Stack Cache Memory for Block-Structured
Programs

LANFRANCO LOPRIORE

Dipartimento di Ingegneria della Informazione: Elettronica, Informatica, Telecomunicazioni, Universita
degli Studi di Pisa, via Diotisalvi 2, 56126 Pisa, Ttaly

The architecture of a cache memory is presented, aimed at reducing the memory bandwidth requirements
of programs written in block-structured, high-level languages. At any given time, the cache contains two
portions of the stack area of the running program, corresponding to the global and the local activation
records. With respect to traditional cache architectures, the proposed architecture is characterized by
increased performance and a reduced complexity of the logic for cache space addressing and
management. These results have been obtained by controlling the cache activity at the software level to

take advantage of the stack paradigm.

Received December 1993 revised May 1994

1. INTRODUCTION

The advantages resulting from the utilization of a cache
memory to decouple the processor from the primary
memory are well known (Hennessy and Patterson, 1990;
Stone, 1993). In the implementation of a microprocessor
architecture, a cache makes it possible to reduce the gap
existing between the speed of the microprocessor and that
of low cost memory chips (Matick, 1989). In the traditional
approach, the cache effectiveness relies on the locality of
reference property that characterizes the program refer-
ences to the address space (Silberschatz et al., 1991). In this
approach, the cache treats information items characterized
by very different reference patterns, such as code and data
objects, by using an internal model, wired in the cache logic,
of the program memory behaviour. Cache storage
resources are managed according to this model, to select
the cache line to be replaced when a miss occurs and no free
line is available, for instance (Smith and Goodman, 1985).

In a different approach, the cache has a degree of
knowledge of the semantics of the information items it
contains. An example is a special-purpose cache designed
to support a specific programming language, so as to
take advantage of the memory referencing characteristics
of programs written in this language (Lopriore, 1993). A
cache can be also specialized to contain portions of the
program code (Farrens and Pleszkun, 1989; Hwu and
Chang, 1989), to exploit the read-only characteristics of
the instructions by not restoring the state of the primary
memory when a line is replaced, for instance. In this way,
the operations connected with cache space management
are simplified. The ensuing savings of cache logic are
especially important if the cache is on-chip with the
processor, as more chip area can be used for the cache
line array to increase the cache capacity, or even for other
processor functionalities, such as pipelining, floating point,
or the register file. In fact, instruction caches are now of
widespread use in microprocessor implementations (Kane
and Heinrich, 1992; Slater, 1992).

In this approach, we have investigated the possibility
of reducing the memory bandwidth requirements of
programs written in block-structured, high-level languages
by means of a data cache specialized to contain
information items belonging to the stack area of the
program address space. In the implementation of a
block-structured language, the program space is usually
partitioned into three areas, the code, the heap and the
stack (Ghezzi and Jazayeri, 1987, Pratt, 1984). The code
is the static program area consisting of the machine
instructions generated from the statements in the
program, and those program components that are
invariant during execution, e.g. the representations of
the literals and the program-defined constants. The heap
is the dynamic program area aimed at containing those
data objects whose size can vary at arbitrary program
points, e.g. flexible arrays and dynamic variables that can
be allocated and destroyed under program control.
Finally, the stack is the dynamic area containing the
program activation records (also called stack frames;
Watt, 1993). An activation record contains the data
items needed for an activation of a subprogram at run
time. Examples are the subprogram parameters, the local
variables, and the temporaries in expression evaluation
and in the transmission of parameters to other
subprograms.

At the beginning of the program execution, the stack
contains a single activation record, the global activation
record relevant to the environment of the main program
block. This activation record includes space for the
global variables. It is stored at the stack base, and is
invariant for the entire duration of the program
execution. When a subprogram is entered, a new
activation record is allocated onto the stack for this
subprogram. The activation record will be deleted on
subprogram termination. The /ocal activation record is
the activation record of the subprogram activation being
executed, stored at the stack top and containing the local

THE COMPUTER JOURNAL,

VoL. 37, No.7, 1994

$20z 14dy 01 uo 1senb Aq £64691/019/2///e191e/|ullod/woo dno-olwepeoe//:sdiy woil papeojumoq

StaAck CACHE MEMORY 611

address A data in/out
(from the (from/to the
central processor) central processor)

A

r

age number | offset
[pag ’ I Py 47174 Top pointer
p f p
. P VF, Py 471]4 Base pointer
E .
252 HF, High page
k| 2E F - DF Anrcu Yp| register
r’ g E g (Select data \| L
- 5 Y
= o £ 4 A Low page
o= 8y 8 eee 8 Low 47174 register
& Yy v A4
line N - 1 | | l
L
n g . o| o cache miss
= °] .
] . of o
< primary memory
2 line 1 > access
line 0 >
"
Line array Flag array
high/low page

FIGURE 1. Block diagram of the cache hardware.

variables. The non-local activation records are the
activation records relevant to the other activations,
which are stored at intermediate stack positions between
the local and the global activation records, and contain
the non-local variables.

Experimental studies indicate that the accesses to the

stack area are characterized by a high locality of
reference in the local and the global activation records
(Carter, 1982; Cook and Lee, 1982). Thus, a data cache
which can store both these activation records is likely to
capture a large fraction of the stack references, and the
miss ratio of this cache will be low. Measurements show
that the memory requirements of these activation records
are moderate (Batson and Brundage, 1977; Ditzel, 1980).
It is therefore viable to store both of them in the cache
even in an on-chip implementation, provided that less
chip space is used to implement the functionalities of
cache storage management and addressing, and more
space is reserved for the cache line array to increase the
cache capacity.
In the following sections, we will present the architecture
of a stack cache able to take advantage of the stack
paradigm to enhance performance and reduce the
hardware costs. In contrast to classical cache architec-
tures, our architecture takes advantage of a software
control over the cache operations, which is exercised by
means of a set of cache commands. These commands will
be inserted by the compiler at appropriate points in the
program object code to transmit the cache information
available at translation time, concerning the program
memory behaviour.

2. ARCHITECTURE OF THE CACHE

We will refer to a system architecture featuring a cache
memory interposed between the central processor and
the primary memory. The processor references an
address space of size 2" bytes. This address space is
partitioned into 27 pages and the size of a page is 2/
bytes, f = r — p. The cache storage is organized into an
array of N = 2" lines and the line size is equal to the page
size. At any given time, the cache contains up to N pages
of the data space of the running program. These pages
are always relevant to the program stack area.

Figure 1 shows the block configuration of the cache
hardware. When the cache receives an r-bit memory
address 4 from the central processor, the page number P
and the offset F corresponding to that address are
evaluated by selecting the p most significant bits and the f
least significant bits of the address, respectively. The
page number is translated into the number L of the
corresponding line in the cache line array and then the
offset is used to identify the referenced data item within
this line.

2.1. Translating page numbers into line numbers

In the following, we will hypothesize that the stack grows
upwards, towards increasing memory addresses, and
that activation records are stored at page boundaries.
Figure 2 shows the program stack area. The local pages
are the pages of the local activation record, the global
pages are the pages of the global activation record, the
top page is the local page containing the highest stack

THeE COMPUTER JOURNAL,

VoLr. 37, No.7, 1994

$20z 14dy 01 uo 1senb Aq £64691/019/2///e191e/|ullod/woo dno-olwepeoe//:sdiy woil papeojumoq

612 L. LoPRIORE

address (the stack rop) and the base page is the global
page containing the lowest stack address (the base). We
will denote the stack size, in pages, by Agtk, and the sizes
of the local and the global activation records by Ajar
and Agar, respectively. Let Py and Pg be the page
numbers of the top and the base pages. Then

Agrg = Pr— Py +1 (1)

Translation of page numbers into line numbers is
obtained by using a classification of the stack pages into
high and low pages. Let

Apign = min(N, Apag) (2)

[Py
L_{|LB_(PT_P)—1|N

denote the minimum between quantities N and Ajpag,
and let

Apow = min(N, Agrg — Apar) (3)

denote the minimum between quantities N and
Agstk — Apar- The high pages are the local pages at a
distance from the top page shorter than Ay;gy pages, i.e.
each page whose number Py;gy satisfies relation

Pt — Apigu + 1 < Puign < Pr (4)

The low pages are the stack pages which are not high
pages and are at a distance from the base page shorter
than A[ow pages, i.e. each page whose number Pjqw

Address
space
4
Py
“&
< A
~
3 %
g 2
.
&l s
~| =
—
v & Pr-Ap+1
o
R
|
~
a
1
L
a Pp+Agup-1
q ~~
vt =
S|«
7] ~ @
ol B local activation
2 8 r record
L y
& P global activation
B J record
4

FIGURE 2. Address space configuration for the stack area.

ifPB<P<P3+ALOW-—1
if Pr — Agign +1 < P<Pp

satisfies relation
Py < Prow < Pg+ Arow — | (5)

It should be noted that a local page is never classified as
low, even if it 1s at a short distance from the base.

At any given time, only the high and the low pages are
candidate to be stored in the cache. The cache lines are
managed circularly, line N — 1 being considered adjacent
to line 0. Let |P|y denote the result of a modulus
operation between quantity P and the cache capacity N,
and let Ly denote quantity |Pg|y. The line number L
corresponding to a given page number P is given by
relation

(i.e. P is a low page)

(i.e. P is a high page)

It follows that the base page Py is stored in line Ly, the
low pages are stored from line Ly towards increasing line
numbers, the top page Prisstoredinline Ly = |Lg — 1|y
and, finally, the high pages are stored from line Ly
towards decreasing line numbers.

2.2. Configurations

With reference to a cache size N of 8 pages, Figure 3
shows the high and the low pages in a number of different
configurations for the stack area. The configurations of
Figure 3(a—d) are all relevant to situations in which
Astk — Apar = N; in these situations, Ajgw = N and
Py +Ajow — 1 = Pg+ N — 1. In the configuration of
Figure 3(a), both the local and the global activation
records are smaller than N pages. It follows that
Anigu = Apar, all the local pages are high pages,
all the global pages are low pages and there are non-
local pages near the stack base that are classified as
low. In the configuration of Figure 3(b), the local
activation record is larger than N pages. In this case,
Ayigy = N and only the N local pages at high stack
addresses are high pages candidate to be stored in the
cache (the other local pages will never be loaded).
In Figure 3(c), the global activation record is larger than
N pages. It follows that only the N global pages at low
stack addresses are low pages and can be stored in the
cache. In Figure 3(d), both the global and the local
activation records are larger than N pages. In a situation
of this type, the local pages at low stack addresses and
the global pages at high stack addresses will never
be stored in the cache. The configurations of Figure
3e and f) are both relevant to situations in
which Agrg — Apar < N; in these situations, Ajow =
Astk — Arar and Pg+ Apow — 1 = Pr— Apag (see
relation 3). In Figure 3(e) both the local and the
global activation records are smaller than N pages;
whereas in Figure 3(f) the local activation record is
larger than N pages. In both cases, the local pages are

THE COMPUTER JOURNAL,

Vor. 37, No.7, 1994

$20z 14dy 01 uo 1senb Aq £64691/019/2///e191e/|ullod/woo dno-olwepeoe//:sdiy woil papeojumoq

StACcKk CACHE MEMORY 613

Apicn = Brar

Ay = Brar

Apow = N ALow

Ayign = Drar

=N Arow = Bsrx = Bpar

&
<
~
<
1
~
R,
—
|
z
+ Py
)
a,
P, Ayign = N
Arow = Bstk—ALar
(a) (c)
Ayigy = N Ay = N
Apow = N Apow = N
Py Py
- -
+ +
2, 2
| |
~ ~
L L
\ high page
2z gh pag
+
& low page
local activation
= record
Py Py global activation
record

()

(d)

FIGURE 3. The high and the low pages in a number of stack configurations.

classified as high even if they are at a distance from the
stack base shorter than N pages.

Figure 4-6 show the cache line array in a number of
significant address space configurations. In the configura-
tion of Figure 4, Agrx < N, and the entire stack can be
contained in the cache. In a situation of this type, Ayigy =
Apar and A ow = Agtk — Apar (see relations 2 and 3).
All the local pages are high pages; these pages are stored in
lines |LB — AHIGH'N = ‘LB — ALAR'N to LT' All the other
stack pages (including the global pages) are low
pages; these pages are stored in lines Lp to |Lg+
Arow — lly = |Lp + (Astk — Arar) — 1|y Lines [Lg+
(Astk — Apar)|n to |Lg — Apar — 1|n are free. In the
configuration of Figure 5, N < Agrx < N + Ayigu. the
stack can be contained in the cache only partially and all
the stack pages are high or low pages candidate to be

stored in the cache. The local pages from Pr—
Ayigu + 1 to Pg+ N — 1 are at a distance from the
stack base shorter than N lines; as seen previously, these
pages are classified as high pages. It follows that lines
|Ly — Aniguln to |Lg + ApLow — 1| are shared between
the high and the low pages. Finally, in Figure 6, , Agrg >
N + Ayigh, the stack can be contained in the cache only
partially, and the stack pages Pg + A ow to Pt — AnigH
cannot be stored in the cache. Lines |Lg — Ayigu|y to
|Lg — 1|y are shared between the high and the low pages.

3. ACCESSING THE CACHE
3.1. Registers and flags

Two cache registers, the top pointer and the base pointer,
are aimed at containing the numbers Py and Py of the

THE COMPUTER JOURNAL,

VoLr. 37, No.7, 1994

$20z 14dy 01 uo 1senb Aq £64691/019/2///e191e/|ullod/woo dno-olwepeoe//:sdiy woil papeojumoq

614 L. LoPRIORE

Address
space

Pg+Aow-1

- high page

local activation
record record

low page r

Cache
line array
N-1
 Ls+ A1y
Ly = |Pyly
L, = |LB— 1|N
[Lg~Bprghly

0

global activation

FIGURE 4. Configuration of the address space and the cache line array when the stack size is smaller than or equal to the cache size.

top and the base stack pages (see Figure 1). Two further
registers, the high page register and the low page register,
contain quantities Aygy and A ow, respectively.
Three flags, the validity flag VF;, the high flag HF; and
the dirty flag DF, , are associated with each given cache line
L (Figure 7). If asserted, the validity flag V'F; specifies that
L contains valid information. In a valid, shared cache line,
the high flag HF; specifies whether this line contains a high
page (HF; asserted) or a low page (HF; clear). Finally, the
dirty flag DF; determines the memory situation of the
page P corresponding to line L in relation to the value of
VF;. As shown in Table 1, if V'F; is asserted and DF; is
clear, both L and the primary memory contain valid
information for page P; in a situation of this type, the
contents of L match that of the primary memory. If both
VF; and DF; are asserted, line L contains valid
information for page P that are not stored in the primary
memory (i.e. the contents of L have been modified since
the load of P into the cache). If VF; is clear and DF; is

Address
space

asserted, the primary memory contains valid information
for P that are not stored in the cache. Finally, if both VF,
and DF; are clear, page P contains no valid information.
When a valid line L is invalidated, if its dirty flag DF; is
asserted, the line contents must be copied to the primary
memory, to avoid the losing of the valid information
stored in that line; however, this copy action is not
required if the dirty flag is clear. In this way, the dirty flags
allow us to save primary memory accesses on line
invalidation. In contrast to classical cache architectures,
our architecture associates a significant value with the dirty
flag of a given line even if this line is not valid. As will be
clarified later, this feature allows us to save the memory
accesses required to load a page storing no useful
information the first time this page is referenced.

3.2. Accessing a data item in the cache

When the cache receives an address 4 from the central

Cache
line array
' N-1

Ly = [Py,

Ly =|Ly-1],
]LB+ALOW—1[N
ILB_AHIGH|N

10

local activation

- high page record

global activation

low page record
shared cache line

FIGURE 5. Configuration of the address space and the cache line array when the stack is larger than the cache and every stack page can be stored in
the cache.

THE COMPUTER JOURNAL,

Vor. 37, No.7, 1994

$20z 14dy 01 uo 1senb Aq £64691/019/2///e191e/|ullod/woo dno-olwepeoe//:sdiy woil papeojumoq

Stack CACHE MEMORY 615

Address
space

Pp+dop-1

Cache
line array

Ly = [Pyl

= |LB—11N =]LB+ALOW—1N
|LB - AHIGH|N

0

local activation

- high page record

global activation

low page record
shared cache line

FIGURE 6. Configuration of the address space and the cache line array when the stack is larger than the cache and there are stack pages that cannot
be stored in the cache.

processor, the first action is to ascertain whether the
corresponding page is a high or a low page and,
consequently, can be stored in the cache. To this aim,
the page number P is compared with the contents Py and
Py of the top and the base pointers as well as with the
contents Aygy and A ow of the high and the low page
registers, according to relations (4) and (5). The results of
these comparisons determine the subsequent cache
operations, as follows:

1. If the referenced page is either a high or a low page:

e translate the page number P into the number L of
the corresponding cache line (see relation 6);

e determine whether a cache miss is taking place. We
have a miss in the following cases: (1) VF, is clear
and DF,; is asserted (i.e. the primary memory
contains valid information for P that are not stored
in the cache); (ii) P is a high page, VF; is asserted
and HF, is clear (i.e. line L contains valid
information that belong to a low page); and (iii)
P is a low page, and both VF; and HF; are
asserted (i.e. line L contains valid information
which belong to a high page). In case of a miss,
load L with quantities taken from the primary
memory, set VF;, clear DF; and set or clear HF/,
according to the classification (high or low) of page
P;

e if the memory access is for read, send the contents

byte 0 | bytel oo bytef B VF, |HF, |DF,

FIGURE 7. A cache line L and its line flags.

of line L to the data selector, which will then use
offset F to extract the referenced data item and
return it to the central processor;

o if the memory access is for write, set the dirty flag
DF; and send the data item incoming from the
processor to the data selector, which will then use
offset F to store that data item in the corresponding
portion of line L.

2. Ifthe referenced page is neither a high nor a low page,
it cannot be contained in the cache, and the data
access will be carried out in the primary memory.

4. CACHE COMMANDS

Our cache is able to execute a set of commands, which are
stored in memory as part of the program code. On
fetching a command, the central processor sends it to the
cache for execution. In this way, the commands
implement a form of direct communication between the
running program and the cache. The Initialize command
clears the cache, the FExpand and Shrink commands
update the cache state on the occurrence of a change of
the stack size. Initialize has the form

Initialize Py, AGar

This command will be issued at the beginning of the
program execution, when the stack contains a single
activation record, i.e. the global activation record. Thus,
the stack size Agrk is equal to Agar and Ajag =0.
Execution of this command loads the page number of the
stack base, as specified by the parameter Pg, into the base
pointer, quantity Pg + Agar — | into the top pointer,
and quantities 0 and min(N, Agar) into the high and the

THE COMPUTER JOURNAL,

Vor. 37, No.7, 1994

$20z 14dy 01 uo 1senb Aq £64691/019/2///e191e/|ullod/woo dno-olwepeoe//:sdiy woil papeojumoq

616 L. LoPRIORE

TABLE 1.
Primary Cache
VF; DF,; memory (line L)
clear clear
clear asserted v
asserted clear v v
asserted asserted v

The symbol v indicates that the corresponding memory device contains
valid information for line L.

low page registers, according to relations (2) and (3).
Then, all the cache lines are reserved to contain low
pages, by clearing the high flag of each of them.
Moreover, as the primary memory contains no valid
information for these lines, their validity and dirty flags
are cleared.

When execution of a subprogram is started up, a new
activation record is inserted onto the stack for this
subprogram and the stack expands. The new activation
record becomes the local activation record. The Expand
command allows the running program to notify
the cache of the stack growth. This command has the
form

Expand A sx

The parameter Ajar is the size of the new activation
record. Execution considers all the valid lines storing
high pages. Each of these lines which is dirty is copied
back to the primary memory, and then, all these lines are
invalidated, by clearing the validity flag of each of them.
The contents of the top pointer are increased by Aj sr.
Then, quantities Apgy and Apow are evaluated
according to relations (2) and (3), and are stored into
the high and low page registers, respectively. The lines in
the range Lt — Agigy + | to Lt that do not store low
pages are reserved to contain high pages, by setting their
high flags. Moreover, as the primary memory contains
no valid information for these lines, their validity and
dirty flags are cleared.

Finally, when execution of a subprogram terminates,
the activation record of this subprogram is extracted
from the stack, and the stack shrinks. Control is returned
to the previous subprogram, whose activation record
now becomes the new local activation record. The Shrink
command will be used by the terminating subprogram to
notify the stack shrinkage to the cache. This command is
as follows:

Shrink ALAR? A’I,‘AR

The parameters Ajar and Afsr are the sizes of the
activation records of the terminating subprogram and
of the previous subprogram, respectively. Execution
invalidates all the lines storing high pages. The contents
of the top pointer are decreased by Apar. Then, the
parameter Ay g is used to evaluate quantities Aygy
and Ajow and store them into the high and low page

registers, respectively. The lines in the range
Lt — Ayigu + 1 to Lt that do not store low pages are
reserved to contain high pages, by setting their high flags.
Moreover, as the primary memory contains valid
information for these lines, their validity flags are
cleared and their dirty flags are asserted.

5. DISCUSSION
5.1. Primary memory update

Classical cache organizations use two different strategies
for primary memory update, store through (also called
write through) and copy back (Kain, 1989). In the store
through approach, when a given cache line is accessed for
write, the write is also carried out in the corresponding
page of the primary memory. It follows that the primary
memory always contains an updated version of the
program address space. In the copy-back approach, the
write operation is accomplished in the cache and no
primary memory access takes place. The line will be
copied back to the primary memory only when it is
selected for replacement.

Write-through has the advantage that we do not copy
an entire line even if only a small portion of this line has
been modified, however, a drawback is that the write
operations are always as slow as the primary memory. A
solution is to provide the cache with a write buffer where
to store several writes (Smith, 1982). Of course, the copy
of the contents of this buffer to the primary memory will
use free bus cycles; however, the buffer may increase the
time required to service the read misses. Essentially,
when a read miss occurs, the page involved in the miss
must be fetched from the primary memory only after the
buffer has been emptied, to avoid the reading of outdated
information if the buffer stores valid data for this page.
Alternatively, we may check whether the information
contained in the buffer are relevant to the referenced
page, or not, and wait for the buffer to be emptied only if
the check is successful. This solution has a high hardware
cost and is not viable in an on-chip implementation of
the cache.

Our cache uses an improved version of copy back
aimed at saving write cycles. When execution of a
subprogram terminates, the lines reserved for the
activation record of this subprogram contain discarded
information. As seen in Section 4, the Shrink command
simply invalidates these lines, and no copy back occurs.
This is in contrast to what happens in traditional caches,
where a line selected for replacement is always copied to
the primary memory, even if it contains no useful
information.

5.2. Cache update

When the processor references a data item that is not
resident in the cache, the page containing this data item
must be loaded from the primary memory into the cache.
In a classical copy-back cache, this fetch-on-miss must be

THE COMPUTER JOURNAL,

Vor. 37, No.7, 1994

$20z 14dy 01 uo 1senb Aq £64691/019/2///e191e/|ullod/woo dno-olwepeoe//:sdiy woil papeojumoq

Stack CACHE MEMORY 617

performed even if the access is for write, to avoid that,
after the access, information for the corresponding page
be stored partially in the cache and partially in the
primary memory. Of course, every line fetch produces
negative effects on both the memory traffic and
the processor-to-memory access time, and reduces the
performance of the processor, which has to wait for
the fetch to terminate.

Our cache takes advantage of the stack paradigm to
reduce the number of line fetches. When a new activation
record is inserted onto the stack as a consequence of a
subprogram entry, the cache contains no page of this
activation record. Of course, the first access to each of
these pages will be for write. In a traditional cache, this
access generates a miss, causing the copy of the page
from the primary memory to the cache; however, the
primary memory contains no valid data for this page, so
this fetch action produces no useful effect. In our cache,
these misses are not generated. As seen in Subsection 3.1,
this improved fetch-on-miss strategy is implemented by
extending the meaning of the dirty flags to invalid lines.
The Expand command clears the validity and the dirty
flags of the lines reserved for the new activation record,
to signify that the primary memory contains no
information for the corresponding pages. In this way,
no fetch-on-miss will take place for these lines.

5.3. Miss ratio

The probability that a given data item is referenced is
high if this data item is stored in the local activation
record at the stack top or in the global activation record
at the stack base, and is low if it is stored in a non-local
activation record at an intermediate stack position. This
aspect of program behaviour was exploited by Weicker
(1984) in the design of the Dhrystone synthetic bench-
mark and by Tanembaum (1978) in his proposal for a
machine architecture for the execution of structured
programs, for instance. It has been confirmed by several
experimental studies. Carter (1982) analysed the static
properties of 89 Pascal programs that included com-
pilers, assemblers, interpreters, text processors, numeric
and graphic programs, for a total of over 95000 lines of
source code. The programs defined 2415 procedures and
the mean number of procedures for each program was
27.13. In these programs, 40.71% of the variable accesses
were local accesses, 52.69% were global accesses and
only 6.60% were non-local accesses. Cook and Lee
(1982) studied a sample of 264 Pascal programs for the
Digital Equipment VAX 11/780 and PDP 11/45
computers. The programs consisted of 120239 lines of
code, and included over 3500 procedure and functions.
In these programs, 52.6% of the variable accesses were
local accesses, 45.4% were global accesses and 2.0%
were non-local accesses.

Let us now denote the cache miss ratio by MR, and let
MRGAR, MRy g, and MRy oc be the components of
MR corresponding to the misses originating from the

accesses to the global, the local and the non-local
activation records, i.e. MR = MRgar + MR sr +
MRyn1oc- Let us suppose that, at any given time, both
the global and the local activation records can be entirely
contained in the cache, i.e. Agar + Apar < N (the next
subsection shows that this hypothesis is realistic). In this
case, the pages of these two activation records share no
cache line. If we hypothesize that in a short transient at
the beginning of the program execution all the global
pages become resident in the cache, after this transient
we will have MRgar =0 and MR = MR sr +
MRn1oc-

As seen in Section 4, when execution of a subprogram
terminates, a Shrink command is issued which decreases
the value of the top pointer. As results from relation (6),
this change modifies of the position in the cache of all the
high pages. Thus, the previous subprogram whose
execution is now resumed will find no page of its own
address space in the cache. This gives raise to a high miss
rate, which rapidly diminishes while execution continues.
Eventually, when the whole subprogram activation
record has been loaded into the cache, we will have
MR oc =0 and MR = MRy oc- As seen above, the
non-local references are a small fraction of the total. It
follows that in the steady state the cache miss ratio will
be low.

It should be noted that the above-mentioned form of
cold start (Agarwal, 1989; Hennessy and Patterson,
1990) which takes place on subprogram termination will
not be observed when execution of a new subprogram is
started up. This is a consequence of the fact that, at
the beginning of the execution of a given subprogram,
the primary memory stores no valid information for the
pages of the activation record inserted in the stack for
this subprogram. As seen previously, the dirty flags allow
us to take advantage of this aspect of the stack paradigm
of memory references and generate no miss at the first
access to each of these pages. This is in contrast to what
happens in a traditional cache, where a high miss rate
characterizes every change in the program locality of
reference.

5.4. Cache size

Experimental studies indicate that the mean activation
record size is moderate. Batson and Brundage (1977)
analysed the static and dynamic properties of a sample of
34 Algol 60 programs for the Burroughs B5500 (static
and dynamic program properties can differ (Knuth,
1971); in the static measurements, each data reference
contributes one value, in the dynamic measurements
a data reference that is executed several times, e.g. in a
loop, contributes one value for each execution, and a
reference which is never executed contributes no value).
The memory requirements for the sample programs
ranged from 162 to 89976 48-bit words. The smallest
program contained 1 Algol block, the largest 99 blocks,
for a total of 280 blocks (34 global blocks and 246 inner

THE COMPUTER JOURNAL,

Vor. 37, No.7, 1994

$20z 14dy 01 uo 1senb Aq £64691/019/2///e191e/|ullod/woo dno-olwepeoe//:sdiy woil papeojumoq

618 L. LoPRIORE

blocks). The B5500 Algol compiler reserved two segments
for each block activation, one segment for the parameters
and the local variables (excluding arrays) and the other for
the local arrays. The measurements included the memory
requirements of the segments of both types, and the total
memory requirements of each block activation. Dyna-
mically, the mean total memory requirement for each
activation was 28.1 words (including arrays).

One could doubt the general validity of the Batson and
Brundage data on account of the upper limit of 1023
words imposed by the Burroughs B5500 architecture on
segment sizes. However, other experiments confirm that
the mean memory requirements for activation record
storage are low, and, consequently, the B5500 segment
size limit should not be a real bias (Ditzel, 1980). For
instance, Ditzel and McLellan (1982) measured the
dynamic distribution of the activation record sizes in a
sample of C programs consisting of all the standard
UNIX commands, for a total of 53197 lines of source
code. They found that the size of 91.1% of the activation
records was 31 32-bit words or less and the size of 94.5%
of the activation records was 127 words or less.

However, in most cases, the global activation record is
significantly larger than the inner activation records. This
effect follows from the common programming practice to
allocate the arrays at the global level. It has been quantified
by Gehringer in his book (1982) on capability architectures
and small objects. Let N and N denote the mean
number of arrays per global and local activation record,
respectively. By elaborating the data from Batson and
Brundage, Gehringer found Ng =11 and Ny = 0.351.
Similar results were obtained by Brookes et al. (1982) who
statically analysed a sample of 11 Pascal programs for
scientific and non-scientific applications. The program
sizes ranged from 225 to 8694 lines of source code. In the
scientific programs, the arrays defined at the global level
were 55% of the total, in the non-scientific programs the
global arrays were 86% (in contrast, in the two samples,
only 26 and 38% of the declared variables were global
variables). (An indirect confirmation of the fact that most
arrays are declared at the global level can be obtained by
observing the lifetimes of the program entities. In the
Batson and Brundage programs, the mean array lifetime
was 6.7s and the mean activation record lifetime was
32.7ms.)

We can obtain a rough estimate of the mean sizes of
the global and the local activation records by separating
the memory requirements of arrays from those of the
other activation record items. Let Ag denote the mean
dynamic activation record size (excluding arrays) and
A, denote the mean dynamic array size. Then we have
AGAR = AR + NG 'AA and ALAR = AR + NL 'AA- In
the Batson and Brundage programs, Ag was 17.9 words
and Ay, 343.1 words. Thus, Agar = 3792 words and
Apar = 138.3 words. However, the value of A, was
biased by a small number of very large arrays (the
memory demand of the largest array was 65792 words),
as is confirmed by the small value of the median of the

array size (16 words). In fact, 80% of the arrays were
smaller than 50 words and 90% were smaller than 122
words (in these two cases, we have Agar = 567.9 words
and Agar = 1359.9 words, respectively).

5.5. Utilization of the cache storage space

The considerations presented so far allow us to conclude
that a cache of, for instance, 10 Kbyte, will be usually
able to store both the local and the global activation
records of the running program. In a few cases, the total
size of these activation records will be substantially larger
than the cache size, and in other few cases these
activation records will be substantially smaller than the
cache. However, our cache is always able to profitably
use its own storage resources. In particular:

o if Agar + Apar > N, the mechanism of the shared
cache lines makes it possible to store a high (low) page
in the cache as long as the low (high) page mapping
into the same line is not referenced.

o if Agar + Apar < N, the cache lines not used for the
global and the local pages will be reserved for the
pages of one or more non-local activation records
stored at low stack positions, near the stack base (the
motivation is that the lifetimes of these activation
records are longer than the lifetimes of the activation
records near the top).

5.6. Commands

Of course, the cache commands are a source of system
performance degradation, in both terms of the space
required to store them and the increase in the memory
traffic due to the need to fetch them. A single /Initialize
command is required for each program, so the costs
connected with this command are negligible. Let C
denote the mean size of the subprogram code segments
(excluding commands), and let Dy and Dg denote the
memory size of the Expand and Shrink commands.
Moreover, let p denote the increase of the code segment
size due to the storage of these commands,
p = (Dg+ Dg)/C. As seen in Section 4, the command
parameters are activation record sizes. We will hypo-
thesize that one such size can be codified in two bytes.
This hypothesis is realistic; for instance, in the Ditzel and
McLellan’s distributions (1982) the size of 99.3% of the
activation records was 512 32-bit words or less (of
course, it is always possible to express activation record
sizes in terms of a multiple of 2" bytes, so reducing the
memory requirements of the parameters by » bits). If a
command operation code can be codified in one byte, we
obtain D = 3 bytes and Dg = 4 bytes. In the Batson and
Brundage programs, C was 93.1 48-bit words statically,
and 38.8 words dynamically. For these programs, we
obtain p =1.3% statically and 3% dynamically. Of
course, the static data are significant for the memory
requirements for code storage, and the dynamic data for
the memory traffic’generated by the program execution.

THE COMPUTER JOURNAL,

Vor. 37, No.7, 1994

$20z 14dy 01 uo 1senb Aq £64691/019/2///e191e/|ullod/woo dno-olwepeoe//:sdiy woil papeojumoq

Stack CACHE MEMORY 619

5.7. Strategies for the compiler

The activity of our cache is controlled by the software.
This means that the compiler has to insert the cache
commands at appropriate points of the machine code
translation of the source program. Putting more burden
on the compiler is a modern tendency on which several
recent architectures rely, e.g. reduced instruction set
computers (Bradlee ez al., 1991; Kane and Heinrich, 1992).

As seen in Section 4, the compiler must generate the
Initialize command in the program initialization part.
The command parameters are the size of the global
activation record, that can be evaluated statically, and
the page number of the stack base, that is available at run
time in the stack pointer register.

A simple compiler strategy for the Expand and Shrink
commands is to insert them in the machine code
translation of each subprogram, in the subprogram
prologue and epilogue, respectively. Thus, Expand will
be executed as part of the actions performed when a
subprogram is entered. This command has a single
parameter, i.e. the size of the activation record of the new
subprogram. In a number of languages, e.g. Pascal and
C, this size is known statically. This is not the case for
languages, such as Algol 68 and Ada (Ada is a registered
trademark of the US Government, Ada Joint Program
Office), featuring variables whose size can only be
determined at run time, e.g. dynamic arrays (Ghezzi
and Jazayeri, 1987). In these languages, the memory
requirements of the activation record of a given
subprogram are only known when this subprogram is
activated. However, even in a language of this type, an
important property is that the activation record sizes
never vary during subprogram execution. This allows us
to use the result of the size evaluation performed when a
subprogram is activated not only for stack management
purposes, but also in the Expand command to control the
cache activity.

Finally, Shrink has two parameters, i.e. the size of the
activation records of the terminating subprogram and of
the subprogram whose execution is being resumed. The
values of both these parameters are always computed at
run time as part of the information needed to update the
stack. We now require that the compiler uses the results
of these computations in the Shrink command to manage
the cache space.

A compiler directive may be provided, stating that the
Expand, Shrink command pair should not be generated
for a given subprogram. Consequently, no cache space
will be allocated for this subprogram, every memory
reference issued by the subprogram will be carried out in
the primary memory and the cache will generate no miss
on subprogram termination to restore the state of the
previous subprogram. In this way, the programmer can
take advantage of an explicit software control over the
cache activities. In our cache, the activation record is the
basic unit of storage space management. This contrasts
with what happens in traditional caches, where the line is

the unit of cache space management, and lines are
allocated and made free automatically, on the occurrence
of the cache misses.

Our cache uses the lines not reserved for the local and
the global activation records to store the pages of the
non-local activation records near the stack base. The
compiler can modify this policy and use these lines for
the pages of the non-local activation records near the
top. This can be useful, for instance, if a subprogram
generates a call to another subprogram with moderate
memory requirements, e.g. a small library routine; by
letting the activation record of the calling subprogram
reside in the cache during execution the routine, we will
save the cache misses required to restore the state of the
caller on termination of the routine. To obtain this effect,
the compiler will generate a single Expand, Shrink
command pair, on the beginning and on termination of
the execution of the first subprogram, to reserve and free
the cache space required for the activation records of
both this subprogram and the routine.

6. CONCLUDING REMARKS

We have approached the problem of reducing the
memory bandwidth requirements of programs written
in block-structured, high-level languages by means of a
cache memory able to store portions of the stack used in
the implementation of these languages. Our main goals
have been:

e To decrease the complexity of the logic implementing
the functionalities of cache space addressing and
management.

e To increase the cache performance by taking
advantage of a compile-time knowledge of salient
aspects of the program memory behaviour.

We have proposed the architecture of a stack cache
aimed at satisfying these requirements. In this architecture:

e The address space is partitioned in pages. The pages of
the program stack area are classified into high and
low, according to their position near the stack top and
base, respectively. Usually, the high pages include all
the pages of the local activation record, and the low
pages include all the pages of the global activation
record. Each cache line will be reserved to contain
a high or a low page. In a small cache, a number of
lines will be shared between the high and the low
pages.

e Translation of a page number into the corresponding
line number is carried out by means of a form of direct
mapping (Hill, 1988), taking into account the
classification (high or low) of the page being
referenced.

e A set of cache commands implements a form of direct
communication between the running program and the
cache. The compiler will insert the commands at
appropriate points in the program object code, to

THE COMPUTER JOURNAL,

VoL. 37, No.7, 1994

$20z 14dy 01 uo 1senb Aq £64691/019/2///e191e/|ullod/woo dno-olwepeoe//:sdiy woil papeojumoq

620 L. LoPRIORE

transmit the cache information concerning the
program structure and usage of memory resources.

We have obtained the following results:

e The direct mapping of memory addresses into
cache addresses and the software control over the
cache operations decrease the complexity of the cache
management functionalities significantly. The resulting
saving of cache logic will be of particular interest in an
on-chip implementation of the cache with the processor.

e The selection, performed at the cache addressing level,
of the stack pages that have a high probability of
being referenced decreases the cache miss ratio.
Measurement studies indicate that these pages
belong to the local and the global activation records.

e A partial copy-back strategy reduces the memory
traffic by not restoring the state of the primary
memory when a line is selected for replacement, if this
line contains a discarded page belonging to the
activation record of a terminated subprogram. On
the occurrence of a miss involving a line of this type,
the processor will not have to wait for the copy-back
to complete, for enhanced performance.

e A partial fetch-on-miss strategy decreases the number
of line fetches by not loading the pages of the
activation record of a new subprogram at the first
reference to each of them.

Our cache architecture implements a form of software
control over the cache activities. This is certainly not a
new idea; it has been widely used in the implementation
of data prefetching (Klaiber and Levy, 1991; Mowry
et al., 1992) and cache coherency protocols for multi-
cache systems (Lopriore, 1989; Owicki and Agarwal,
1989), for instance. We believe this idea deserves fresh
consideration in the implementation of a stack cache for
block-structured programs.

ACKNOWLEDGEMENTS

The work described in this paper has been supported by
the National Programme on “Information systems and
parallel computing” of the Italian National Research
Council, and by the Ministero dell’Universita della
Ricerca Scientifica Tecnologica, Italy.

REFERENCES

Agarwal, A. (1989) Analysis of Cache Performance for Operating
Systems and Multiprogramming. Kluwer, Boston, MA.

Batson, A. P. and Brundage, R. E. (1977) Segment sizes and
lifetimes in Algol 60 programs. Commun. ACM, 20, 36-44.

Bradlee, D. G., Eggers, S. J. and Henry, R. R. (1991) The effect on
RISC performance of register set size and structure versus code
generation strategy. In Proc. Eighteenth Annual Inter. Symp. on
Computer Architecture, pp. 330-339, Toronto, Canada.

Brookes, G. R., Wilson, I. R. and Addyman, A. M. (1982) A
static analysis of Pascal program structures. Software—
Practice and Experience, 12, 959-963.

Carter, L. R. (1982) An Analvsis of Pascal Programs. UMI
Research Press, Ann Arbor, MI.

Cook, R. P. and Lee, 1. (1982) A contextual analysis of Pascal

programs. Software— Practice and Experience, 12, 195-203.

Ditzel, D. R. (1980) Program measurements on a high-level
language computer. Computer, 13(8), 62-71.

Ditzel, D. R. and McLellan, H. R. (1982) Register allocation for
free: the C Machine stack cache. In Proc. Symp. on Architectural
Support for Programming Languages and Operating Systems,
Palo Alto, CA. In Computer Architecture News, 10(2), 48—56.

Farrens, M. K. and Pleszkun, A. R. (1989) Improving perform-
ance of small on-chip instruction caches. In Proc. Sixteenth
Annual Int. Symp. on Computer Architecture, Jerusalem, Israel.
In Computer Architecture News, 17(3), 234-241.

Gehringer, E. F. (1982) Capability Architectures and Small
Objects. UMI Research Press, Ann Arbor, MI.

Ghezzi, C. and Jazayeri, M. (1987) Programming Language
Concepts, 2nd Edition. John Wiley, New York, N.Y.

Hennessy, J. L. and Patterson, D. A. (1990) Computer
Architecture: A Quantitative Approach. Morgan Kaufmann,
San Mateo, CA.

Hill, M. D. (1988) A case for direct-mapped caches. Computer,
21(12), 25-40.

Hwu, W. W. and Chang, P. P. (1989) Achieving high
instruction cache performance with an optimizing compiler.
In Proc. Sixteenth Annual Int. Symp. on Computer Archi-
tecture, Jerusalem, Israel. In Computer Architecture News,
17(3), 242-251.

Kain, R. Y. (1989) Computer Architecture Software and
Hardware. Prentice-Hall, Englewood Cliffs, NJ.

Kane, G. and Heinrich, J. (1992) MIPS RISC Architecture.
Prentice-Hall, Englewood Cliffs, NJ.

Klaiber, A. C. and Levy, H. M. (1991) An architecture for
software-controlled data prefetching. In Proc. Eighteenth
Annual Int. Symp. on Computer Architecture, pp. 43-53,
Toronto, Canada.

Knuth, D. E. (1971) An empirical study of FORTRAN
programs. Software— Practice and Experience, 1, 105-133.
Lopriore, L. (1989) Software-controlled cache coherence proto-
col for multicache systems. Inf. Proc. Lett., 33(3), 125-130.
Lopriore, L. (1993) A data cache for Prolog architectures.

Future Generation Computer Systems, 9, 219-234.

Matick, R. E. (1989) Functional cache chip for improved
system performance. IBM J. Res. Dev., 33, 15-32.

Mowry, T. C., Lam, M. S. and Gupta, A. (1992) Design and
evaluation of a compiler algorithm for prefetching. In Proc.
Fifth Int. Conf. on Architectural Support for Programming
Languages and Operating Systems, Boston, MA. In Computer
Architecture News, 20(Special Issue), 62—73.

Owicki, S. and Agarwal, A. (1989) Evaluating the performance
of software cache coherence. In Proc. Third Int. Conf. on
Architectural Support for Programming Languages and
Operating Systems, Boston, MA. In Computer Architecture
News, 17(2), 230-242.

Pratt, T. W. (1984) Programming Languages: Design and
Implementation, 2nd edn. Prentice-Hall, London.

Silberschatz, A., Peterson, J. L. and Galvin, P. (1991) Operating
System Concepts, 3rd edn. Addison-Wesley, Reading, MA.

Slater, M., Editor (1992) 4 Guide to RISC Microprocessors.
Academic Press, San Diego.

Smith, A. J. (1982) Cache memories. Comp. Surv., 14,473-530.

Smith, J. E. and Goodman, J. R. (1985) Instruction cache
replacement policies and organizations. /EEE Trans. Comp.,
C-34, 234-241.

Stone, H. S. (1993) High-Performance Computer Architecture,
3rd edn. Addison-Wesley, Reading, MA.

Tanenbaum, A. S. (1978) Implications of structured programming
for machine architecture. Commun. ACM, 21, 237-246.

Watt, D. A. (1993) Programming Language Processors.
Prentice-Hall, New York, NY.

Weicker, R. P. (1984) Dhrystone: a synthetic systems
programming benchmark. Commun. ACM, 27, 1015-1030.

THE COMPUTER JOURNAL,

VorL. 37, No.7, 1994

$20z 14dy 01 uo 1senb Aq £64691/019/2///e191e/|ullod/woo dno-olwepeoe//:sdiy woil papeojumoq

