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Standard Boolean and comparison operators are based on the True/False logic and are therefore not
quite suitable for handling events/activities defined over periods of time. In this paper, we generalize the
Boolean and comparison operators by allowing their input and output operands to be sets of time
intervals. Efficient algorithms for the implementation of the extended operators are presented. The
generalized operators can be used to enhance the user interface of time-oriented query languages and
allow application users to express their time-related qualifications more succinctly and elegantly. The
paper is concluded by examples showing the flexibility of the extended operators in expressing time-
related requirements.
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1. INTRODUCTION

To motivate the issues discussed in this paper, we shall
consider a historical relational database in which each
relation is viewed as a collection of related attributes:
some of the attributes are constant while the others are
temporal attributes (i.e. their values are time varying).
Historical/temporal databases (see Ahn, 1986; Clifford
and Tansel, 1985; Gadia and Yeung, 1988; Navathe and
Ahmed, 1989; Snodgrass and Ahn, 1986; Snodgrass,
1987) are designed to capture not only the present state
of the modeled real world, but also its previous states.
The following scheme is an example of a historical
relation that contains information about the employees
working in the different offices of a commercial company.

EMP (name, /* assume unique neames */

Id, /* employee number */
sex,

salary,

manager, /* name of manager */

c_office,
c_home)

/* city where office is located */
/* city of residence */

where attributes ‘name’, ‘Id’ and ‘sex’ are non-temporal,
i.e. constant, attributes while attributes ‘salary’, ‘man-
ager’, ‘c_office’ and ‘c_home’ are temporal, i.e. time-
varying, attributes. For simplicity, we shall assume that
names in relation EMP are unique. Thus both name and
Id can serve as the time-independent key, TIK (see
Navathe and Ahmed, 1989), of relation EMP.

We shall assume that the time element is incorporated
into the database using attribute versioning with double
timestamping (as in Clifford and Tansel, 1985; Gadia
and Yeung, 1988, 1986, Bassiouni, 1988; Bassiouni and
Liewellyn, 1991; Bassiouni et al., 1993). This means that
a double timestamp (i.e. an interval) is attached to the
value of each temporal attribute. Throughout this
paper, a double timestamping scheme similar to that of
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Tansel’s model described in Clifford and Tansel (lﬁéﬂ
will be used for each time varying attribute. This megns
that time varying attributes within tuples of a relation
will be represented as sets of value/time-interval tnpfm
Each triple will have the form (v, (¢, £;)) and will be u§ed
to indicate that the value v has been valid from time gto
time t, (inclusive). The interval (f;,t,) is said tobe
syntactically valid if ¢ <. As in many previgus
temporal models, we shall assume that time is re@e-
sented by (encoded as) non-negative integers and thatdhe
symbol ‘NOW’ (or interchangeably the symbol ‘Q’Eis
used to represent the current integer value of time (ghis
assumption does not impose any real restriction sincedhe
mapping of calendar times into integer values is poss@e
and is usually used for the actual coding of calendar
times). Table 1 gives a simple example of relation EEJP
based on attribute versioning with double Umestamp@g

] uo

2. GENERALIZED BOOLEAN OPERATORS :2

The notations ANDS?, OR® and NOT® will be usedto
denote the time-sensitive Boolean operators. To under-
stand the difference between these operators and their
standard counterparts, consider the two Boolean
expressions, E1 and E2, given below:

Expression El:
c_office = ‘Tampa’ AND c_home = ‘Tampa’

Expression E2:
c_office = ‘Tampa’ AND' c_home = ‘Tampa’

The standard expression El requires that the (selectﬁd)
employee has worked in the office located in the city of
Tampa and has lived in a residence located in Tamp?
Because expression E1 uses the standard AND operatoh
these two events (conditions) are not required to hav
occurred simultaneously. This means that expression E
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TABLE 1. Example of relation EMP using attribute versioning (the symbol 2 denotes NOW)

Name D sex salary manager c_office c_home

Mark 5238 M {(25000, (1,3)), {(Fred,(1,3)), {(Bithlo,(1,3)), {(Bithlo,(1, 2))}
(29000,(4, 5)), (Jack, (4,5)), (Orlando,{4,Q))}
(34000,(6, 2))} (John, (6, 1))}

Fred 3671 M {(28000,(1,3)), {(Dan,(1,4)), {(Bithlo, (1,4)), {(Bithlo,(1, 5)),
(29000,(4, (Bob,(5, 1))} (Tampa,(5,2))} (Tampa, (6, 0))}

can be satisfied even if the employee has never lived and
worked in Tampa at the same time. Expression E2, on
the other hand, uses AND® and therefore requires that the
employee has worked in Tampa while (i.e. at the same time
as) living in a home located in Tampa. The time-sensitive
operator AND?® takes into consideration the time intervals
associated with its two operands and checks to see if these
intervals are overlapping. Below, we discuss the time-
sensitive Boolean operators in more details.

L1. Time-sensitive Boolean operators

The time-sensitive Boolean operators accept input
operands which are sets of time intervals and produce
a set of time intervals (possibly empty) as their output
result. As shall be seen later, the extended comparison
operators will also return sets of time intervals as their
output (rather than a binary value of TRUE or FALSE).
For example, when expression E2 is evaluated for
employee Fred, it becomes equivalent to the expression

{(5,NOW)} AND*® {(6,NOW)}
which returns the set {(6, NOW)}. As another example,
assume that the evaluation of the left-hand operand of

expression E2 (i.e. c_office=‘Tampa’) for some
employee returned the set:

and that the evaluation of the right-hand operand
(c.home="‘Tampa’) produced the set

{(7,8),(10,15))
Then expression E2 becomes equivalent to
{(3,4), (6,8), (12,NOW)} AND* {(7,8),(10,15)}

which returns the set {(7, 8), (12, 15)} as its output result.
The two intervals (7,8) and (12, 15) in this case are the
only time intervals during which that employee has lived
and worked in Tampa at the same time.

Definition If SI and S2 are two sets of time intervals,
then the expression S1 AND® S2 returns the null set & if
S and S2 do not have any overlapping intervals.
Otherwise AND?® returns the time sub-intervals that are
tontained in both S1 and S2 (i.e. it returns their
Overlapping).

Below, we apply similar extensions to the operators NOT
and OR.

Definition. The time-sensitive unary operator NOT®
returns the set of intervals which is the complement of its
operand with respect to the universal interval (0, NOW).
Notice therefore that if S is a set of time intervals, then
the expression NOT® (S) returns & only if the union of
the intervals of S is the universal interval.

For example, the expression
NOT*{(2,2),(6,8), (7,9}
returns the set
{(0,1),(3,5),(10,NOW)}
while the expression
NOT*{(0, 5), (2, NOW)}
returns the null set ®.

The operator NOT® can be very useful in expressing
certain temporal conditions. The expression NOT®
(c_home=‘Orlando’) produces the set of time intervals
during which the employee has not lived in Orlando.

Definition. If S1 and S2 are two sets of time intervals,
then the expression S1 OR* S2 returns ® only if both S1
and S2 are null sets. Otherwise, it returns the union of the
intervals of S1 and S2.

For example, the expression
manager=‘Fred’ OR" manager=‘John’

returns the set of time intervals during which the
employee has been under the supervision of either Fred
or John. As another example, the expression

{(2,5),(9,10)} OR* {(4,7), (14, NOW)}
returns the set

{(2,7), (9, 10), (14, NOW)}.

2.2. Properties of the extended Boolean operators

It is easy to see that the extended logic satisfies the
properties of the normal Boolean logic. The following
lemma establishes this result.

Lemma 1. Let R, S, and T be three sets of time
intervals defined over integer time points in the range 0 to 2.
The extended Boolean logic satisfies the following axioms.
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1. DeMorgan'’s laws

NOT® (R AND* S)
is equivalent

(NOT* R) OR* (NOT* S)
Similarly,

NOT* (R OR*S)
is equivalent to

(NOT* R) AND* (NOT* S)

2. Distributivity of AND over OR
R AND* (S OR* T)
is equivalent to
(R AND*S) OR* (RAND'T)

3. Distributitivy of OR over AND
R OR* (SAND'T)

is equivalent to
(R OR'S) AND* (ROR'T)

4. Commutativity of AND
R AND® S

is equivalent to
S AND' R

5. Commutativity of OR
R OR’ S

is equivalent to
S OR’ R

6. Idempotence of AND
R

is equivalent to
R AND* R

7. Indempotence of OR
R

is equivalent to
R OR* R

8. Associativity of AND

(R AND* S) AND* T
is equivalent to

R AND' (S AND* T)

9. Associativity of OR
(R OR* S) OR* T
is equivalent to
R OR* S OR'T)

10. Double negbtion
R
is equivalent to

NOT* (NOT* R)

11. Identity for OR (null set)
R OR' &

is equivalent to
R

12. Identity for AND (universal set)
R AND* {(0,Q)}

is equivalent to
R

13. Complement properties
R AND* (NOT* R)
is equivalent to
L]
R OR' (NOT* R)
is equivalent to

{(0,2)}

14. Universal and null sets
R OR* {{0,2)}

is equivalent to
{(0,2)}

R AND® &

is equivalent to
i

moq

Proof to the above lemma is quite straightforward?_:)and
follows directly from the definition of the extended
operators. It is worth mentioning in this context thagou
generalization of the Boolean operators is quite diffefent,
in nature and purpose, from that used in multiple-vafued
switching logic. In the latter case, the AND and OR
operators are defined to be MAX and MIN functﬁ)m,
respectively, operating on integer-valued inputs.

2°dno-olwap

3. IMPLEMENTATION ISSUES

o

The extended Boolean operators defined earlier haw
been found to be amenable to efficient softwareSand
hardware implementations. In what follows, we di%uss
our approaches for the implementation of these extegded
operators. Our discussion will deal with aspects that ar
general to the different potential applications and-wil
concentrate on the extended operators themselves; In
some applications, additional factors may need {8 be
considered to further improve the overall performarﬁeof
the system. For example, in the case of tempdral
historical databases, the algorithms implementing the
extended operators will need to interact with lower%evd
indexing schemes used to reduce the time needed to_scas
the data files and to filter the input relations in order o
collect candidate tuples that have the potential to satisfy
the Boolean qualification. Such indexing scheémes
though important, represent a separate problem t@liﬁ
outside the scope of this paper. =

We shall illustrate our approaches by discussing t*
implementation of the expression S AND® T. Only minof
extensions will be needed to apply this approach to the
other generalized operators. Our discussion will start by
considering the case when each of the two operands,$
and T, consists of mutually disjoint intervals that %
ordered in increasing time value. Two equivakn!
algorithms to handle this case are presented: a conve™
tional method and a method based on a new bit-Wi¥
approach. The bit-wise method is more suitable fot
hardware-assisted implementations; our preliming/
investigation indicates that a temporal VLSI chip ff"
implementing the extended operators based on the bit
wise approach could yield very high speeds.
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Consider the expression
S AND* T
where S and T are two sets of time intervals. Let

= {{ss(1), sf(1)), (s(2),5f(2)), .. ., (ss(n), sf(n))}
T = {(ts(1),tf(1)), (ts(2), tf(2)), ..., (ts(m), tf(m))}

The notation ss(j) denotes the value of the start point
(eft endpoint) of the jth interval of S while sf(j) denotes
the finish point (right endpoint) of the jth interval of S.
similarly, ts(k) and tf(k) are used to denote the start

point and finish point, respectively, of the kth interval of

T. If S and T consist of sorted, mutually disjoint,
syntactically valid intervals, then the following condi-
tions hold true

ss(j) < sf(j) where 1<j<n
sf(j) <ss(j+1) where 1<j<n
ts(k) < tf(k) where 1<k<m
tf(k) <ts(k+1) where 1<k<m

We first present a simple, but efficient, algorithm to
evaluate the expression S AND® T in the above case; we
call this algorithm S_AND, S for simple.

llgorithm S_AND (S,n,T,m);
/* S and T consist of sorted mutually disjoint
intervals */
j = k :=1 /% initial value of pointers is ome
*/
while (j € n and k € m) do
begin
/* skip intervals in T that precede the
jth interval of S »/
while s8(j) > tf(k) do k:=k+1 endwhile;
/* does the jth interval of S overlap with
the kth interval of T? */
if s£(j) < ts(k) then j:=j+1 /* if no,
get next interval in S */
else
) begin /* there is overlapping */
s:= max {88(j), ts(k)};
f:= min {s£(j), tf(k)};
output the interval <s,f>
/* pow adjust pointers */
if 8f(3j) > tf(k) then k:=k+l else
j:=j+1 endif;
endif;
endwhile;
end S_AND
The time complexity of algorithm S_AND is O(n + m).
€ next consider an alternative bit-wise method which
¥ call algorithm B_AND, B for bit-wise operations.
Algorithm B_AND is equivalent to algorithm S_AND
2d also has a time complexity of O(n + m).
Algorithm B_AND(S,n,T,m):
Input: two sets

S = {(ss(1), (1)), (s5(2),5f(2), ..., (ss(n), sf(n)) }
T={(ts(1), tf(1)), {ts(2), tf(2)), ..., {ts(m), tf{m))}

where the time intervals in both S and T are sorted and
mutually disjoint.

1. Sort all the time points ss(1), sf(1),..., sf(n), ts(1),
tf(1), .. ., tf(m) into one master sequence, deleting any
repeated elements. This sort is a merge-like sort and
has a time complexity O{n+m). Let us denote the
resulting sequence by Y.

2. For the set S, repeat the following action forj = 1to
n— 1. If the finish point sf{j) and the start point
ss(j+1) appear adjacent to each other in Y, then
separate them by inserting into Y the special symbol #
between sf(j) and ss(j+ 1).

3. For the set T, repeat the following step fork = 1 to
m — 1. If the points tf{k) and ts(k + 1) appear adjacent
to each other in Y, then separate them by adding to Y
the special symbol # between tf(k) and ts(k +1).

4. Assume that Y now consists of r elements (including
the extra special symbols) as follows

Y= Y(l),Y(2)) o )Y(r)

5. The set S’ is obtained from S by transforming each
interval (ss(j),sf(j)) into a corresponding interval
{a, b) where a and b are integers such that ss(j)=y(a)
and sf(j)=y(b). Similarly, the set T’ is obtained from
T by transforming each interval (ts(k), tf(k)) into a
corresponding interval (c,d) where ¢ and d are
integers such that ts(k) =y(c) and tf(k)=y(d).

6. The two sets S’ and T’ are next transformed into the
two binary strings S” and T”, of length r bits each. The
jth bit in S” has the value 1 only if there is an interval
(a,b) in S’ such thata < j < b. Similarly, the kth bitin
T” has the value 1 only if there is an interval (c,d) in
T such thatc <k < d.

7. A logical bitwise AND operation is then performed
on the two binary strings S” and T”. Let us denote the
resulting r-bit binary vector by V.

8. The vector V resulting from step 7 is next transformed
into a set of intervals, say R, using the inverse of the
logic used in step 6.

9. Finally, using the integer values in the set R as indices
to the sequence Y (i.e. applying the inverse of the
transformation used in step S), we can map R into a
set of time intervals. Print these intervals, they are the
correct result of S AND® T

Example 1. Consider the two sets
S = {(3,8),(15,20), (28, 41), (44,45)}
T = {(2,3),(7,10), (18,22), (40,44)}
Step 1 in the above method produces the master sequence
Y ={2,3,7,8,10, 15,18, 20, 22, 28, 40,41, 44,45}

Step 2 will insert # between 41 and 44 since these two
points appear adjacent to each other in Y and they are
the finish point and start point, respectively, of two
consecutive intervals in S. Similarly, step 3 will insert #
between 3 and 7 since these two points are adjacentin Y
and they are the finish point and start point, respectively,
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of two consecutive intervals in T. Thus according to step
4, the final value of Y and the corresponding indices of its
elements are given by

Y =2,3,#,7,8,10,15,18,20,22,28,40,41, #,44,45
123456 7 8 910111213141516
Step 5 produces the new sets
S = {(2,5),(7,9),(11,13),(15,16)}
T' = {{1,2),(4,6),(8,10),(12,15)}

Notice that the values in the above sets represent indices
and are no longer time values. Step 6 produces the two
16-bit binary strings

S" =0111101110111011°
T” =¢1101110111011110°

The interval (2,5) in §', for example, generates four 1's,
occupying positions 2 through 5 in S”. The AND’
temporal operator can now be implemented by simply
performing the logical bit-wise AND operation on S”
and T”. In our example, this operation produces the
following 16-bit binary vector

V =10101100110011010

Translating the above string back into intervals (i.e.
reversing the logic of the earlier steps), we get

R = {(2,2),(4,5), (8,9),(12,13),(15, 15)}

Using the integer values in the above set as indices to the
sequence Y, we finally map the set R into the following
set

Answer = {(3,3),(7,8), (18,20), (40,41), (44, 44)}
which is the correct result of S AND® T.

LeMMA 2.

(a) Method B_AND correctly computes the value of S
AND' T when the operands S and T consist of sorted
mutually disjoint time intervals.

(b) The time complexity of algorithm B_AND is
O(n+m).

Proof of the above lemma follows easily from the
definition of the AND® operator and the sequence of
transformations performed in method B_AND. Notice
that when the two operands are transformed into binary
strings (step 6), each special symbol # in the sequence Y
will insert a 0 between two adjacent sequences of 1’s
corresponding to two non-overlapping time intervals in
one of the two operands. This will ensure that these two
intervals will not be mistakenly treated as one contin-
uous interval when the logical bit-wise operation is
performed (e.g. without the special symbol #, the two
intervals (2,3) and (7, 10) in the operand T would have
been treated in Step 8 as the larger interval (2, 10)). The
concept of using the special symbol # is therefore
necessary for the correctness of the above method.

Although algorithm B_AND has more preparation stepy
than S_AND, a careful examination of algorithy
B_AND would reveal that these preparation step
don’t introduce any significant overhead in the liney
time complexity of the algorithm. For example, steps )
through 6 preceding the bit-wise AND operation can b
simply implemented during the same linear scan needeg
to compute Y from the intervals of both S and T (simily
to the scan used in MERGE_SORT to merge two sorte]
lists into a third sorted list).

Both algorithm S_AND and B_AND have the sam
linear time complexity and are quite efficient. Algorithy
S_AND would be the logical choice for softwan
implementations because it is easier to code and becam
the bit-wise operation of algorithm B_AND is @o{
expected to give its full benefit in software implemefta-
tions. The approach represented by method B_ANDi(m
the other hand, is quite suitable for efficient hardwir
(VLSI) implementations. In addition to the fast bit-gise
AND operation, all other steps of method B ANDa-m
straightforward and amenable to efficient VLSI dwgm
Appendix I discusses some high-level details of the VS|
design of algorithm B_AND. Detailed description gf t
complete VLSI design of method B_AND is, however,
beyond the scope of this paper.

4. THE PARTITION PROBLEM

[uJOO/uJoo'dn

We next consider the problem when the operands S%nd
T are not composed of mutually disjoint intervals. FEfm
example, consider the evaluation of A AND® T wher
the two operands are given by

S ={{(2,5),(3,4),(7,8),(12,13), (11, NOW)}

T= {(518}1 (1)2)) (12s 12): (0’ 3)}

G.¥69¥/92G/L/L€

It is easy to sort each operand and reduce it int@an
equivalent set of intervals that are mutually dxsjodﬁ N
follows

S={(2,8), (II?NOW)}
T = {(0,3), (5,8), (12, 12)}

0z IMdy Q| uo1se

We can then use algorithm S_AND (or the altern&tiv
algorithm B_AND) on the resulting (reduced) operand
to get

S AND' T = {(2,3),(5,8), (12,12)}

In many situations, however, it is desirable to compu®
the temporal Boolean expression using the original (no®
reduced) intervals of S and T (e.g. for purposes o
indexing when the intervals are derived from differest
comparison operators, or for the computation of
statistical queries that deal with the count of such
intervals, etc.). We would like therefore to be able 10
compute the result of S AND* T without reducing the
individual intervals of each operand. Below, we prese®
one approach to solve this problem.
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TABLE 2. Evaluation of AND* using partitions

First operand Second operand Result of AND’
(1) T(1) {(2,2),(5,5),(7,8),(12,12)}
s() Q) {(2,3)}
5(2) T(1) {(12,12)}
S(2) TQ2) {€3,3)}
S(3) T(1) {51}
(3 T(2) {(3,3)}

Example 2. Consider the two sets
S={(2,5),(3,4),(7,8),(3,7),(12,13), (11, NOW) }
T={(5,8),(1,2),(12,12),(0,3)}

We can partition each operand into subsets containing
mutually disjoint intervals. For example, the set S can be
partitioned into the following three sets

S(1) = {(2,5),(7,8),(12,13)}
S(2) = {(3,4),(11,NOW)}

$(3) = {(3,7)}

Similarly, the set T is partitioned into the following two
sets

T(1) = {(1,2),(5,8),(12,12)}
T(2) = {(0,3)}

As shown in Table 2, we can now apply algorithm
S_AND or B_AND to find the value of S(j) AND® T(k),
where 1 € j<3and 1<k 2.

The union of the sets given in the third column of
Table 2 produces the final result of S AND*® T. Notice
that when this union is reduced, we get the same result
that was obtained earlier. Notice also that the partitions
of S and T are not unique. For example, one (extreme)
way is to partition S and T into sets each of which
contains a single interval. The opposite extreme case
would be to find the partition that gives the minimum
number of subsets. Both S and T in the previous example
were decomposed into the minimum number of subsets.
Notice that this latter strategy does not produce a unique
decomposition since there may exist several distinct
Partitions having the minimum number of subsets. All
different partitions of S and T, however, will still give the

»Same result of S AND® T. The approach used in the
above example is outlined in algorithm P_AND, P for
Partition, which works by decomposing the operands
Into sets containing sorted mutually disjoint time
Intervals,

Mgorithm P_AND (S,n,T,m);

Sort the n intervals of S in nondecreasing

order of start points

Call PARTITION (S,n);

/* S has now been partitioned into the sets
S(1), s(2), s(3), ..., S(p) where the
number of intervals in the set S(j) is
given by n(j),

thus we have n = n(1) + n(2) +... +
n(p) =*/

Sort the m intervals of T in nondecreasing

order of start points

Call PARTITION (T,m);

/* T has now been partitioned into the sets
T(1), T(2), T(3), ..., T(q) where the
number of intervals in the set T(k)
is given by m(k), thus we have m = m(1)
+m(2) + ... +m(q) =/

/* The following is the main portion of code »/

for j= 1 to p do /* nested for loop */
for k = 1 to q do

Call S_AND ( S(j),n(j),T(k),
m(k) ); /% or call B_AND #*/
endfor;

endfor; /* end of main portion of code */

end P_AND;

It is obvious that the time complexity of algorithm
P_AND depends on the speed of the PARTITION
subroutine. A careful examination of the main portion of
code (nested for loop) in algorithm P_AND shows that
the time complexity of this portion of code is O(n*q +
m*p). Thus the time complexity of algorithm P_AND
not only depends on the time complexity of subroutine
PARTITION, but also depends on the value of the
partition produced by this subroutine. But since the time
complexity of the ‘nested for loop’ is O(n*q + m*p), the
algorithm is optimized if we use a PARTITION
subroutine which always decomposes its argument into
the minimum number of sets (i.e. which always gives the
minimum values of p and q). An algorithm to partition S
and T into the minimum number of sets containing
mutually disjoint time intervals (which we call the
optimal PARTITION algorithm) can be easily devel-
oped and would have a worst-case time complexity of
O(n?) for S and O(mz) for T. However, the actual gain
achieved in this case may be offset by the extra
computational overhead of the optimal PARTITION
subroutine itself. On the other hand, if we use a fast
partitioning strategy that simply decomposes the argu-
ment into singleton sets (i.e. p = n and q = m), the
PARTITION subroutine will have a total time complex-
ity of O(n + m), but the time complexity of the ‘nested for
loop’ will be at its worst value of O(n*m). A fast heuristic
algorithm may therefore be used as a good compromise
for this problem (recall that all different partitions will
still give the same correct solution). Below, we discuss the
optimal algorithm for partitioning as well as a greedy
heuristic that can be used as a good alternative.

Algorithm OPT_PARTITION decomposes its argu-
ment S into buckets (subsets) while linearly scanning the
intervals of S in nondecreasing order of left endpoints.
The intervals in any bucket are divided into two lists:
active and inactive. The active list of a bucket contains
those intervals which are still current (with respect to
the linear scan) and could therefore overlap with
incoming intervals. The code of OPT_PARTITION is
given below. Details of the data structures (linked lists)
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minimum number
of subsets is 4

time

FIGURE 1.

and the associated code to manage the active lists are not
given.

Algorithm OPT_PARTITION (S,n);
/* S is the set {<ss(1),sf(1)>, <ass(2),s8f(2)>,...,
<gs(n),sf(n)>} */
/* where 88(j) <sa(j+1) for 1 < j < n */
/% At the end of this algorithm, the set S will be
decomposed into the subsets S(1), S(2),
S(p)
vhere p is minimum #/
p = 0; /» initial value of p */
/* process intervals in nondecreasing order
of left endpoints */
for j = 1 ton do

begin
k :=1; Done := False ;
while (k < p and Done=False) do;
begin
remove from the active list of
bucket S(k) any
interval <s,f> such that
f<8s(j)
if (active 1list of S(k) is empty)
then
begin
add the interval <ass(j),
8f£(j)> to S(k);
active list of S(k) :=
{<88(3),8£(j)>}
Done := True
end
else k := k + 1 endif;
endwhile;
if Done = False then
begin
p:=p+1; /* create a new
bucket */
add the interval <ss(j),sf(j)> to
bucket S(p);
active list of S(p) := {<ss(j),
sf(j)>}
endif;
endfor ;

end OPT_PARTITION;

LemMa 3. Algorithm OPT_PARTITION decomposes

its argument into the minimum nwumber of subsets
containing mutually disjoint intervals.

Proof of this lemma follows directly from the
observation that the minimum number of such subsS{;
is equal to the maximum number of intervals that a!c
mutually overlapping (as shown in Figure 1). It is easﬁo
see that the solution obtained by OPT PARTITI@%

does not exceed this number. 3

LeMMA 4. The time complexity of algon@n
OPT_PARTITION is o(n?). If this algorithm is used,

the nme complexity of algorithm P_AND becomes Oﬁrz
+m )

olwsp

Proof of the above lemma follows easily from the cedc
of algorithms OPT_PARTITION and P_AND.
Since algorithm P_AND gives the same cortit
solution regardless of the way S and T are partitiongd,
the following greedy heuristic can be used as a geid
alternative to OPT_PARTITION.

Algorithm GREEDY_PARTITION (S,n);
/* S is the set { <ss(1),sf(1)>, <ss(2), af(2)>.NJ
<ss(n),sf(n)> R?/

2°dn

LELE[BIO1IE]]|

/* where 88(j) < 88(j+1) for 1 <j < n %/ Q
/* At the end of this algorithm, the set S will i
decomposed into the subsets S(1), S(2),...3
s(p) &
p=0; /* initial value of p */ °
while (S is not empty) do §
begin §
p:i=p+1; 2
S(p) := ®; /* initialize the new subsgl
S/
j =1 ; /* pick the first interval of 3\3/
Done := False ; N
vhile (Done=False) do;
begin
s := 88(j) ; £ := 8f(j) ;
add the interval <s,f> to the subset
s(p)i
remove the interval <s,f> from S ;
search the set S to find the
smallest value 1
such that f < ss(i)
if (search successful) then j := 1
else Done := True endif;
endwhile
endwhile;

end PARTITION;
Notice that since S is sorted on the left endpoint, the

THE COMPUTER JOURNAL,

Vor. 37, No.7, 1994




TIME-ORIENTATED QUERY LANGUAGES 583

ss of searching it (in the above algorithm) has a
ime complexity of O(log n). This leads directly to the
following lemma.

LEMMA 5. The time complexity of algorithm
GREEDY_PARTITION is O(n*log n). If this greedy
dgorithm is used, the time complexity of algorithm
p AND becomes O(n*log(n) + m*log(m) + n*q +

m*p).

5, TIME-SENSITIVE COMPARISON
OPERATORS

Applying the same notation used for the time-sensitive
Boolean operators, the definition of comparison opera-
tors can be extended in order to allow for temporal
comparisons. For example, the time-sensitive ‘equal to’
operator denoted by ‘=" returns the set of intervals
during which the two operands have had equal value.
Thus, the expression

Fred.salary =* Mark.salary

returns the set of time intervals during which Fred has
had the same salary as that of Mark. According to Table
I, the above expression returns the set {(4, 5)}. Similarly,
the expression

Fred.c_office =* Fred.c_home
returns the set {(1,4), (6, NOW)} and the expression
Fred.manager =* Mark.manager

returns . The following list gives the time-sensitive
version of some of the popular comparison operators

s ] s s  § ]
=’<a>y7/:3< y 2

The input to each of the above operators consists of
two sets of value/time interval triples. The output is a set
(possibly empty) of time intervals. Notice that if there
exists no point of time at which the comparison
condition is met, the empty set & is returned.
Otherwise, the comparison operator will return the set
of time intervals during which the comparison condition
is satisfied.

The rule for handling operands that are constants or
lontemporal attributes is quite simple: such operands
are automatically given the universal interval (0, NOW).
For example, the expression

Fred.Salary >* 28 000

has a left operand which is a temporal attribute (i.e. a set
of salary/time interval triples) and a right operand which
18 a constant. The latter operand is then treated as if it
were the set {(28000,(0,NOW))}. The extended
Cmparison is then performed to produce the set of

intervals during which Fred has a salary larger than
$28 000,

§. APPLICATION TO QUERY LANGUAGES

In this section, we illustrate by examples the application

of the extended operators to programming and database
systems. It must be stressed that the following discussion
is not intended to give the detailed syntactic and semantic
description of a new programming/query language, nor
should the examples and the syntax used in this section
be interpreted to imply our preference to any particular
existing language. Our emphasis is that the generalized
operators can be used to enrich these languages and to
provide an easier and more natural temporal interface.
Using the generalized operators, users can express their
queries more succinctly and elegantly.

Example 3. For each employee, the qualification
(salary >* 50000)AND*(c_home =" “Tampa”)

returns the set of intervals (if any) during which that
employee has had a salary of $50000 or greater while
residing in Tampa. For example, using a SQL-based
syntax, the following query gives the names of employees
who satisfy the above qualification (i.e. have made a
salary of $50 000 or greater while residing in Tampa).

SELECT name
FROM EMP
WHERE (salary >" 50000) AND" (c_home =" Tampa)

For each employee in relation EMP, the selection
qualification in the WHERE clause is used to determine
whether that employee is a candidate for output (the
qualification must evaluate to a non-empty set of
intervals). Notice that any of the operands of AND*®
can be replaced by a set of intervals (constant). For
example the expression

(salary >* 50000)AND*{(2,7)}

selects employees who made a salary of -$50000 or
greater at some time during the period from 2 to 7.

Example 4. 1If the generalized logic is incorporated
into the Tansel’s historical relational algebra language
proposed in Clifford and Tansel (1985), the following
expression can then be used to extract the names of the
employees who, while living in ‘Tampa’ have earned
more than $40 000.

Mame (0 (EMP))

where II denotes projection, o denotes selection and F is
the expression

c_home =*Tampa’ AND" salary =* 40000

Notice that in Tansel’s original algebra, the expression F
must be a standard Boolean condition. This forces the
user to apply a sequence of UNPACK and
TRIPLE_DECOMPOSITION operations (see Clifford
and Tansel, 1985) to transform the historical relation
EMP to another relation having simple attributes (i.e.
each triple is split into three attributes with only a
single value per attribute). Time slicing and normal
selection are then applied followed by Pack
and TRIPLE_FORMATION. Thus the solution for
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the above query in Tansel’s original algebra would be
as follows.

same (0Q(T-DECc_pomo(T-DECiaiary (SLICE,_pome salary
(UNPACK_home(UNPACK sa1ary (EMP)))))))

where Q is the standard Boolean expression:
c_home =‘Tampa’ AND salary = 40000

A brief explanation of the above expression is as follows.
First relation EMP is first unpacked on attributes
‘c_home’ and ‘salary’. The UNPACK operator trans-
forms each tuple (comprising a set of triples in each of the
two attributes) into a collection of tuples each having a
single triple in attributes c-home and salary. The slice
operator checks the interval portion of pairs of triples
from attributes ¢c_home and salary, and keeps only those
tuples whose intervals overlap. Next a triple decomposi-
tion, T_DEC, is performed on attributes ¢_home and
salary. The T_DEC operator splits attribute c_home into
three attributes denoted c_home, ¢_home;, c_homey, as
follows:

1. The new attribute ¢_home contains the value portion
of the original c_home attribute.

2. Attribute c_home; contains the lower (start) time of
the interval. and

3. Attribute c_homey contains the upper (finish) time of
the interval.

A similar transformation occurs to attribute salary. The
selection operation is now applied using a standard
Boolean qualification. Clearly, the version of the query
using the generalized logic is more elegant, natural and
more efficient.

7. INTEGRATION WITH STANDARD
OPERATORS

The standard (True/False) Boolean operators and the
Extended operators discussed in this paper can be easily
integrated into a common interface. Qutput of the time-
sensitive operators can be used as input to the standard
operators by mapping the null set ® to the value False
and mapping any non-empty set of intervals to the value
True. Conversely, output of the standard operators can
be used as input to the time-sensitive operators by simply
mapping each False value to the null set ® and each True
value to the universal set {(0, NOW)}. Time-sensitive
comparison operators and their standard counterparts
can be similarly integrated into this common interface.
As mentioned earlier, constant values and non-temporal
attributes are automatically mapped to the universal
interval. Thus the standard comparison ‘3 <4’ is
equivalent to the extended comparison {(3,(0
NOW))} <* {(4,(0,NOW))} which returns the univer-
sal interval, while the comparison ‘13 > 4’ is equivalent
to the extended comparison {(13, (0, NOW))} >* {(4, (0,
NOW))} which returns the empty set. Appendix II gives
the BNF specifications of the integrated syntax of
temporal expressions.

Example 5. This example uses two relations: relatig,
EMP and the new relation, PROJ, defined below.

PROJ (title,
manager)

/* name of project */
/* name of manager */

where attribute ‘title’ is constant while attribuyg
‘manager’ is temporal. The following conditions ap
assumed: a project has only one manager at a time, g
employees supervised by the manager of a project worg
in that project, and not every manager has to be assigneq
to a project.

The following SQL query gives the titles of the
common projects in which employees ‘Fred’ ang
‘Mark’ have worked together.

SELECT title
FROM EMP E1 E2, PROJ P
WHERE (El.name = ‘Fred’) AND

(E2.name = ‘Mark’) AND
((El.manager =* E2.manager) AND*
(El.manager =" P.manager))

oe//:sdny woul peapeojumod

To avoid ambiguity in referencing attribute names2the
above query uses E1 and E2 as aliases for relation ﬂﬁyAP
and P as an alias for relation PROJ. Notice that Soth
the extended and standard operators are used mOthe
qualification of the above query. If the supers@'mt
of the generalized operators are omitted, the albpw
code becomes a valid SQL code that computm%thc
answer of the query when it is applied t$ 2
snapshot database (i.e. one which stores only the cumm
snapshot of the real world). Similar statement holds«:for
the other examples and for queries written in relatlrmal
algebra.

8. CONTRIBUTION AND RELATED WORK

Aq G/¥69v/9.S

The literature on temporal databases is rich and rapjdly
growing. There have been numerous research acti‘%u'a
to develop and implement temporal/historical qdery
languages. All previous temporal models introduced He¥
operators and/or extended the syntax and semanti¢ of
existing query language constructs in order to handl%thc
new time dimension. This is necessary since many
temporal queries cannot be expressed in traditional
query languages. Even with the new operators/exten-
sions, some of the proposed models do not provide ful
retrieval power with respect to time. For example, the
historical relational algebra for the HRDM mode
described in Clifford and Croker (1993) is not com-
plete: although the algebra is appealing, Clifford and
Croker admit that it is not as powerful as they would
like.

The historical algebra of HRDM uses two versions of
the select operators: SELECT _IF to choose tuples ovef
their entire lifespan, and SELECT_WHEN to extract ?
relevant subset of the lifespan of selected tuples. T0
specify for which times the selection criterion must %
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atisfied, existential and universal quantification is
introduced. The syntax of the SELECT_IF statement,
for example is,

o_ IF(AOa,Q,L)

where Afa is a simple Boolean predicate over the
attributes of the tuple and constants, Q is either 3 or V,
and L is the lifespan. For example, the expression

U—IF(C_ home=Tampa,3,[2,7)) (EMP)

shows which employee lived in Tampas at some time
during the period from 2 to 7. This expression can be
casily expressed using our extended Boolean operators
(see earlier comment on Example 3).

The language TempSQL proposed in Gadia and Nair
(1993) is an extension of SQL. TempSQL is three-sorted
consisting of relational expressions, temporal expres-
sions and Boolean expressions (returning relations,
temporal elements, and True/False, respectively). Tem-
poral and Boolean expressions are used in the SELECT
statement: the Boolean expression (WHERE clause) is
used as the main selection criterion to select/reject tuples,
while the temporal expression (WHILE clause) is used to
restrict the time domain of the selected tuples. For
example, the query

SELECT title
WHILE |EMP . manager = PROJ.manager||
/* temporal expression */
FROM EMP,PROJ
WHERE name = John

/* Boolean expression  */

retrieves the projects in which John worked. Notice that
the expression ||A6B|| is used to return the time domain
where A and B are/were in §-relationship. The Boolean
expression uses the traditional AND, OR, and NOT
operators (denoted A,V and - in Gadia and Nair, 1993)
while the temporal expression uses operators suitable for
sets of intervals, e.g. union, intersection, difference. For
example, the WHILE clause may contain the temporal
expression ||salary < 24 000|| U ||manager = Fred||
which returns the time intervals when the employee
was working under the supervision of Fred and had a
salary less than $24000. It is obvious that much
simplicity and clarity for many queries can be obtained
if the extended Boolean operators are used; in many
Queries the WHILE and WHERE clauses can be simple
toalesced into a single qualification that uses the
extended Boolean logic.

The IXRM model proposed in Lorentzos (1993) uses
an interval relational algebra that has the new operators
FOLD and UNFOLD (similar to PACK/UNPACK
discussed earlier in example 4) in addition to extended
versions of the standard relational algebra operators.
The selection condition in IXRM is a standard (True/
F alse) Boolean condition in which predefined temporal
Operators are allowed (e.g. Pure-Subinterval, Sublnter-
val, Pure-SuperlInterval, SuperlInterval, Overlaps, Pre-

cedes, Follows, Adjacent, Common_Points). For
example, to retrieve John’s salary for times 2 to 7, the
following selection is used

O'F(EMP)
where F is the Boolean condition
(name = John) AND (Time Common_Points:2—7)

The AND operator in the above query is a standard one
(returning True or False) and the ‘Common-Points’
function restricts the time domain te the interval 2 to 7.
The comment made earlier regarding the usefulness of
the extended Boolean logic to the HRDM model applies
also to the IXRM model.

A temporal extension to SQL is TSQL (Navathe and
Ahmed, 1993) which is a superset of SQL that introduces
new semantic and syntactic components. Among other
things, TSQL allows specification of the time domain
using the new TIME SLICE clause and the length of a
time interval using the new MOVING WINDOW clause.
The WHEN clause of TSQL is similar to the WHERE
clause of SQL. A number of predefined temporal
comparison operators (Before, After, Overlap, During,
Adjacent, Follows, Precedes, Equivalent) are allowed in
the WHEN clause. For example, to retrieve the salary of
John when he worked in project P35, the following
TSQL query is used.

SELECT salary

FROM EMP,PROJ

WHERE name=John AND EMP.manager=PR0OJ.manager
AND title="P35"

WHEN EMP.Interval Overlaps PROJ.Interval

Notice that the extended Boolean logic allows writing the
above query with a single qualification. Notice also that
TSQL is based on a tuple timestamping scheme. A single
time interval is associated with the entire tuple, rather
than with each attribute as in Lorentzos (1993) and
Tansel et al. (1989). For example, to retrieve the names of
those who have experience with (have worked in) the P35
project and who also have served at any time in the
Orlando Office, the following TSQL query is needed
(note: two aliases are used for relation EMP).

SELECT name

FROM EMP E1 E1, PROJ

WHERE Ei.name=E2.name AND El1 c_office=0rlando AND
E2.manager=PROJ.manager AND PROJ.title=P35

WHEN E2.Interval Overlaps PROJ.Interval

With attribute timestamping, our extended Boolean logic
can be used to replace the WHERE and WHEN clause of
the above query by the following single qualification

(EMP.c_office = Orlando) AND
(EMP .manager = PROJ.manager AND® PROJ.title =* P35)

Historical SQL is another superset of SQL proposed in
Sarda (1993). The language uses interval comparison
operators (Overlap, Contains, Meets, Adjacent, Pre-
cedes) which return a Boolean result. Two new unary
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operators are introduced: the EXPAND operation - generalization to query languages was illustrated by

converts the interval-stamped tuples of the relation into
instant-stamped tuples by replicating the tuples for each
instant included in their intervals; the COALESCE
operation performs the inverse operation, i.e. it
combines tuples having the same attribute values but
with consecutive or overlapping time intervals into a
single tuple. The two new operators are similar to the
FOLD/UNFOLD used in Lorentzos (1993) and the
PACK/UNPACK operators used in Clifford and Tansel
(1985). Like TSQL, Historical SQL uses tuple time
stamping and the same remark on the above TSQL query
applies.

In summary, the extended Boolean operators pre-
sented in this paper allow the smooth integration of
Boolean and temporal expressions. These operators do
not increase the retrieval power of existing query
languages and are therefore not meant to replace the
new (or non-standard) operators used in existing
temporal/historical query languages. In addition to
allowing many queries to be expressed more easily and
naturally, the extended operators are amenable to
efficient software and hardware implementations. The
implementation algorithms given in this paper are new
and differ in nature and flavor from other implementa-
tions in the area of temporal databases. Most of these
latter implementations are restricted to software and deal
primarily with other issues, e.g. indexing techniques for
historical databases, temporal query processing, differ-
ential query processing and join optimization, system
catalogs in temporal databases, storage structures,
concurrency control and recovery. The implementation
methods discussed in our paper also differ from the few
implementations of the new operators reported in
literature (e.g. algorithms to implement FOLD/
UNFOLD in Lorentzos, 1993). It is important to
notice in this context that many of the time-oriented
operators/functions used in exisiting temporal languages
discussed above are simple or straightforward. For
example the following operators defined in Navathe
and Ahmed (1993) return Boolean results and their
operands are single intervals:

[a,b] Before [c,d] iff b<c

[a,b] After [c,d] iff a>d

(a,b] Overlaps (c,d] iff (a < d) and (¢ € b)
[a,b] Precedes [c,d] iff c¢-b =1

The implementation of the above operands follows
directly from their definition.

8. CONCLUSION

In this paper, we have generalized the Boolean
and comparison operators by allowing their input and
output operands to be sets of intervals. Efficient
implementation of the generalized approach were
presented. Both software and hardware implementa-
tions were considered. The application of the proposed

examples.
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APPENDIX I: HARDWARE (VLSI)
IMPLEMENTATION

Figure AL 1 gives a high level schematic diagram of
hardware to implement Method B_AND. The hardwa®
consists of three logical components. The Intervd
Processor is responsible for sorting (step 1 in metho!
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Interval Processor Binary/Interva Intervaliinterval fo .y
Map L
{Steps  1-6) (Steps 7-8) (Step 8)
T"

FIGURE AL.1. Schematic diagram of hardware for method B_AND.

g AND), searching (steps 2, 3 and 5) and finally
pr—oducing the two binary vectors S” and T” (step 6).
vLSI schemes for sorting and searching have been
extensively investigated. Numerous high speed VLSI
drevits for sorting and searching have been designed and
fabricated. Other operations needed in the hardware of
the Interval Processor are quite straightforward and are
amenable to efficient VLSI designs. The binary/interval
map corresponds to steps 7 and 8 of method B_AND
and is explained below in more details. Finally, the
iterval/interval map implements step 9 and produces
the final result.

Figure AI.2 shows a functional diagram of a VLSI
circuit that implements the binary/interval map (steps 7
and 8 of the above method). Specifically, this. circuit
performs the logical bitwise AND of the two binary
vectors S” and T” and then computes the corresponding
set of intervals R. Using the same values of the previous
examples, if the input to this circuit is the two binary strings

S” =¢111101110111011°
T =1101110111011110°

the intermediate bitwise AND operations produces the
binary vector
V =+‘0101100110011010°

and the circuit generates the output sequence
(2,2),(4,5),(8,9),(12,13),(15,15)

which corresponds to the set R of step 8. The method we
used to compute this output is to scan the vector V from
kft to right (as it is generated bit-serially), incrementing a
counter at. each step (i.e. every clock pulse) and
performing the appropriate action whenever the condi-
tions stated below are satisfied:

l. Action 1: if at time t, the bit value is 1 and at time
t— 1, the bit value was 0, then start a new interval
whose left endpoint has the value t.

2 Action 2: if at time t, the bit value is 0 and at time
t—1, the bit value was 1, then close the current
interval with a finish endpoint equal to t — 1.

The implementation of the above actions is incorporated
n the circuit of Figure AL2.

Operation. Initially, the output wires of ‘Previous
Count’, ‘Current Count’ and the ‘Unit Delay’ are set to
the value 0. Each clock pulse first transfers the contents
9f ‘Current Count’ to ‘Previous Count’ and then
"crements the contents of ‘Current Count’ by 1 (a
Wo-phase clock ®,, ®; is therefore required).

clock

FIGURE Al.2. Circuit for steps 7 and 8.

The AND gate A computes the bitwise AND of the
two input operands S” and T”. The computation is done
bit-serially producing one bit of the vector V at each
clock. The gates Al and A2 implement the logic
described in Action 1 and Action 2, respectively. For
example, the output of gate Al is the value of the logical
AND of the current bit of vector V and the inverse of the
previous bit of V. When the output of Al is 1, the
contents of Current Count is transferred to Output
Buffer and is treated as the start point of the new interval.
Similarly, when the output of gate A2 is 1, the contents of
Previous Count is transferred to Output Buffer and is
treated as the finish point of the current interval.

APPENDIX II. BNF SPECIFICATION OF THE
GENERALIZED OPERATORS

This appendix gives the BNF description for the syntax
of the extended time-based operators integrated with the
standard operators. We concentrate only on the new aspects
of the extension and do not formally define the obvious non-
terminals (such as (constant), (variable id), etc.).

<temporal expr> ::= <temporal expr> <or op>
<temporal term> | <temporal term>

<temporal term> ::= <temporal term> <and op>
<temporal factor> | <temporal factor>

<temporal factor> ::= <mnot op> <temporal primary>
| <temporal primary>
<temporal primary> ::= ‘(‘<temporal expr>’)’
| <temporal comparison>

<temporal comparison> ::= <c_operand>
<temporal comp op> <c_operand>

<and op> ::= AND® | AND
<or op> ::= OR" | OR
<not op> ::= NOT* | NOT
<temporal comp op> ::= <sensitive comp op>

| <standard comp op>
<gsensitive comp op> ::= =" | <* | >* | #£* | £ >"
<standard comp op> ::= = | < | > | £ | £ | 2

<c_operand> ::= <comnstant> | <variable id>
|<built-in function>
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