Book Reviews

L. M. G. Feus & H. B. M. JONKERS
Formal Specification and Design. Cambridge University
Press, 1992, £29.95, 335pp hardbound, ISBN 0 521 43457 2

Gradually ‘Formal Methods’ are being accepted as a
‘good thing’ but as yet they have not made a significant
impact on the production of software. In principle the
use of formal methods means that ‘correct’ programs can
be shown to be correct (with respect to an agreed
specification), or alternatively that programs can be
derived in such a way that they are guaranteed to be
consistent with a given formal specification. For a
program/system to be correct all its necessary parts
also have to be correct. Ideally an initial specification
should only indicate what is to be done, not how it is to
be achieved (i.e. it should not suggest a particular design)
and hence is, of necessity, abstract. Consequently, the
gap between an initial specification and a final
implementation is conceptually BIG. This is often cited
as the reason why formal methods have not been
adopted as readily as some of us would have hoped.

Various attempts have been made to reduce this gap
and thus make it easier to bridge. The use of VHLL's is
one approach that has been tried. Another, is to require
that the specifications are written in such a way as to
make the extraction of a correct design (for an imple-
mentation) relatively automatic. This latter approach
can be criticised—it injects a considerable ‘how’
component into what the purists argue should be a
‘what’ specification. Nevertheless, any piece of research
that helps to ‘get it right’ more often should be welcomed
as should any book which makes this work accessible to
a wider audience. (Although it is nowhere clearly stated,
I presume that the target readership is not confined to the
computer science research community who, via journal
publications, technical reports and conference papers,
have already had sight of much of this material—and,
indeed, more up-to-date variants—albeit in a more
condensed and less discursive form.)

Essentially the book is about the language COLD.
Common Object-oriented Language for Design. a language
developed, as part of an ESPRIT project called METEOR,
by Philips in Eindhoven. The language incorporates both
the algebraic and state-based styles of specification as
well as facilities to assist in the description of designs. But
beware, the algebraic specifications, though superficially
similar to those of OBJ etc., do not give rise to initial
algebras. Instead, they require inductive or algorithmic
definitions and axioms which disallow certain interpreta-
tions rather than rely on (implicit) minimality. Similarly,
the state-based specifications do not look at all like Z or
VDM, but include axioms that indicate the required
properties of the operations being specified.

The book is appropriately organised in three parts; the
first being devoted to algebraic specifications, the second

to state-based specifications, and the third to more
advanced features of COLD and associated theory. It is
based on courses given to graduate students in Holland
and assumes some familiarity with the mathematical
notations and terminology used in formal computer
science. This may ‘throw’ the ill-informed reader; this is a
specialist book, but very readable by anyone familiar
with the subject area and who wishes to know about
COLD.

Some aspects could be explained more succinctly-—
BNF could be usefully employed in several places—and
elsewhere there is an unfortunate overloading of notation
(here p! does not mean p factorial, or that p is unique. or
that p is an output variable), but these are minor criticims
and do not detract from the flow of the presentation. The
style of the COLD definitions and axioms provides a nice
link with computability theory and, swimming against
the tide, reinforces the case for retaining the more
theoretical aspects of computing in our courses. A
graduate computer scientist, or someone of an equiva-
lent professional standing, who is involved with software
production should find this book both readable and
interesting.

D. J. CookE
Loughborough

STEVE SCRIVENER

Computer-Supported — Cooperative Work. Ashgate
Publishing. 1994. ISBN 0-291-39812 X. £45.00. 286 pp.
hardbound.

Recently, a number of computer products and services
have been announced that claim to offer support for
collaborative and group work. These range from systems
for structuring and coordinating formal work processes
through to video facilities for enhancing informal
communication between personnel. The design and
evaluation of such technology has been the focus of
much academic research in the last few years, generally
collected together under the term Computer-Supported
Cooperative Work (CSCW). With the imminent possi-
bility of deploying collaborative technologies within
organizations, it appears timely to bring together the
relevant experiences of CSCW researchers and report
these to a more general audience. This was the intention
of a seminar held in London in 1992. Following from this
meeting, Steve Scrivener has compiled a varied and lively
collection of contributions on CSCW.

CSCW is a very broad topic that includes research on
work practices by sociologists and anthropologists, new
computer architectures and network applications by
computer scientists, and teamwork by social psycholo-
gists. Therefore, drawing together a general collection of
papers on the subject presents considerable difficulties

Tue COMPUTER JOURNAL,

Vor. 37, No.7, 1994

$20z 14dy 01 uo 1senb Aq 98G69Y/119/2/ /2 €/e191E/|uloo/ W0 dno-olWwepeoe//:sdiy woij papeojumoq

