN LARNER
de Montfort University

ANDREW DILLON
Designing Usable Electronic Text. Taylor & Francis.
1994. ISBN 0-7484-0113-X. £18.00. 195 pp. softbound.

This book is about reading. Andrew Dillon is an applied
psychologist and a researcher in the Human Computer
Interface (HCI, although he remarks, 'this acronym was
often shortened to CHF—think about it). 'Reading' (not
in the index) is used in a sense somewhat wider than we
might expect and includes navigation around a text
either on paper or held electronically, principally in
hypertext.

Dillon refers to 16 papers of which he was the first
listed author and others of which he was an author.
These are among his more than 200 references; but then,
his researches show that 73% of 'readers' of academic
journal articles access them as 'background material for
work purposes' (know what I mean?), but only 46% read
them to keep their knowledge up to date. Perhaps he
thought the time had come to summarize all his research
in a book, padded—as is all too common—by a massive
review that would do wonders for all his fellow-
researchers' citation indices, but little for their cred-
ibility. He should have thought again.

'[T]he user interface is for many people, all they see
and know about the computer.' The punctuation is
idiosyncratic. 'Shackel . . . states that . . . usability . . .
can be defined a s : . . . capability . . . to be used easily and
effectively by . . . users, given specified training . . . '
Dillon concludes: 'The key aspects are 'easily' . . . the
user—with or without training as specified—must not
find it difficult . . . ' (My emphases; his logic). '[T]he
reader. . . may decide that they can comprehend [a given
text] only by not reading it at all.' Words fail me; and
hethem. 'In the first experiment, . . . every second
paragraph was removed from the . . . text I n
some cases . . . implications were grasped [by the readers

THE COMPUTER JOURNAL, VOL. 37, No. 6, 1994

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/37/6/554-a/518932 by guest on 09 April 2024

of these mutilated texts]. . . however . . . most of the . . .
reports . . . suggested] little attempt to grasp the
development of the argument within the text.' Strange
that. '[I]t is not expected that such a framework could be
handled over to non-human scientists . . . ' with their
funny pointy ears.

But what does he have to say? (That is, other than the
incomprehensible pun in the dedication and the literary
quotations in the chapter headings—human science,
you see; science but not at we know it.) From the first
four chapters we gather that most human factors experts
have found nothing—except what is false, trivial or
commonsense—to say about reading or any other aspect
of system design and (consequently?) designers ignore
them. From the last six chapters we learn, when
designing a text presentation system, (1) to consider
what kinds of information the texts convey, why people
read them and how people access them; and (2) to work
on the users' requirements (the 'Task Model'), the
structures of the texts (the 'Information Model') and
the methods of text handling to be provided ('Manip-
ulation Skills and Facilities'); also, to get to understand
something of how people read (the 'Serial Reading
Processor').

There needs no ghost, my lord, come from the grave, to tell
us this. (Hamlet Act 1, Sc. 5)

ADRIAN LARNER
de Montfort University

BRIAN RATCLIFF
Introducing Specification Using Z. McGraw-Hill. 1994.
ISBN 0-07-70796505. £18.95. 308 pp. softbound.

This book is another 'practical' introduction to the Z
formal specification language. How does it compare with
John Wordsworth's Software Development with Z
(Addison-Wesley 1992)? Here is Wordsworth introdu-
cing subsets and power sets: "One set is said to be a
subset of another if all the members of the one are also
members of the other The power set of a s e t . . . is
the set of all its subsets." And here is Bryan Ratcliff:
"Since a set is itself a (structured) value, it must have a
t y p e and hence belong t o a s e t i t s e l f [I] f w e d e c l a r e
. . . setOf Int to be a 'set-of-integers variable' . . .
setOf Int can be any set whose elements are integers
. . . To declare setOf Int, we would use the powerset
operator [thus] . . . setOf Int :^^f. For this to make
sense, the expression SP2? must denote a set whose
elements are sets themselves . . . S?2£ must therefore
denote the set of all possible sets which can be constructed
from the elements of 2£—that is, all different possible
subsets of 3T."

Z is a very large and complex notation for set theory,
along with a schema language that facilitates its appli-
cation to imperative programs. Any introduction—
'practical' or not—has to convey a huge amount of

theory. Alas, Ratcliff is neither logically nor linguistically
up to the task. He remarks: "We often speak of a set
'containing' a member But you should understand
that, strictly, a set is its consistituent members and is not
some kind of 'container' with a certain contents (sic)."
But if that were so, the empty set would be nothing; and
Ratcliff would be wrong to assert that a set and its power
set could have no common member: if x is a member of s
then {x} is a member of the power set of s, but if a set is
its members, {JC} is x, which is therefore also a member
of the power set of s. Nor is this an isolated mistake:
he uses "substitute" to mean "replace"; he uses "axiom"
to mean "atomic well-formed formula"; he says that a
mathematical variable "denotes a unique element",
which may be "non-specific"—which of the integers is
it that is non-specific? He has heard about some problem
of confusing logic with metalogic, so objects to the
perfectly proper use of truth functions like "A" (and) in
metalogical propositions; but he says that tautologies
are "propositional laws (of the predicate logic)", and
identifies the formula, "PV-P", with the Law of
Excluded Middle.

Unfortunately, the whole subject of formal specifica-
tions is riddled with confusion; worse confounded by
Ratcliff. Firstly, the use of mathematics (rather than
merely logic) does not bring rigour; mathematicians are
notoriously non-rigorous; their notion of 'set' was
shown incoherent by Russell and (they hope but cannot
tell) can be saved from contradiction only by some ad hoc
adjustment of the theory, which, in the case of Z,
unfortunately prohibits sets having members of different
types. Secondly, in formal systems, as in life, a good
maxim is: take what you like and pay for it. If we take all
the powers of set theory, it is no use complaining that we
have had to sacrifice any mechanical theorem prover (but
has Professor Dijkstra taught us nothing of simplicity
and weakness?). Thirdly, the concepts of notation and
formality are entirely orthogonal: nothing prevents us
writing formal, unambiguous statements in English.
How could it? Perhaps taught by a good introduction
to Z, we write such statements in a formal notation and
translate the notation into English: there are the required
English statements—technical and 'human-understand-
able'. At least, they are understandable if we avoid Z-
locutions like "The set of cats is a member of the power
set of the set of animals", and say instead, "Each cat is an
animal". But perhaps some people's grasp of English
precludes all logic, formal or informal. Ratcliff interprets
"he and she do not love each other" as "he does not love
her and she does not love him"; and from his major case
study scenario, on Van Hire, which makes no mention of
fuel, he concludes that if one transit van runs on diesel so
does any other.

"[D]iscussion of the precise relationship between proof
and truth is outside the scope of this book." Sadly true.

ADRIAN LARNER
de Montfort University

THE COMPUTER JOURNAL, VOL.37, No. 6, 1994

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/37/6/554-a/518932 by guest on 09 April 2024

