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The behavior of random graphs with respect to graph partitioning is considered. It is shown that, for a
random graph with n vertices and with expected degree exceeding a constant times In n, the graph cannot
be partitioned well, i.e. a random partition is likely to be almost as good as an optimal partition.
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Graph algorithms are often tested using random graphs
as input (see, e.g. Ganley and Heath, 1994). In the
simplest and most common model (Bollobas, 1985), R, ,
denotes the class of random graphs with n labeled
vertices in which each edge is present with probability p.
A natural question is whether such random graphs are
useful for testing algorithms for various graph optimiza-
tion problems. Turner (1986) considers the problem of
minimizing the bandwidth of a linear ordering a graph,
which is the length of the longest edge under that
ordering. He shows (Turner, 1986, theorem 2.2) that the
bandwidth of a random graph from R, , almost certainly
exceeds (1 — e)n for any constant e > 0; that is, with
respect to bandwidth minimization, a random ordering of
a large random graph is almost as good as an optimal
ordering. Thus, random graphs are not useful in testing
bandwidth-minimization algorithms. McDiarmid and
Miller (1991) show analogous results for an extension of
bandwidth to multi-dimensional lattices. In addition, a
plethora of results exist regarding the behavior of
random graphs with respect to colorability, expected
clique sizes, and many other combinatorial features.
These results can be used similarly to determine the
applicability of random graphs for testing algorithms for
the respective problems. The reader is referred to
Bollobas (1985) for details on these results.

In this paper, we prove that a similar phenomenon
occurs with respect to partitioning a random graph. The
problem of partitioning a graph consists of dividing the
vertices of the graph into subsets of cardinality not
exceeding some bound K, such that the number of edges
whose endpoints lie in the different subsets is minimized.
More precisely, the problem of graph partitioning is the
following:

Given an undirected graph G = (V| E) and a set size K,
find a partition of V into disjoint subsets V|, V,,,V,,
such that |{(u,v) : (u,v) € E,ue Vi, veV, i#j}is
minimized, subject to |V;| < K for all i, 1 <i< m.

The corresponding decision problem is NP-complete (see
Garey and Johnson, 1979, p. 209). In this paper, we

prove that a random graph cannot be partitioned well, in
the sense that a random partition is almost as good as an
optimal partition. A similar result with respect to graph
bisection appears in Bui (1986).

For simplicity, assume that the number of vertices in
the graph is an integer multiple of K. Suppose
G=(V,E) is a random graph from R,, Let
M= {V,V,...,V,} be a random partition of V in
which every subset V; contains exactly K vertices. An
edge whose endpoints lie in different subsets is external,
Let ¢(IT) be the number of external edges in the partition
II. Let ¢(G) be the number of external edges in an
optimal partition of G.

The ‘number of non-external edges (both of whose
endpoints lie in the same subset) in II falls between 0 and
n/K(K/2). The number of external edges falls between 0

and
n n( K
(1))
=n(n— K)/2.

The expected number of external edges in a random
partition IT is

E[p(IT)] = pN.

We proceed to derive conditions under which a
random partition is almost as good as an optimal
partition of G (Corollaries 3 and 4). The following lemma
bounds the probabiilty that ¢(II) is much below its
expected value.

Constrain partitions of G to n/K subsets. Let ¢ = ((n) be
a real-valued function of » such that ((n) <
Then

Lemma 1 Let G be a random graph from R, ,.
1.

In Pr{¢(G) < (1 = {)pN] <nlnn—ninK

Csz ln_n_nan
4(1—-p) 2 2K

+0(1).
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Proof Let II be a random partition of G into n/K
subsets. The number of external edges ¢(IT) follows a
binomial distribution with parameters N and p, i.e.

N : r
prio( =& = () )1
The probability of interest is a tail of this distribution, to
wit,

(=OpN / AN\ .
Prion < 1-0pN) = > () )r'1-p
i=0
An upper bound on this probability can be obtained
from Hoeffding’s inequality (see Cormen et al., 1990,
p. 126), which asserts

Pr (E[6(IT)] — o(I1) > r] < e /450017
for arbitrary r. Substituting E[¢(p)] = pN and selecting
r = (pN, we have

Pr[p(IT) < (1 — ¢)pN] < e CPN/A(-p).

There are n!/(K!)" ¥ possible partitions IT of G into n/K
subsets of size K. For the optimal layout of G to have at
most (1 — ¢)pN external edges, at least one of these
n!/(KN"X partitions must have (1 —()pN or fewer
external edges. Hence,

ale ¢ PN/A(1-p)
Taking natural logarithms, we obtain
,
n C°pN
InP < (I - < Inn!—=InK!—- = .
nPr6(G) < (1 - OpN] < Innl — pln Kl — 22t

Applying Stirling’s approximation for the factorial
function (Graham et al., 1989, p. 467), we have

InPr(6(G) < (1= OpN] < nlnn —n + 2"

n InK
_E<KIHK_K+T+O(1)>

¢’pN
— + O(1
ai—p o
Csz Inn
<nlnn— K — —
ninn —nln Ai=p) >
nin K
— o(1
since the O(1) term in the approximation is positive.*
The lemma follows. O

Our central result is Theorem 2, which identifies
conditions under which Pr [¢(G) < (1 — {)pN] is asymp-
totically 0.

*We use the standard asymptotic notation O( f(n)) to denote a
function that is bounded above by a positive constant factor times f(n)
for n sufficiently large. Similarly, ( f(n)) denotes a function that is
bounded below by a positive constant factor times f'(n) for n sufficiently
large. The notation g(n) = w( f(n)) means lim, _. . g(n)/f(n) = oc.

TheoreM 2 Let G be a random graph from R, ,.
Constrain partitions of G to n/K subsets, where K > 2.
Let ¢ = ((n) be a real-valued function of n such that
¢(n) < 1. Suppose
8(Inn —InK) + ¢

Cn
for some positive constant ¢ and » sufficiently large. Then
Pr(¢(G) < (1 =(pN] —0

I>p>

as n — oQ.

Proof By Lemma 1,
InPr[¢(G) < (1 —¢)pN] <nlnn—nlnK
o L T2 o).
-, 2 2k oW

Using the fact that N > n2/4 and the bounds on p, we
obtain

InPr([¢(G) < (1 —¢)pN]<nlnn—nlnK
¢? (16(1nn —InK) +c) n
2

4(1-p) ¢n
Inn nInkK

—_—— o(1

2 2K +0(1)

<nlnn—ninK — n(lnn — In K)

cn Inn ninkK

— — 1
8 + 2 2K +0(1)
ecn Inn ninkK

"% 7 kO

which approaches —oc as n — oc. Hence
Pr{o(G) < (1 -¢pN| =0
as n — oo, as desired. O
As a corollary, we obtain this special case.

CoroLLARY 3 Let G be a random graph from R, ,
where 1 > p > 0. Constrain partitions of G to n/K
subsets, where K > 2. Suppose that e is a positive
constant and that the expected degree of G is w(lnn).
Then

Pr[6(G) < (1 — ()pN] — 0
as n — oc.
Proof The expected degree of Gisp(n — 1) = w(lnn).

Hence we have that p = w(Inn/n). When n is sufficiently
large, we have

8(Inn —InK) +c¢
p> 2 b
€n

for any positive constants ¢ and e. Choosing ¢ =€ in
Theorem 2, we conclude

Pri¢(G) < (1 -€)pN] =0

as n — oo, as desired. O
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In other words, if the degree of a random graph is slightly
greater than logarithmic, then the number of external
edges in an optimal partition is asymptotically almost the
same as the number of external edges in a random
partition.

If we want the degree to be exactly logarithmic, we
obtain a slightly weaker corollary.

CoroLLARY 4 Let G be a random graph from R, ,,
where p =T7lnn/n for some constant 7. Constrain
partitions of G to n/K subsets, where K > 2. Suppose
that e is a positive constant. If 7 > 8/¢>, then

Pr{o(G) < (1 - €)pN] — 0
as n — oc.

In particular, if 7> 32, then the probability that an
optimal partition of G has fewer than half the expected
number of external edges in a random partition is
asymptotically 0.

From Corollaries 3 and 4 we conclude that random
graphs, in the standard model we study here, are not
useful for testing heuristics for the graph partition-
ing problem. Experimental evidence supporting this

conclusion is presented in Ganley and Heath (1994). In
that work, some alternate random graph models based
on geometry do prove useful in testing heuristics.
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