646 Book REVIEWS

the energy landscape as if they were a problem for
Hopfield nets, although it is only because of their
existence that patterns are retrievable. So-called spur-
ious minima are the problem and probabilistic networks
help to shake the net from these (relatively shallow)
minima, to deeper minima, not to a global minimum as
the author implies.

Since the text is for the technically-minded general
reader it presumes no particular mathematical knowl-
edge. However, little attention is paid to the difficulties
which the absence of such knowledge might present. In
his earliest exposures to mathematical derivations in the
text, the general reader is left without even the odd
‘where’ or ‘therefore’ to light the way. Unlike many such
texts, no mathematical appendix is offered for reference.

The book has the potential for confusing and
misleading, and is not one which I would recommend
as a starting point.

T. W. RouteN
De Montfort University

RoGER S. PreEssMaN (adapted by DARRELL INCE)
Software Engineering: A Practitioner’s Approach.
McGraw-Hill. 1994. ISBN 0-07-707936-1. £22.95.
801 pp. softbound.

This is the European, and scarcely changed, version of
the third edition of Pressman’s Softwcre Engineering.
Current trends in this subject point to textbooks weigh-
ing several tons by the next millenium, but the increment
from the (1992) international third edition to this one is
tiny. Darrel Ince has added a few words on software
quality, including ISO 9001 (a topic as fascinating as
watching paint dry) and has rewritten the section on
formal methods, mostly Z (wisely taken from Spivey’s
1990 paper in IEEE Software for the international
edition). ‘European’ does not mean ‘British English’.

Pressman’s original text was born in 1982, and has
thriven and spread ever since. But, as the weight of these
general texts increases, their content thins. If you wanted
to know about any of the topics covered—say, database
normalization, data structures, object-orientation, or
CASE—you would not read a book on ‘Software
Engineering’. And if you wanted a general overview of
Software Engineering, you would not read 800 pages.
However, if you really do want one of these massive
tomes, Pressman’s is as good as any and better than
some.

But what has Ince done for the book? Not enough to
justify a new edition; and worse: once again we have
claims for rigour made by a writer who has not exercised
even care. The term ‘subset’ is introduced without
definition, and the subset and proper subset operators
are given the interpretations of each other. The union
operator is carelessly called ‘intersection’ and defined
thus: The ... operator takes two sets and forms a set that
contains all the elements in the set with duplicates

eliminated. The conditional (‘if ... then’) operator is (as
ever) misleadingly called ‘implies’ and is introduced
without definition. On sequences, we read: Since a
sequence is set of pairs, then all the set operators
described in the previous subsection are applicable. If
you can ignore the syntax of that sentence, and think
about its meaning, you will appreciate that ‘applicable’ is
used in a Pickwickian sense: without closure. A sequence
of n things is defined as a set of n ordered pairs, the first
members of those pairs being the integers 1 to n. So you
can form (say) the union of two sequences, but it is
unlikely itself to be a sequence. As it happens, Ince’s
carelessness provides him with a logically impeccable
defence. The subsection on sets is not ‘the previous
subsection’, which is about logic, and describes no set
operator.

In the international edition, Pressman wisely says that
[a]mbiguity, incompleteness, and inconsistency can be
discovered and corrected more easily using formal
methods. Ince substitutes the claim that there is little
possibility of ambiguity, specifications can be mathemati-
cally validated for contradictions and incompleteness, and
vagueness disappears completely. If you are waiting for
Ince’s proof procedure for set theory, don’t hold your
breath. Indeed, why not fill in the time by working as a
much needed technical proof-reader for McGraw-Hill?

ADRIAN LARNER
De Montfort University

Guss J. RAMACKERS

Integrated Object Modelling. Thesis Publishers
Amsterdam. 1994. ISBN 90-5170-244-2, 255 pp. soft-
bound.

In this book, the author has provided a clear exposition
of an executable (and therefore validatable) formaliza-
tion of IS/IT business analysis systems. A large
proportion of the book attempts to prove that the
proposed modelling formalism is beyond the reach of
most case tools and thus requires an extension of such
technologies. The major benefit of the proposed
approach over existing case technologies is the facility
to allow several different views of a system corre-
sponding to the various users of such systems.

The described modelling framework combines all
the familiar business and structured/MIS diagrammatic
notations, as well as textual descriptions (as alternative
representations). Underlying this formalism is a mathe-
matical structure known as a high level Petri Net. This
is essentially an algebraic extension of basic Petri
Nets allowing for the denotation of objects a la O-O
analysis/designs. Thus in addition to validation, i.e. Petri
Nets are executable, due to the mathematical semantics
of Nets, verification of internal consistency is also
facilitated.

As a modelling paradigm there is no doubt that the
present approach makes a significant advancement in

THE COMPUTER JOURNAL,

VoL. 37, No.7, 1994

$20z 14dy 01 uo 1senb Aq Z9691/919/2// € /191e/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

