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LetR = {R;,R,,..., Ry} be a set of data elements. The elements of R are accessed by the users of the
system according to a fixed but unknown distribution S = {8, 8,, ..., 85}, referred to as the users’ query
distribution. In this paper we consider the problem of organizing data so as to optimize its retrieval.
However, rather than organize the data according to 2, the stream of queries presented by the user, we
suggest a scheme by which the data is organized based on a synthesized query stream Q' This synthesized
stream possesses an underlying distribution, S’. Thus, in effect, the data organization is achieved
according to the distribution S’ and so, in one sense, the user’s query distribution is modified without his
knowing it. Furthermore, we show how this transformation can be done in such a way that the data
storage achieved according to S’ will be superior to that achieved if the data was stored according to the
distribution S. The module which achieves this transformation is called a Distribution Changing
Technique (DCT) Filter. In this paper we shall present the theory of DCT filters in its mathematical
generality. We shall show that a DCT filter can be represented as Stochastic Mealy Automaton. Various
DCT filters will be catalogued and, in particular, a filter F* will be presented. It has been shown that this
filter transforms the original distribution expediently, and thus accentuates the information contained in
the user’s distribution. The problem of cascading DCT filtes has also been studied, and extensive
computational and simulation results have been included which justify the theoretical results which have
been presented.
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1. INTRODUCTION

One of the most basic problems in computer science is
that of organizing data in such a way that the cost of
maintaining the data in an organized fashion and the
cost of retrieving it is minimized. Also, when data is to be
stored, one of the primary considerations is the data
structure used in the implementation and this depends on
operations permitted on the data. Indeed, one of the
most fundamental operations done on stored data is that
of data retrieval because once the data has been
retrieved, it can be modified or used for subsequent
processing. Thus a vast majority of the research that has
been done, both in applied and theoretical computer
science, involves various storage techniques and the
algorithms required to maximize the retrieval efficiency.
Also, much of this research involves the study of how the
data to be stored can be adaptively reorganized so as to
increase the retrieval characteristics. This is the primary
focus of this paper.

To pose the problem that we are studying in the right
perspective we consider the following simplified model of
data organization. Let R = {R,R,,..., Ry} be a set of
data elements, where the elements of R are accessed by
the users of the system according to a stationary
distribution S = {s,s,,...,55}. S is called the users’
query distribution. If S is known a priori, then the
elements of R can be statically arranged so as to
maximize the data retrieval efficiency. Indeed, in this
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case if R is arranged as a linear list, the retriev% is
optimized when the elements of R are arranged in-the
descending order of their access probabilities (Allen @nd
Munro, 1978; Armow and Tenebaum, 1982; Bitner, 1979,
Gonnet et al., 1981; Hendricks, 1976; Hester %nd
Hirschberg, 1985). Alternatively, if R is arranged 8 2
binary search tree, the optimal tree can be computed by
using the techniques developed by Knuth (1973) nd
‘almost optimal’ trees can be generated by resorting to
schemes such as those suggested by Walker and Gotlieb
(1972). ~

For the sake of simplicity, let us assume that R is
arranged as a linear list. Then for every distributiof in
which s; > s; > s3... > sy, the best list ordering is'the
one in which R; precedes R; ifi < j. Thus we observe that
whole families of distributions support the same optimal
ordering. To clarify the point, consider the case when
N =4, and S| and S, are the distinct distributions:

S, = [0.252,0.251,0.249,0.248]"
S, = [0.8,0.1,0.07,0.03]".

The optimal arrangement for both these query distribv-
tions is clearly the list [R|, R,, R3, R4]. However, whereas
S, is almost flat in that the access probabilities are hardly
distinguishable from each other, S, distinguishes
between these probabilities in a more pronounced
manner.
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The above argument is very easy to follow and would
pave been sufficient if we were not faced with the
unfortunate scenario that the user’s query distribution is
always unknown. Clearly, some process which directly or
indirectly estimates this would have to be used before the
sbove Static organizing strategy can be employed.
Observe, however, that although both S, and S,
reccommend the same optimal ordering, it is easier to
larn this ordering if the user’s query stream was
generated from S, as opposed to it being generated
from S;. The reason for this is because the distribution S,
isalmost flat and the information contrast which leads to
the conclusion that R; should be before R,, etc., is
practically concealed. On the other hand, this informa-
tion is much more prominent in S,, primarily because the
contrast between the s;’s is more marked.

In this paper, we endeavor to achieve a goal which (to
our knowledge) has not been studied in the areas of
information storage and retrieval. Since the user’s query
distribution is unknown, data organization is typically
achieved by studying a stream of user’s queries. Let Q be
this stream of queries generated by the user based on his
query distribution S. In this paper we shall present a
methodology by which a superior stream of queries can
be synthesized by gleaning the more important informa-
tion in 2 and concealing the less important information
resident in L. Thus, given the stream of queries Q based
on the user’s query distribution S, we shall endeavor to
synthesize an auxiliary stream L', based on which the
data structure would be maintained. The new query
stream Q' has an underlying synthesized distribution S’
in which the relative ratios of the original access
probabilities are accentuated. Thus in the original
distribution S, if s; > sj, the new distribution S’ will
satisfy s; > s;, and furthermore the ratio s{/s; will be
greater than the previous corresponding ratio s;/s;. Thus
if data organization is achieved on the basis of S’ (as
opposed to S), the probability of arriving at the optimal
ordering can be increased, and this will, generally
speaking, be true independent of the technique by
which the data is organized.

If the s;’s are not known a priori, an estimation of these
probabilities can be used to infer the optimal order. In
such a case, the estimation procedure which uses the
synthesized queries, &, will be much more accurate (in
terms of converging to the optimal ordering) than the
Corresponding one which merely uses the less informa-
tive query stream Q.

Although estimation of the access probabilities is a
feasible solution, it is very seldomi resorted to. Research-
ers have discouraged such an estimation procedure
Primarily to save on the additional time and storage
requirements. Thus a vast body of research has gone into
adaptively having the data structure organize itself, using
Memoryless heuristics. In the case of linear lists, various
!‘St organizing strategies have been presented and these
Include the move-to-front (MTF), the transposition rule
(TR), the POS(K) rule, etc. (Allen and Munro, 1978;

Arnow and Tenebaum, 1982; Bitner, 1979; Gonnet et al.,
1981; Hendricks, 1976; Hester and Hirschberg, 1985). In
the MTF rule, the list is dynamically reorganized by
moving the accessed element to the front of the list
everytime it is accessed. In this case, it can be shown
that the ultimate probability of a record R; preceding
another record R; is given by s;/(s; +5;) (Hendricks,
1976; Hester and Hirschberg, 1985). Furthermore, if
8; > 8 > 83... > sy, (i.e. the optimal ordering is the list
[R1,R;,...,Ry]), the asymptotic probability for the
MTF rule being in the optimdl configuration is
(Hendricks, 1976):

Pr([R;, Ry, ..., RNIS) = |N| S |N| !
1) 25004, N]IS) J i 1y s, (1)
i=1 Zl:si =11+ jE)i 5
=

_—

Consider now the case when the stream of queries is
generated by the distribution S;, where, S, = [0.252,
0.251,0.249,0.248]". In this case the above probability
has the pitiably small value of 0.0443. However if the
query stream was more informative and was generated
by the distribution S, = [0.8,0.1,0.07,0.03)7, the MTF
rule would converge to the optimal ordering with
probability 0.28. Thus notice that although both S,
and S, recommend the same optimal ordering, MTF
would converge to this ordering with a probability which
is an order of magnitude higher in the case of S,. The
reason quite simply is that S, is almost ‘flat’ and the
information content which distinguishes between the
various permutations is negligible. As opposed to this,
the distribution S, displays the difference between the
access probabilities much more significantly.

In this paper our endeavor is to accentuate the relative
differences betwéen the access probabilities. Thus by
generating the synthesised stream of queries, &', this
stream will obey the distribution S’ such that s;/s{ > s;/s;
whenever s; > s;. A straightforward study of (1) reveals
that using the MTF rule,

Pr([R), Ry, ..., Ry]IS") > Pr([Ry, Ry,..., RN]IS).

Thus, if we can achieve our goal, the synthesized stream
of queries, Q', will cause a convergence to the optimal
ordering with a much higher probability than the
original user’s query stream Q.

Various other list organizing strategies have also been
proposed in the literature. A review of the ergodic
schemes is found in Bitner (1979), Gronnet et al. (1981)
and Hester and Hirschberg (1985). Linear and con-
stant memory absorbing schemes with expedient and
optimal properties are found in Oommen and Hansen
(1987) and Oommen et al. (1990). In all the cases
reported in the literature, if the reorganization is done
based on synthesized stream Q' (obeying S'), we believe
that the probability of being in the optimal configuration
is greater than that obtained when the users’ query
stream is used.
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Accentuating (or polarizing) the user’s query distribu- -
tion has definitely proven advantages for linear lists.
Although, in this paper, we have only shown the
advantage of polarizing when the linear list is the
physical data structure, we believe that such advantages
can also be gained if the data structures used are binary
trees or their variants (Bayer, 1975; Chetham et al., 1988;
Gonnet et al., 1981; Knuth, 1973) or heaps typically used
in large database applications. However, the theoretical
advantage gained by polarizing in the context of these
data structures is yet to be analyzed. We also believe that
such advantages can be gleaned if the data is accessed in
pairs (or clusters) (Hammer and Niamir, 1979; Ma, 1986;
Oommen and Ma, 1988; 1992; Schkolnick, 1977; Van
Rijsbergen, 1977; Yu and Salton, 1976; Yu et al., 1981,
1985). In these cases the query synthesizer will have to
manipulate sets of query elements and yield a synthesized
set stream.

To present our problem in a more formal setting, we
assume that S is unknown and that RQ is a query stream
generated based on S. Let us suppose that the user
requests the element R;. This event occurs with
probability s;. This query is processed by presenting the
user with the record that he has requested, ie. R;.
However, the user’s query is not the one which is
primarily used to reorganize the data. The request R; is
fed into a filter referred to as the Distribution Changing
Technique (DCT) Filter, and the output of this filter is
used to achieve the reorganization. A brief synoptic
description as to how this filter works is not out of place.

The DCT Filter is completely defined by two
quantities, i.e. a list operator, 2, and a function, called
the Report Function, 7. The filter manipulates a dummy
list using the list operator 2. It then emits the synthesized
request for the data element R; (where R; may be the
same as R;) based on the Report Function, 7. This
element is now reorganized according to the rule used by
the data reorganization strategy. However, as a result of
the DCT Filter, the request to re-position the element R;
is emitted with a probability s. Thus the data
reorganization is achieved on the basis of the distribu-
tion §' = {s,s,..., sn}. Indeed, if si/s] > s;/s; when-
ever s; > s;, the reorganization obtained due to the
distribution S’ is superior to the reorganization that
would have resulted as a comsequence of using the
distribution S.

Rather than merely discuss a particular DCT Filter, in
this paper, we shall present the theory of DCT filters in
its mathematical generality. A general DCT filter will be
shown to be a stochastic Mealy automaton (Narendra
and Thathachar, 1989). Additionally, the properties of
various filters F = (Q,7) are catalogued in the body of
the paper, and in particular, the properties of a particular
filter referred to as F* are discussed. We shall show that
F* expediently polarizes (accentuates) the user’s query
distribution by presenting a query stream generated
according to S’ in which s{/s{ > s;/s; whenever s; > ;.

The details of how the list operator, , is chosen and

— the technique for deciding on the element R; to
reported in the synthesized query will be discussed in tp,
subsequent sections. The most interesting property of
this mechanism is that the DCT is transparent to th,
user. Thus, although his data preferences may be almgy
void of information (i.e. the s;’s are almost equal), tp,
DCT modifies the data so that the overall retrieval cost s
still reduced. Informally speaking, the DCT thy
represents a computer scientist’s ‘magic hat’ into whig
a user puts in a particular stream of queries but frop
which he is able to pull out a far more informative streap
of queries.

Apart from studying the properties of a single DCT
filter, we have also considered the problem of cascadmga
sequence of DCT filters. Some initial theoretical resglu
have been presented which involve sequences of so-cafled
identity filters and sequences of expediently polarizing
filters. In particular, a strong result has been proven
which shows that even an infinite number of expedietitly
polarizing DCT filters may not polarize the dlstnbu@’on
optimally.

Although the paper is primarily theoretical, it éiso
contains numerous computational and simulation rw?lu
which clarify and justify the analytic results which havc
been derived. We are currently investigating how L@u
principles can be utilized in a real-life local area netw@rk
which has a single file server with the hope of enhan
the network’s data retrieval capabilities.

2. FUNDAMENTALS AND NOTATION
2.1. Lists and list operations

R = {R},Ry,..., Ry} is a set of data elements acoeged
according to an unknown user’s query dlstnbugon

/L/ZE:/QIO!UE/IU.fLUOfg~u

S = {s,8,,...,5Nn}, where, S

N g

s =1 2

=1 @

S
A list A(n) defined at time instant ‘n’oa&
A(n) = L,(n)L,(n)...Ly(n), is a linear ordering oféthe
data elements where for all i and j, Li(n) # L;(n). W.lien

no ambiguity exists, we omit the reference to the t_anc
instant ‘n’,

A list transforming operator, 2, operating on a list
A(n) at time ‘n’ transforms it into a new list A(n + 1) &
the next time instant. Two list operators which we shall
use extensively are now defined.

2.1.1. Qprr: The move-to-front operator

Qumtr is defined as the Move-to-Front operator. Givet
the list A(n) and a data element R, as the input, Qyurf
transforms A(n) into A(n + 1) as follows. Let,

A(n) =L,L,...Ly, with L;,L; € R;L; # L; for all i,}

@
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Then, if Ry = Ly,
An+ 1) = Qurr(A(n),R,), where,

Mn+1) = A(n) ifk =1, and,

An+1)=LLL,...Li_ Ly, ...Ly ifk> 1.

3)

Qure 18 the studied Move-To-Front rule which moves
the accessed element to the front of the list.
2.1.2 Q. The transposition operator

Q) is defined as the Transposition operator, which
explicitly describes the rule which moves the accessed
element R, and interchanges it with its preceding element
in the list unless R, is at the front of the list. More
explicitly, if A(n) is defined as in (2), and R, = L,

/\(I] + 1) = QTr(’\(n)l Ru)’ where,

An + 1) = A(n) ifk =1, and,
/\(n+1)=L1L2LkLk_|Lk+lLN lfk> 1.
(4)

2.1.3. A generalized list operator

Apart from Q1 and Qy,, a list operator can be defined
in all generality by an ordered list w, where, ™=
(my,m2,...,TN), and where each 7 is a permutation of
the set {1,2,...,N}. Then, if R, =Ly, Q2(A(n),R,) is
defined as A(n + 1), where, if T = M(1)Tk(2) - - - TR(N)»
then,

An+1) =Ly, L, ... L

Thus, the above operators Qyyr and Qr, are alterna-
tively defined by the permutations myp and 7y, defined
as below:

mvrr = (123...N;213...N;312...N;..;
k123...(k=1)}{k+1)...N;...;NI123...(N-1))
mr =(123...N;213...N;132...N;...;
123, k(k = 1)(k+1)...N;...;123...N(N - 1)).

Since we will be using the properties of Qpprr and Qr,
extensively, the relevant properties of these operators are
stated below. For the sake of brevity, the proofs of these
Properties are omitted, except where the inclusion of the
proof clarifies the explicit properties of the operators.

Ny

LEMMA 1. If Qurr is the list reorganizing operator
defined in 2.1.1, then for all distinct indices i and j, the
asymptotic probability of R; preceding R; is:

Pr[Rjultimately precedes Rj| =s;/(s; +5;).  (5)
Proof. The proof of the lemma is found in Rivest
(1976).

To understand the properties of Qr,, the transposition
Operator, it is advantageous to observe that the records

FIGURE 1 Transition map of the tranposition scheme, when
R = {R|,R;,R;3}. Note the time reversibility of the chain.

migrate more slowly and thus one expects a slower
convergence but a steady state cost which is closer to the
optimal static ordering. Much of the analysis of the
scheme can be comprehended if one perceives the time
reversibility (Ross, 1981) of the underlying Markov
chain. The transition map of the chain is shown below in
Figure 1 for the case when the list R = {R;, R,,R;}. To
see the time reversibility of the chain we consider the
following path from state (R;R,R;3) to itself in a
clockwise fashion as:

(R{R3R3) — (R2R}R3) = (R3R3R;) — (R3R3R)
— (R3RR;) = (R{R3R;) — (R R;Ry).

Clearly, the product of the transition probabilities is
(s15253)%. Indeed, this is exactly the same value if the
paths were traversed in a counter-clockwise fashion.

The theorem about the asymptotic properties of Q,
now follows. The theorem was originally proved by
Rivest (1976) but the critical details were omitted. A
detailed proof of this result is found in Ross (1981).
Although it is not included here in the interest of brevity,
we encourage the reader to go through the salient details
of the proof because the principles used there will be used
extensively later in subsequent proofs, and in the
description of DCT filters.

THEOREM 1.  For Qy,, the Transposition Operator, let
the asymptotic stationary probability of the list being in
(Ry Ry, -..Ry,) be expressed as Pr (R; R,,R;,). Then, if all
the s;’s are positive, the stationary probabilities of the list,
obey:

Pr(R;R;,...RyR;, ...R,) s
Pr(Ri|Ri2 R‘HlR’j R1N) - Sij+l

(6)

Proof The proof of the result is found in Rivest
(1976) and Ross (1981).

Apart from the above theorem, there are two other
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powerful results concerning Q. To the best of our
knowledge, these results have not been formally proved
in the literature—although they have been alluded to in
Rivest (1976). Since they are crucial for the later sections
of the paper we will now state and sketch their proofs.

THEOREM 2. For Qq,, the Transposition operator, let
the asymptotic stationary probability of the list being in

(R, R, ...Ry,) be expressed as Pr (R, R;, ... Ry,). Then,
2
Pr(RilRi Rl}_lR R'j-HR . R,N) _ i (7)
Pr(R,R;. R R, R, R Ry) \S:

Proof. Using the chain rule, we expand the left hand
side of the above equation as follows:

Pr(RiR,...Ri RiRi R, ...R)
Pr(R, R, - R R,HR,MR RiN)
_Pr(R;R;...R;_RiR, R, ..
Pr(R,R;...R, R, RR,, . R,N)
§ Pr(RilRiz ...Ri_ Ry RiRi....R;)
Pr(R,lR . Ri}—lRiHl RinRij e R1N)
Pr(Rn R . R‘ij-lRij-uRijn Rij . RtN)
2
— S’fs‘*'—( ) ®)
S‘H-l S'H-I S‘HZ SiH-i

the last expression being obtained by applying (6) in a
straightforward way. Hence the result.

Remark. A generalization of Theorem 2 is given by
the following equation:

Pr(RilRiz le IRHR‘H-H R‘N)
PR, R, Ry Ry R "R,

Sij M
=2 9
&) g

The proof of the result is analogous to the above proof
and is omitted.

We are now in a position to present our theory on
DCT filters.

l}+u| l}+u l}m+1 .

‘H-M 1 l:R',+n+| .

3. DCT FILTERS
3.1. The report function, t

Central to the theory of DCT filters is a function 7
referred to as the report function. In general, it operates
on a list and a data element to yield another data
element. More explicitly, if A is defined as in (2) and
R, € R, then

T(ARy) =L (10)
implies that the report function 7 operates on A and

reports the value R, = L; when the input is the element
R,. Note that R, may or may not be equal to R,. In

Users’ Query DCT Fiter Repoﬂ)uery
asperS asperS’
Damnelement |
to be reorganized
A
| Report requasted,,
asnd"mpm mcham Data Element

FIGURE 2. Schematic of the DCT filter.

general 7 is a stochastic function. In particular, if
7(\,R,) =R, for all u, 7 is called the trivial report
function.

3.2. The DCT filter

A DCT filter is a pair F = (Q2,7), where Q is a Lt
operator and 7 is a report function. Essentially t%e
operation of the filter is as follows.

The DCT maintains a (hypothetical) list /\(n)\»
L,L,...Ly where each L; € R and L; # L; foralllagd
j. When the user requests an element R, the querymls
satisfied by providing this element to the user. However
the system does not reorganize the physical data bagd
on the accessed element R,,. Rather, the DCT fitler ugs
its internal function = and reports an elem%t
L; = 7(A\R,) as a synthesized query which is usedSn
the data reorganization strategy. The DCT filter t@n
uses its list operator Q and R, to update the
(hypothetical) list A(n + 1). 2

In terms of nomenclature, let the users’ quély
distribution be S and let the asymptotic distributionZf
£, the reported stream be S'. A DCT filter is called n
identity filter if S=S'. This implies that if
{sl,sz, .,sn} and S’ = {s},$3,...,sn}, then for alfﬁl
s; = si. Note that independent of (2, 1f forallu, 7(A, R,&ls
R,, the DCT filter is an identity filter, since the elem@lt
reported to the system manager is exactly the elemgnt
requested by the user.

Observe that the physical data is reorganized based;en
the distribution of the synthesized queries as reported?by
7(.,.) and not based on the user’s query distributionS$.
Also note that we have emphasized that for a DCT filter
A(n) is a hypothetical list. This is because this list need
not contain any data elements, but needs only to be a list
of indices. However, for the sake of simplicity of
notation, we shall refer to A(n) as a list. Typically, A(0)
is randomly assigned.

The formal DCT Filter is algorithmically given below
and schematically in Figure 2. After presenting them we
proceed to state and prove the properties of various
physical DCT Filters.

papEOjUMO(]

ALGORITHM DCT_FILTER (R, L;)

Input: A data element requested R, € R.

Output: A data element L; € R to be manipulated by the
system manager.
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Filter Definitions: The filter is fully defined by the pair
(,7) and maintains an internal list A.
Method:
ReadInput (R,)
L« T(’\a Rl.l)
) W Q(/\, Ru)
Output (L)
End ALGORITHM DCT_FILTER

THEOREM 3. The DCT filter F, defined for = Qprp
and with 7(.,.) = L, is an identity filter.

Proof. The list maintained by the DCT Filter is
y=L(L,...Ly. Thus, given an input of R, R, becomes
the head of the list when Qyyr is applied, and hence the
output sequence of the DCT is exactly the same as the
input sequence except that the former is delayed by a
single time unit. If R; is the input request at time n, R;
will be the output presented as the synthesized query
element to the data reorganization scheme at time
(n+ 1). Hence the theorem.

THeorReM 4. Let Q=Qp and A=L,L,...Ly.
Further let Tr be the report function defined as follows:

‘Fr(/\,Ru) = Lj—l if LJ = Ru

(11)
=L, ifL =R,

Then the DCT filter F, = (), T7) is an identity filter.

Proof. Let A=L,L,...Ly be equal to the list
(RyR;, ... R;,). We shall first derive an expression for
the asymptotic probability of the element R; being
immediately in front of element R; ,, . Let this asymptotic
probability be written as I'(R;, Ry, ).

Using Theorem 1 and considering all the possible
locations for the sequence R, R; |,

PT(Ri,RiHRi. Ry Ry, ... R;,)
Pr(Rﬂj.;'] R‘ljRil tee Rij_lR‘iH_z A R‘IN)
_ Pr(Ri,RiJRiH, ...RiHRiHz ... Ry)
Pr(RilRiHRij . Ri}—lR‘iHZ c. R.lN)
_ Pr(R;, ---Ri,_.Rin . "RiuRinim) _ Sy
Pl’(I{il e Rij_lRij_,_z e R‘iN RlHl R'i) Si§+|
Since all of the ratios are equal, they are each equal to
the ratio of the sum of the numerators to the sum of the

denominators due to componendo ed dividendo. Summing
the ratios we get,

Pr(R;R, R;, ... Ry Ri,...R)+...+Pr(R,...R_Fy ..

quantity I(R;, Ry, ). Thus, we have,
P(R'i’ R'ZH'I) _ i

r(R‘iiH’Rij) - Sij-u ‘
We now have to compute the asymptotic probability
of the filter yielding R, as its output. We shall utilize the

asymptotic properties of {1, to evaluate the latter. Using
the laws of total probability we know that:

(13)

N
Pr[Output = R;] = Z Pr[Output += R;|Input = Ry ] - s
k=1

= ZPr[Output = R;|Input = R;] - s
kA
+ Pr[Output = R;|Input = R - §;
However, for the DCT filter (Qy,, 7r) the quantity Pr

[Output = R;|Input = R, ] is exactly I'(R;, Ry). Further-
more for (Qr., 7r) the probability

Pr[Output = R;[Input = R;] == Pr[R;is the first element in A].
However, (12) states that:
I‘(I&i’ Rk) _5

TRy, R;) s
Thus,
Pr(R;is the output]
= T(Ry,Ry) - s + Pr[R; is the first clement in A] - 5;
ki
=g (Z T(Ry, R;) + Pr[R; is the first element in /\])
k#

However, the quantity

ZF(Rk, R;) + Pr[R; is the first element in A\] = 1,
k#i
since the sum of the probability of any element occurring

before R; and the probability of no element occurring
before R; is obviously unity. The theorem follows.

For any general DCT filter F = (Q,7) where
Q # Qyurr and Q # Q, the problem of finding the
properties of 7 so as to yield a non-trivial identity DCT
filter remain open. Observe that a trivial identity filter is
obtained by using the function 7(\,R,)} = R,.

3.3. Polarizing DCT filters

Let the user’s query distribution be S and let the
asymptotic distribution of the elements reported by the

RyRyRy) sy

Pr(R, R;R; ...R;,_R;,...Ri)+...+Pr(R; ...R_Ry .

At this point it is important to notice that
(Ri,Riz...RiN) can represent any permutation. If we
Sum q// the probabilities in (12) for all the possible values

for R;R;...R,_R; ...R;,, we indeed have the

=—1, (12)
RaRiRy) s,
DCT filter be S’ = {s},3,...,sn}. A DCT filter is said to
polarize expediently if for all i and j.

s1/s > si/s; whenever s, > s;.
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604 B.J. OoMMEN AND D. T. H. NG

The DCT filter is said to polarize S absolutely if the
ratio (sj/s;) — oo for all s;/s;.

In the setting of the paper the reader should observe
that if we can design a polarizing DCT filter, it will
indeed accentuate the information content of the users’
query distribution and thus lead to superior data
retrieval. The whole problem of designing such polariz-
ing filters is extremely fascinating. We shall present one
such filter and refer to it as F*.

THeoreM 5. Let F' = (Qp,

2. L,

"), where if \=1L,

™(A\Ry) =L,.
Then F* is an expediently polarizing DCT filter.

(14)

Proof. First of all, to get an intuitive feeling for the
filter, it is advantageous to observe that the filter
maintains a hypothetical list A constantly reorganized
using the Transposition rule. The synthesized query
element presented in the synthesized query stream is
merely the first element of this list.

More formally, for any pair of elements R; and R;, if
s; > s;, we intend to prove that if the asymptotic
probablhty of the DCT reporting R; and R; are s{ and
s] then,

si/% > si/s;

Also we note that since 7°(,,
probability s{ = Pr[Output =
asymptotic probability Pr[L,
expression for the ratio s;/s].
Let o, be the asymptotic probability that L; = R; and
L;+1 = R;. Furthermore, let (3, be the asymptotic

probabxhty that L; = Rjand L,;; =R;.
We know that from Theorem II that for any R,,

Pr(RR(R;...) _ (5)2

Since (15) is true for all k, the ratio «; /3, can be obtained
by summing the numerators and the denominators as per
componendo ed dividendo. Thus,

)= Ll, the asymptotic
R;] is exactly equal to the
= R;]. We shall derive an

(15)

Z PI(RIRRRJ )

Q@ _ k#ike] _ (S
Y Pr(RRYR;..) S
Kk ]

In an analogous way, we can show that:
o _ (ﬁf
By \s
Indeed, in general, for all 2 < p < N — 1, we have:
% _ (ﬁ)"
By §i
Consider now the ratio Pr [L, = Rj]/Pr[L; = Rj].
Since the events are mutually exclusive the ratio of the

(16)

- probabilities can be added to yield:

N-1

Q,
_Si_Pr[L1=Ri]_; ’ (1
$ TPl =R N )

2 b
p=1

Letp=s; /s;. Note that by the hypothesis p > 1. Using
(16), (17) is simplified as follows,

Zap prﬂp

p=-l
Sa S
p=1 p=l

But using the generalized theory of mean val&s
[Hardy et al.] we know that given a set of elements {aq}

~

(18)

A I

2ojUMO(]

and a set of weights {x;}, E]
R N L e
1+ X+ ...+ Xg S
(®)
Identifying the {x;} with {c,} in (18) and the {a;} with
{6"} in (18), we get after some rather lengthy algebraic
manipulations, §
s g
24> pf 3
8 5
g
where o
£=ﬂ,+2ﬂz+...+(N—1)ﬂN_, (%)
Bi+6+...4+ B §
Since both p and ¢ are strictly greater than unity, the
ratio si/s; is strictly greater than p. Hence, s{/s| > s,%,

and the theorem is proved.

sanb Aq 9

Remarks

(i) As mentioned earlier, this filter maintains Qle
hypothetical list A which is constantly reorganized usmg
the transposition rule. The synthesized query elemmt
presented in the synthesized query stream is merely ﬂlc
first element of this list. We have yet been unable to Set
an intuitive reasoning for why this scheme works s
efficiently. Informally, we have been provided (we have
presented these results at various seminars and are
grateful to many of those who participated in these
seminars for their lively discussions) with various
arguments that seem to support the various intuitive
perspectives, but these arguments collapse when w¢
realize that the exact same report function operates
detrimentally when used in conjunction with alternative
list operators.

(ii) The expression (20) is quite revealing. Observe that
the exponent of p is the ratio of the summation Egzllpﬂp
to the summauOnE Bp However, 3, is the asymptotic
probability that Ll = R; and Lp+| = R;. Thus, if w¢
consider the conditional asymptotlc distribution of the
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FIGURE 3. A typical Mealy transition of F* when

R = {R},Ry, Ry, R4}. With an input of Rj, the state changes as per

0, from RyR;R4R3 to R3R R3R,. The output generated as the
synthesized query clement is R, as per 7°.

location of R; given that L; = R;, we observe that the
exponent of p is merely the expected value of the position
of R;. This gives a good ‘rule-of-thumb’ estimate for R;
being reported as the synthesized query element to be
used in the physical data reorganization process.

(i) If we apply the general theory of mean values
[Hardy et al. 1983] using the set of {c,,} (instead of using
itas above to the set {3,}), we can derive an upper bound
on the ratio s;/s;. Indeed, applying (19) into (18) using
the {ap} we can simplify the expression to show that:

S g
s
where .
_a|+2a2+...+(N—l)aN_1 (21)
- a+ay+...+an_

Combining (20) and (21) tells us that if we quantify the
polarization of the DCT filter F* as the ratio of (s{/s;) to
(si/s;), this quantity will have a lower bound of unity but
an upper bound specified by (21). Furthermore, these
bounds are the tightest bounds that can be derived, since
the generalized geometric means equal the generalized
arithmetic means when the {s;} are all equal. This itself
shows that F* polarizes a distribution expediently but
not absolutely.

(iv) Viewed in its generality, a DCT Filter itself can be
seen to be an automaton or a finite state machine.
Indeed, the state transition function of the automaton is
the operator 2 and the output function is the report
function 7(.,.). In this case, the automaton is a
generalized Mealy machine in which the output is a
function of the state of the automaton (a list ordering)
and the input, R,. Apart from this conceptual
perspective, it is still unclear whether such a model of
the DCT filter adds to the generality of the filter itself,
except for the fact that the transition function of this
automaton can be rendered stochastic. An example of a
single Mealy transition for F* is in Figure 3 when
R={R|,R;,R;, R4}

(v) Throughout the course of our research endeavours
we have not been able to design an absolutely polarizing
DCT filter. Indeed, we conjecture that such a filter does
Dot exist. However, we shall now study the problem of
Cascading DCT filters in tandem. Our hope is that
although single filters are at their best expediently (and
ot absolutely) polarizing, a sequence of filters could
vield a new filter which is absolutely polarizing.

(vi) Although we have presented only one expediently

polarizing DCT Filter, it is an easy task to extend the
results of Theorem 5 to design families of expediently
polarizing DCT filters. To show how this is done,
consider the filter F* defined as follows:

F+ = (QTr7T+)
where (7, is the transposition operator and
7t =7  with probability 0.5
=rr  with probability 0.5 (22)
with 7* and 77 being defined as per (11) and (14)
respectively.
The fact that F* is polarizing is obvious since
(i) F* = (2, 7") is polarizing and
(ii) F; = (Qr, 7r) is an identity filter.
Thus, whenever s; > s; the ratio si/s; for F* will satisfy:

si/sj > si/s;  with probability 0.5
=3;/s; with probability 0.5.

Considering total probabilities, it is easy to see that s{/s]
will still be greater than s;/s;.

(vii) An interesting DCT filter which we have not
analysed is the filter F3, where,

F3; = (1, 73),and, 7 is defined as below for A = L|L,...Ly.

73 = LRanaq1,j-1), Where L; = Ry,

Observe that this filter operates the list using the
transposition operator, but reports any random preced-
ing element. Experimental experience demonstrates that
this filter polarizes the distribution, but, as yet, this is
unproven.

4. CASCADING DCT FILTERS

Till now we have studied the scenario of having a single
DCT filter operate on a set of data elements which are
accessed according to a distribution S. The intention was
to present a synthesized stream of queries obeying a
distribution S'. The aim of the whole exercise was to
accentuate the distribution S in such a way that the data
reorganization according to S’ would be superior to that
done as per S. Indeed, in the previous section, we
presented a filter F* which operated on the input data
distribution and expediently polarized it in such a way
that if s; > s;, then, for all ;,s; € S whose corresponding
access probabilities after the filter are s, s € S,

8i/8; > si/s;.

However, we were unable to obtain a filter which
absolutely polarized the distribution such that:

!
1

— oo whenever s; > s;.

s/
j
We shall now consider the problem of cascading DCT
filters. We do this with the hope that although a single
DCT filter may not polarize a distribution absolutely, a
sequence Of the filters arranged in tandem may
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accomplish it. However, in the strictest sense, the
analysis of cascading DCT Filters does not follow from
the serial analysis of the individual filters. This difference,
although not so obvious, is actually true, and is a
consequence of the fact that when two Markov chains
are cascaded, the new chain operates in the composite
space. However, this computation is extremely well
approximated if the following Equilibrium Assumption,
is made.

Equilibrium Assumption. If DCT flters are cascaded,
the input distribution of any filter is independent and
equals the equilibrium output distribution of the
preceding DCT filter.

The above assumption is an approximation as long as
the corresponding composite Markov chain is in
transition. When the chain has converged, it is valid to
machine accuracy.

In this section we shall prove some counter-intuitive
facts. We shall show that subject to the Equilibrium
Assumption, even an infinite sequence of expediently
polarizing filters may not yield an absolutely polarizing
filter. However, before we do this, we shall state some
elementary theorems about DCT filters in tandem.

THEOREM 7. Let F and G be two Identity DCT filters.
Then, subject to the Equilibrium Assumption, if H is the
DCT filter obtained by sequencing F and G, H is also an
identity DCT filter.

Proof Let S be the input distribution, and let

SF = {sf,s},...,sk} be the distribution after the filter F
has operated on t.he data. Then, by definition, for all i and j,

(23)

|y

§

If this distribution SF is the input to the ﬁlter G, then,
by definition, the output of G is ™ = {s}' s, ... s}
which for all i and j satisfy:

s,-H__siF

H
5

@

]

Combining (23) with the above proves the theorem!

THEOREM 8.  Let F and G be two expediently polarizing
DCT filters. Then, subject to the Equilibrium Assumption,
if H is the DCT filter obtained by sequencing F and G, H is
also expediently polarizing.

Proof. The theorem is proved analogously to the
above theorem and uses the transitivity of the real
number comparison operator ‘>’

The next theorem is certainly the most interesting
result which we can prove regarding cascading DCT
filters.

THEOREM 9.  Let G be any expediently polarizing filte,
Then, subject to the Equilibrium Assumption, the DCT
filter obtained by sequencing an infinite number of such
filters need not be absolutely polarizing.

Proof. Let S® = {s(k) ), ,sg)} be the outpy
distribution after the sequence of k filters has operateg
on the user’s distribution S. By definition, if s; > s;,

(x+1) (K)
(K+l) (K) forallk > 1
S; 8
j i

We need to show that there exists an expediently
polarizing filter and a set of probabilities {s;} such that.

sM)

l

M—oo S(M)

papeojumoq

tends towards a finite value for some i and j where s; >,
Consider the filter F* defined by Theorem 55 as
= (Qr, "), where 7° reports the first element of the

hst Indeed, we shall show that for all non- tri&ml
distributions in which N = 3,

X

dno-olwapeoe,

is finite for i and j belng the two largest ac@ess
probabilities.

Consider the case when N =3. Let the ouﬁaut
distribution of the kth filter be {s(“)|1 <i<3). The,
using the properties of Q. and 7°, it is seen zgfta

0

considerable algebra that: ]
3

@ _ 07 N+ 66 7

5 = A @)

(2]

©

PG RIC ORI C R IC IR ¥
= A »
IRCWICIWEAC W IC R I 9

% A g

where A is the normalizing denominator enforcing:i>
SEK+1)+SgK+]) +‘ng+l) - 1, '%

and is §

A = (1939 + 591+ (55°)7 187 + 51

+ (s5) s + 5§

Since the s;’s are bounded and non-negative it is easy

to see that this sequence converges with respect to k. I8

the equilibrium, we can solve for the terminal value of

si(°°) by solving (24)—(26). Let the terminal values be {s{}
Then, by dividing (24) by (25) we get:

* *\2 * *
oS g,
3 (85)°-(s5+sp)

s (Sl) “(s2+53)
S (si+3)

@)

(28)

THE COMPUTER JOURNAL,

Vou. 37, No.7, 1994




ENHANCING LINKED-LisT DATA RETRIEVAL 607

Furthermore,
s]+s2+s3=1. (29)

Cross-multiplying (27) we get that (27)—(29) can be
solved to yield an equilibrium solution whenever all three
{s} are non-zero. This solution is s] = s3 = s3,and is, of
course, the trivial solution. The non-trivial solution is
obtained if any one of the three, say, s3 converges to zero.
Then, (27) suggests that every s} /s; itself is a fixed point
solution implying that every vector value [s},s3,0] is a
potential solution. Thus, the ratio of s to s can be finite,
and the theorem is proved.

Remark

(i) At the very outset, it may appear as if Theorems 8
and 9 contradict each other. Indeed, they do not, since
Theorem 8 merely states that subject to the Equilibrium
Assumption, the sequencing of expediently polarizing
filters is always expediently polarizing. But since the
product of an infinite sequence of numbers which are
greater than or equal to unity need not be infinite, under
the same assumption, the sequence of DCT filters need
not be absolutely polarizing. Indeed, this is true in this
case, since the ratio

si(k+l) / Sl(k)
(k+1) &)
§; §

tends to unity as k — oo.

(ii) Cascading DCT fiiters can yield quite fascinating
results. Indeed, cascading filters which are not even
identity filters (and which may even be ‘anti-polarizing’)
can result in a polarizing filter. One example of such a
filter is that which is obtained by cascading two filters
each of which have Q. as their list operator, and which
reports the last element of the list in the report function.
Thus, if @ =Qr, and A=L;L,...Ly, let 74 be the
function defined as follows:

7’4(/\,Ru) = Ln.

Then it can be shown that subject to the Equilibrium
Assumption, the filter obtained by cascading two F,
DCT filters is expediently polarizing!!

5. EXPERIMENTAL RESULTS

To demonstrate the properties of the theory of DCT
filters which we have introduced, we have simulated
various filters so as to study the characteristics of their
relative input and output distributions. To get a measure
of the polarizing property of a particular filter, we have
used the following index, x, where,

N
X= Z(ai - S;)z)
iml

and

a;=1 if s =maxs;
i

=0 otherwise.

TABLE 1. Expected values of x before and after going through the
DCT filter F*

Wedge Exponential

A x before X after A x before X after

3 0.05 0.571667  0.528872 0.1  0.597786  0.565543
0.1 0.486667  0.418007 0.2  0.524590  0.464640
0.15 0411667  0.335084 04 0367347  0.279896
4 005 0.6125 0.506019 0.1  0.6718%1  0.601006

0.1 0.5 0.379891 0.2 0.587775  0.464222
0.15 0.4125 0325673 0.4  0.405331  0.260897
5 0.01 0.761 0.705581 0.1  0.716026  0.606599
0.03 0.689 0.560667 0.2 0.624465  0.450270
0.05 0.625 0473814 04  0.424705  0.256863

6 0.01 0.785083  0.697483 0.1  0.745181  0.600942
0.03 0874033  0.534782 0.2  0.647951  0.440753
0.05 0.627083  0.465641 0.4  0.435318  0.257593

This is the chi-square measure quantifying the
similarity between any distribution {si} and the
distribution obtained for an absolute polarizing
scheme. Observe that if s; > s; where i <}, the latter
distribution would asymptotically be equal to the unit
vector [100...0]T.

Notice that x measures the information content of the
distribution. If all the s;’s are equal and N > 1, (S is the
trivial distribution) x has a positive value. As the ratio of
the s;’s increases, the value of x decreases and x
eventually approaches zero as the ratio approaches
infinity. To demonstrate the effect of the DCT filter we
have computed the value of x prior to and subsequent to
the operation of the filter. These quantities are called x;
and yx, respectively.

Since N! is very large, it is impractical to theoretically
measure Yy, for large values of N. So, for values of N
between 3 and 6, exact probability computation of
the stationary distribution of Qpr, have been used to
compute the output distribution of F*. This has been
done for both the wedge and exponential distributions
defined as follows. In the Wedge distribution, s; has the
value:

s, =a—(1—1)6, where a = [n(n—1)é + 2]/2N.

Note that the parameter § increases the slope of the
wedge.

In the case of the exponential distribution, s; has the
form:

s =(1-6%D/k  where k=][1-(1-8N]/6.

The results of the computation are remarkable and are
tabulated in Tables 1 and 2. For example, when N = 4, if
§ = 0.4 and the distribution is an exponential distribu-
tion, the input distribution is the probability vector
[0.459559 0.275735 0.165441 0.099265]". The corre-
sponding output distribution is [0.587939 0.282816
0.101814 0.027431]T. Note that x; in this case is
0.256863, and the corresponding value of xg is
0.405331. This represents a multiplicative decrease of
63% in y;!
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TABLE 2. Expected values of x before and after going through the

DCT filter F* for N =10 and 15
Wedge Exponential
N
A x before X after A x before X after

0.001 0.891082  0.861311  0.05 0.852947  0.691010
10 0.005 0.857062 0.718414 0.1  0.801915  0.583924

0.01 0.818250  0.647274  0.15 0.747292  0.507129

0.001 0.919613  0.860642 0.05 0.883587  0.690875
IS 0.002 0906453 0.796012 0.1  0.828068  0.579839

0.005 0.870333  0.681501  0.15 0.767887  0.502577

For the case of N > 7, exact closed form expressions
for the output probabilities are not easily derived. To
obtain the corresponding values in these cases, we have
resorted to simulations. 100 experiments were conducted
using 20000 queries based on the input distribution S,
where S obeyed either a wedge or an exponential
distribution. The output pattern of the stream of
synthesized queries generated by the DCT filter was
statistically analysed and the distribution S’ estimated.
Using these estimates, the value of x; and x, are
tabulated for various values of N in Table 2. Again the

results are remarkable. For example, when N = 10, if
§=0.1,8Sis:
[0.153533 0.138180 0.124362 0.111926  0.100733

0.090660 0.081594 0.073434 0.066091 0.059482]7.
The corresponding output distribution S’ is:

{0.311725 0.234812 0.069186 0.116155 0.075564
0.043810 0.025167 0.013415 0.006611 0.003555]"

In this case x; is 0.583924, and x,, is 0.801915 implying
a multiplicative decrease of 72.8% in ;.

We have also performed computations to verify the
validity of cascading, Theorem 9 and the Equilibrium
Assumption. Using the filter F*, the input distribution:

=[0.6 03 01T
yields an output distribution
S’ = [0.6667 0.2917 0.04167)".

If this is the input to a suceeding filter F*, the output
distribution at the second level is:

S@ = [0.7052 0.2858 0.009]".
At the third level, the distribution has the value:
S® = [0.7139 0.2857 0.0004]T,
which is remarkably close to its terminal value
S = [0.7143 0.2857 0.00]".

Notice that the terminal value of the ratio of sgk) to s»l(k)
is finite just as Theorem 9 dictates.

6. CONCLUSIONS
In this paper we have presented a new technique for

enhancing data retrieval by suggesting that the data be
organized using artificially synthesized queries g
opposed to the queries generated by the users. The
intention of this exercise is to optimize the data retrievy]
characteristics of the system. Thus, if the data is accesseq
according to unknown distribution S, rather thay
organize the data according to RQ, the stream of querie
presented by the user, the data is organized based on
synthesized stream LQ'. This synthesized stream obeys
distribution S’. As a consequence of this exercise, the
user’s query distribution is modified without his knowing
it. We have shown that if this operation is done
appropriately the data storage achieved according to
S’ can be superior to that achieved if the data was stared
according to the distribution S. The module which
achieves this transformation is called a DCT filter. 33—)

In this paper we have considered the theory of DET
filters in its mathematical generality. It is shown that a
DCT filter can be represented as stochastic Méaly
automaton. Various DCT filters have been catalog;?ed
and, in particular, a particular filter F*, whHich
expediently transforms the original distribution, @m
been proposed. F* thus accentuates the mformaﬁ‘on
contained in Q.

We have also studied the problem of cascading Ig‘r
filters. The strongest result in this regard states that eyen
an infinite sequence of expediently polarizing filters éay
not polarize absolutely. 3

The paper also contains extensive computational ind
simulation results which justify the theoretical r&f&lts
which have been presented. We are currently investig;
ing how these principles can be utilized to enhanoegt‘he
data retrieval characteristics of a real-life local area
network with a single file server.
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