
BOOK REVIEWS 557

6. Parallel Algorithms for String Pattern Matching,
Costas Iliopoulos

7. Design of Parallel Matrix Algorithms, D. J. Evans
8. Resilient Parallel Computing on Unreliable Parallel

Machines, Z. M. Kedem, K. V. Palem, A.
Raghunathan, and P. G. Spirakis

9. P-Completeness, Jacobo Toran
10. An Introduction to Distributed Memory Models of

Computation, Alan Gibbons
11. Network Orientation, Gerard Tel
12. Special Purpose Parallel Computing, W. F. McColl
13. General Purpose Parallel Computing, W. F. McColl
14. Complexity Models for All-Purpose Parallel Com-

putation, Andrew Chin
15. Implementing Sparse BLAS Primitives on Concur-

rent/Vector Processors, Harry A. G. Wijshoff

IAN PARBERRY
University of North Texas

JIM WALDO (ed.)
The Evolution of C++. MIT Press. 1993. ISBN 0-262-
73017-X. £18.95. 279 pp. softbound.

The language C++ started becoming widely available in
early 1985 with the first public release of the AT&T
compiler cfront, release E. Work had started many years
previously, in 1979, developing through Cpre and C with
Classes. The name C++ came into being in late 1983
during the preparation of the first edition of The C++
Reference Manual. Since cfront release E, the language
has grown steadily in capability and popularity, so that
today it is used for tasks varying from SLR camera
firmware to controlling aircraft landing gear, and by
many large software producers. The process of stan-
dardizing C++ started in late 1989 with the formation of
the ANSI C++ committee, X3J16, and turned into
an international process in 1991 when the ISO C++
committee was formed. This process is currently
scheduled to finish in late 1996.

During this process C++ has gone through many
changes and this book attempts to provide some insight
into the reasoning behind these changes. It is a collection
of papers from many different people and at different
stages in the evolution of the language. These papers give
a glimpse of what was going through the minds of
influential C++ developers and users, and an indication
of why the language has developed in the directions it
has. Of course, Bjarne Stroustrup's name appears several
times as author or joint author of papers in the book, but
other less well known but nevertheless influential people
are also represented. Some of them are now actively
involved in the standardization process.

The papers, 14 in all, are divided into five groups:
The Early Years, Multiple Inheritance, Exception
Handling, Runtime Typing and Distributed Comput-
ing. The two 'Early Years' papers by Stroustrup together
give a good introduction to what guided him in designing

the language. The paper by Koenig and Stroustrup on
exception handling, and the paper by Lenkov, Mehta
and Unni on runtime type information were both used as
a basis for the design of the corresponding feature as it is
in C++ today. Multiple inheritance is still a subject of
much disagreement, and the papers by Cargil and Waldo
on multiple inheritance provide a good summary of the
arguments for and against this language feature. The
remaining papers cover more general topics like type
hierarchy and class design, and designs of specific
libraries like Interviews and the Arjuna distributed
programming system.

Does the book succeed in its aim? Not entirely. The
author admits in the introduction that it is very difficult,
if not impossible, to collect together a small set of papers
that cover all aspects of the development of C++. While
all of the papers in this particular collection are
interesting in their own right, the connections of some
of them to the development of C++ are not always clear.
In addition, a collection of individual papers necessarily
provides only a disjointed view of history, giving little
feel for the active discussions and development work that
took place in between. If you want a collection of papers
on C++, this is a good place to start. If you want a better
understanding of how C++ has developed over the
years, and is still developing, try The Design and
Evolution of C++, by Stroustrup himself.

S. RUMSBY
University of Warwick

FREDERIC BENHAMOU AND ALAIN COLMERAUER (eds)
Constraint Logic Programming: Selected Research. MIT
Press. 1993. ISBN 0 262 02353 9. £44.95. 486 pp.
hardbound.

EUGENE C. FREUDER AND ALAN K. MACWORTH (eds)
Constraint-Based Reasoning. MIT Press. 1994. ISBN 0
262 56075 5. £31.50. 403 pp. softbound.

Both of these books are about constraints (as their titles
suggest), both are collections of papers, and both are
from the same publisher. Constraint Logic Programming
is a collection of papers from an international workshop,
whereas Constraint-Based Reasoning is a reprint of a
special issue of Artificial Intelligence Journal devoted to
the general problem of constraints in Artificial Intelli-
gence (AI). From these remarks, it should come as no
surprise that the intended audiences of the two
collections are quite different: Constraint Logic Program-
ming comes from a Prolog background and is intended
for the logic programming community, while Constraint-
Based Reasoning is for a more general audience.

Constraint-based problem solving and constraint logic
programming may be concepts unfamiliar to some
readers, so I will give a thumbnail sketch of the basic
issues. Constraints in problem solving in general are
based on the observation that solutions to problems can

THE COMPUTER JOURNAL, VOL.37, No. 6, 1994

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/37/6/557-a/518964 by guest on 09 April 2024



558 BOOK REVIEWS

be more rapidly found by constraining the solution
space. More generally, in AI, constraints are applied to
remove parts of the search space that do not have certain
properties: these properties are known a priori to define
the range of possible solutions. Constraint logic
programming is based on two observations. The first is
that constraints can be expressed as predicates and
relations over appropriate universes. The second is that
constraint satisfaction can be viewed as a species of
search in a similar way to the search processes used in
Prolog and other logic programming languages. In logic
programming languages, solutions are found via search
and this can be extended to constraints (one can, in a
sense, describe resolution, as well as other theorem-
proving and problem-solving methods, as a form of
constraint satisfaction). A significant problem with
constraint logic programming is that the search spaces
are always very large; special properties of search spaces
must be found and exploited in order to render
constraint logics more tractable computationally: this is
the motivation for much research in constraint logic
programming.

I will now consider each book in turn, starting with
Constraint Logic Programming, and then present some
more general thoughts on them.

Constraint Logic Programming is divided into four
sections, each dealing with a significant issue in
constraint logic programming. The first section, consist-
ing of three chapters, deals with the theoretical issues
behind the concept of constraint logics. The second
section deals with numerical constraints, perhaps the
most obvious form of constraint, and, perhaps the most
widely applicable. There are seven chapters in Section 2,
one of which (Chapter 9) presents an application to
robotics. For a numerical constraint system to be of
value, it must be applicable to the reals (e.g. if someone
wanted to build an expert system for intensive-care
patient monitoring, using constraint logic, real valued
constraints would be essential), as well as to the rationals
and integers. The seemingly simpler problems of
constraints denned over the booleans (two element sets,
more generally) are considered in Section 3 (which has
eight chapters). Boolean constraints are certainly not a
curiosity because they represent a constraint interpreta-
tion of propositional logic. In this section, the boolean
algorithms used in the Prolog-Ill programming lan-
guages are considered (Prolog-Ill also contains numeric
constraint satisfaction algorithms). The final section of
the book is concerned with the design of constraint logic
languages and consists of six chapters.

Constraint-Based Reasoning contains 12 chapters,
including an introductory one. The topics of the
chapters are varied, reflecting the different approaches
to and uses of constraints in AI; only one of the chapters
(the one by van Hentenryck, Simonis and Dincbas) is
devoted to constraint logic programming. The first
chapter is an introduction to constraint systems, and
starts by explaining the concept in terms of the process of

finding values of sets of variables and then moves on to
the concept of constraint in terms of first-order logic
(constraints have long been considered in terms of
logic, but constraint logic programming is a relatively
new development). The second chapter is about the
observation that a considerable amount of effort can be
expended during constraint satisfaction on finding total
solutions. This can be wasteful because there may be no
way to satisfy all the constraints in a system or there may
be many (potentially an infinite number of) solutions,
only some of which may be optimal. In some (many?)
cases, partial solutions (in the sense of solutions that
satisfy only some of the constraints in a system) may
be acceptable. The process of finding partial solutions
is computationally less expensive. Interval-based
approaches are the topic of the fourth chapter: as with
the first and fourth chapters, this has clear connections
with constraint logic programming. Constraints and
scheduling are the subject of the fifth chapter, a chapter
dealing with a clear (and important) application of
constraints; applications are also the subject of Chapters
8 (identification of structure), 9 (scheduling again, but
this time with learning), 10 (temporal information) and
12 (planning). Chapter 11 deals with geometry, another
area in which constraints arguably play an important
part.

Having considered these two collections, a number of
points are worth making. The first is that Constraint
Logic Programming appears to present a more unified
front than does Constraint-Based Reasoning. Within the
constraint logic paradigm, there is an acceptance of a
core set of concepts and methods, there is clearly room
for extension, but the basics are in place. This contrasts
strongly with the position in Constraint-Based Reason-
ing. Within AI in general, approaches to constraints will
appear as diverse as they did 10 years ago. This gives
Constraint-Based Reasoning a somewhat rag-bag feeling.
There are clear reasons for this: general tools and
techniques for manipulating are not available in AI, yet
a general framework of logic forms the core for
constraint logic. The objects manipulated in AI are
more diverse than in constraint logic, the control
structure differs more considerably, and the demands
placed upon a constraint satisfaction module are more
varied in their specification than they are for constraint
logics. The overall impression I gained from these two
books is that Constraint Logic Programming is more
focused in its approach, whereas Constraint-Based
Reasoning is more varied.

I would suggest that neither book is for general
consumption. Both constraint logics and constraints in
general are relatively specialized topics, although
constraints have been an important issue in AI since
the early days (as noted in the introductory paper to
Constraint-Based Reasoning, a paper on constraints
appeared in the first issue of Artificial Intelligence
Journal). Both books will be of interest to some AI
and Cognitive Science researchers, but those with

THE COMPUTER JOURNAL, VOL.37, No. 6, 1994

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/37/6/557-a/518964 by guest on 09 April 2024



BOOK REVIEWS 559

subscriptions or access to Artificial Intelligence Journal
will be able to read Constraint-Based Reasoning without
purchasing the book. Constraint Logic Programming is,
I tend to think, somewhat frighteningly formal for
most readers (although logicist AI workers may well find
it of interest). A significant problem with Constraint
Logic Programming is that it does not contain enough
examples of applications: some more application case
studies would be welcome. Indeed, examples of the
applicability and generality of the approach would be of
considerable use in making the techniques more widely
known (there are already some parsers for English and
other languages that have been constructed, and other
applications come immediately to mind) and would
assist their argument that constraint logic programming
is superior to the better-known form of logic pro-
gramming. In the area of application and diversity of
approach, constraint-based processing in AI and

Constraint-Based Reasoning, in particular, clearly
scores over Constraint Logic Programming.

One significant point worth mentioning is the price of
these books. Both books are very highly priced. The cost
of a softbound book (Constraint-Based Reasoning) does
seem very high (especially when one considers that the
material is reprinted). Although Constraint Logic
Programming is hardbound, it contains research papers
that could become out-dated within a relatively short
time. Certainly, the quality in terms of production of the
latter book is very high, but it, like Constraint-Based
Reasoning, would probably be better bought by libraries
than by individuals because of their cost.

Despite some negative remarks, I must state that I
found both of these books interesting.

IAIN CRAIG
University of Warwick

THE COMPUTER JOURNAL, VOL. 37, No. 6, 1994

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/37/6/557-a/518964 by guest on 09 April 2024


