An Object-oriented Systems Modelling Method
based on the Jackson Approach

DaNNY C. C. Poo AND SHWU-Y1 LEE

Department of Information Systems and Computer Science, National University of Singapore,
Kent Ridge Road, Singapore 0511

This paper proposes an object-oriented information systems development method that is based on the
modelling approach of the Jackson method. Like the Jackson method, the proposed method separates the
consideration of the real world subject matter about which a system is to compute from the function to be
provided by a system for its users. Events and functions are the main information sources by which
domain objects and other function-related objects are identified and modelled. The modelling approach of
the proposed method is thoroughly discussed with the use of a Student-Records System as the mainline

example.

Received June 10, 1994, revised September 15, 1994

1. INTRODUCTION

The lack of well-defined management strategy and the
piecemeal development approach of traditional systems
development methods had posed a number of problems
for practitioners. Martin (1983) noted the following
shortcomings inherent in the traditional approach:

e The ambiguities inherent in narrative descriptions
have led to poor requirements specification of systems.

o The lack of rules or heuristics to assist developers in
transforming a requirements specification into a
design specification results in poor designs.

o There are difficulties in system maintenance.

e Poorly designed systems results in more time and
effort spent in maintaining systems. Consequently,
less resources can be devoted to new applications
leading to backlog.

The response to these problems has been the introduc-
tion of methods for constructing software systems based
on a system development life cycle framework. While
methods provide a systematic approach to developing
software systems, they do not necessarily lead to the
production of maintainable systems. The derived systems
may not necessarily have provisions for accommodating
future changes. Software engineering practices that
promote the localization of effects of change through
principles like encapsulation, loose coupling and high
cohesion have been seen as essential in design models by
most software practitioners (e.g. Meyer, 1988; Booch,
1991; Jacobson, 1992). Software development methods
must therefore provide developers with not only a
systematic step-by-step approach to producing systems
but also enable the construction of maintainable systems
right from the start in the modelling process. To this end,
the object-oriented design technique has made significant
contributions. Many object-oriented methods have
been proposed over the years (e.g. Meyer, 1988; Booch,
1991; Wirfs-Brock and Wilkerson, 1989; Coad, 1992;

Jacobson, 1992; Martin and Odell, 1992). These methods
provide notations and guidelines for developers to create
and implement a model of the application domain. These
methods generally address the following concerns:

1. How to create an object model. Most models
recommend the use of nouns as the starting point in
object model construction. The Entity-Relationship
modelling technique is generally used as the base
technique for structuring the object model. Other
modelling tools such as data flow diagrams and state
transition diagrams supplement the core object
model. The problem with this approach is the
difficulty in sieving out inappropriate objects when
the list is large. Inter-relating various models that do
not have a direct connection with one another is
another problem that these methods suffer.

2. Software maintenance. Most of these methods address
the development approach very well. However, a
system produced using these methods would only
achieve software maintainability from the advantages
attributed to the strict adherence of software
engineering principles such as encapsulation and
loose coupling between parts advocated in the
object-oriented paradigm. Functional requirement
changes, often seen as the major contribution to
changes in a system, are not well provided for in these
methods.

The development approach advocated by the Jackson
method (see Jackson, 1983; Layzell and Davis, 1993)
separates the consideration of real world subject matter
about which a system is to compute from the functions to
be provided by a system for its users. The advantage of
this approach is the ability to separate the volatile func-
tional requirements of a system from the stable subject
matter that defines a system domain. In this way, the
effect of change could be localized within the respective
functions when changes in functional requirements arise.

THE COMPUTER JOURNAL,

Vor. 37, No.8, 1994

$20z 14dy 01 uo 1senb Aq z8186£/699/8//E/e101e/|uloo/woo dno-olwepeoe//:sdiy woil papeojumoq

670 D. C. C. Poo aND S.-Y. LEE

A high level of system maintainability can thus be
achieved. However, since the Jackson method is not
an object-oriented method, much of the advantages
available in the object-oriented approach are not
supported.

In this paper, we discuss an object-oriented software
development method that aims to address the above two
concerns. The development approach of the proposed
method is inspired by the approach advocated by the
Jackson method (Jackson, 1983). As Layzell (Layzell and
Davis, 1993, p. 14) pointed out ‘the most relevant aspect
of real world subject matter is when something happens
to it (or the occurrence of an event)’. The proposed
modelling process thus begins with the identification of
events. From events, a set of objects known as the
domain objects are identified. Functions to be provided
by a system are separately considered. With these
functions, other types of objects that closely model the
requirements of functions are also identified and added
onto the initial model created through the events. The
final framework of the resultant system model is thus
made up of a set of interacting objects.

The following sections of this paper will discuss the
proposed object-oriented method. They are organized in
the following manner:

Section 2: overview of the proposed method.

Section 3: event modelling.

Section 4: function modelling.

Section 5: consolidation of objects identified through

events and functions.

e Section 6: dynamic behaviour specification through
use scenarios.

e Section 7: Conclusion.

Student declares Major

Like other methods, the proposed method is not
concerned with how user requirements are established.

2. THE MODELLING APPROACH

The proposed development method has five steps. In step
1, a list of events and functions is drawn out with the help
of an augmented context diagram. In step 2, an event
script is described for each event identified in step 1. Two
types of objects are identified in this step, i.e. domain
objects and supporting objects. Further objects are
identified by considering the functions that a system is
required to support. This is done in step 3 through
function scripting. Objects and their relationships are
incrementally identified through the first three steps.
Step 4 is a consolidation step. It examines the objects
identified in the previous steps and produces a
consolidated set of objects that would appropriately
represent the domain under investigation. Step 5 con-
siders how a system will be used and, through the use of
use scenarios, it defines the interactions among objects.

3. EVENTS AND FUNCTIONS

The method begins with the construction of an
augmented context diagram. An augmented context
diagram is used to illustrate the source of events in
terms of event triggers. Functional requests representing
the functional requirements that a system has to fulfil for
the users are also included in the diagram. Event triggers
and functional requests reflect the happenings in the real
world (see also Layzell and Davis, 1993). By modelling
event triggers and functional requests in an augmented
context diagram, we aim to derive and express the
responsibilities of a system.

Academic Advisor requests
for Student Grade Report

Student registers for Class

Student

Student changes Qlass

Student requests for
Student Transcript
[Student requests for Student Transcripl

Student Class Schedule
udent Class le

Student requests for
Student Grade Report

STIAEIT GTate REpPOIt

Faculty requests for Class Roster
“Uass Kosler

Faculty submits Class
Grade Report

Faculty

Faculty changes Class Grade Report

Student
Records
System

Offerings

Student Grade Report .
Academic

Academic Advisor requests for .
Advisor

Student Transcript

Academic Avisor Requests for
Declaration of Major
Declaration ol Major
Registrar's Office requests for
Student's Student Transcript

Student Transcnpt

Registrar's
Office

Registrar's Office submits Class

FIGURE 1. An augmented context diagram for a Student-Records System.

THE COMPUTER JOURNAL,

Vor. 37, No.8, 1994

$20z 14dy 01 uo 1senb Aq z8186£/699/8//E/e101e/|uloo/woo dno-olwepeoe//:sdiy woil papeojumoq

OBJECT-ORIENTATED SYSTEMS MODELLING—JACKSON APPROACH 671

Figure 1 illustrates an augmented context diagram for
a Student-Records System; it shows:

e The event triggers from its various sources such as
Student, Faculty and Academic Advisor. This is
indicated by an arrow with a darkened arrow head.

e The functional requests on a system such as Student
requests for Student Transcript. This is indicated in
the diagram by a regular arrow.

e The data output generated as a result of the functional
requests, e.g. Student Transcript, Student Grade
Report and Class Roster. This is indicated by the
label below a functional request arrow.

For each event trigger reflected in the diagram, an
event will be described. An event is an instantaneous
activity that happens in the real world. An event causes a
change in the state of a system which describes how far
the system has come into execution. For example, an
event in a Student-Records System might be student
register for class. The source of this event is Student.

Fulfilling a functional request does not change the
state of a system. An example of a functional request in a
Student-Records System is student requests for student
transcript.

From Figure 1, we note that the Student-Records
System has the following events:

Event S.2e Student Registers for Class

Data: student number, term id, class number, section number

From: STUDENT
Temporal Info: Beginning of term

Meaning:

Student registers for class.

Student declares major.

Student changes class.

Faculty submits class grade report.
Faculty changes class grade report.
Registrar’s office submits class offerings.

The identified functional requests and their corre-
sponding data outputs are:

e Student requests for student transcript, student
transcript.

e Student requests for student grade report, student
grade report.

e Student requests for student class schedule, student
class schedule.

e Faculty requests for class roster, class roster.

e Academic advisor requests for student transcript,
student transcript.

e Academic advisor requests for student grade report,
student grade report.

e Academic advisor requests for declaration of major,
declaration of major.

e Registrar’s office requests for student transcript,
student transcript.

The augmented context diagram forms the building

STUDENT may register for a certain number of CLASSES, specifying the SECTION of the CLASS he wishes to register for, provided:
1) the STUDENT meets the PREREQUISITES for the CLASS (if any)

i) there are seats available for that CLASS

—if the SECTION that he wish to register for is filled, i.e. seats available = 0, alternate SECTIONS of the CLASS may be offered to him for

selection (if there is any)

iii) there is no conflict with the requested SCHEDULE
Activity:

1. Verify the existence of STUDENT using student number
2. For the CLASS that STUDENT wants to register for:-

i) verify the existence of CLASS using class number, term id
i) verify the existence of SECTION using section number
iii) check for existence of PREREQUISITES for the CLASS
- if PREREQUISITES exists, verify that the STUDENT meets the PREREQUISITES
iv) check if there are seats available for the SECTION of the CLASS
if there are no seats available for the SECTION, check if there are alternative SECTIONS of the CLASS that has seats
available and do not have conflicts with the SCHEDULE of STUDENT
— if there are alternative SECTIONS for the CLASS, offer these SECTIONS for selection
— verify that there are no conflicts with the SCHEDULE of STUDENT
— if there is conflicts, check if there are alternative SECTIONS for the CLASS with seats available and do not have
conflicts with the SCHEDULE of STUDENT
— if there are alternative SECTIONS for the CLASS, offer these SECTIONS for selection
3. For the CLASS that STUDENT can register
i) STUDENT is registered for the CLASS, i.e. the seats available for the SECTION of the CLASS that the STUDENT is registered for is
decrement by 1
il) (class number, section number, days-offered, time-offered, location) is added to SCHEDULE

Post-Event Activity:
Output the Student Class Schedule.

FIGURE 2. Event script of Student Registers for Class.

THE CoMPUTER JOURNAL, VoL. 37, No.8, 1994

$20z 14dy 01 uo 1senb Aq z8186£/699/8//E/e101e/|uloo/woo dno-olwepeoe//:sdiy woil papeojumoq

672 D. C. C. Poo AND S.-Y. LEE

block for in-depth analysis of the application domain.
From the list of event triggers and functional requests,
we could identify an initial set of events and functional
services that a system has to support. Further events and
functional services may be identified at a later stage of
the analysis.

3.1. Identifying domain objects through event scripting

For each event trigger in the context diagram, an event
script is described. From the event script, we aim to
identify the relevant objects connected with the problem
domain.

Figure 2 shows an example of an event script of event
Student Registers for Class. An event script contains the
following information:

e The event trigger.

e Event data.

e The source of the trigger and relevant data connected
with the event.

e The temporal information on the event.

e The event activity.

e The post-event activities.

An event may be linked to another event and this is
described as a ‘post-event activity’. A post-event activity
may perform further functions or trigger the execution of
another event. An example of a post-event function is the
generation of a Student Class Schedule. By including
post-event activity, the event-scripting process enables
the analysts to determine the relationships among the
scripts; it also helps the analysts to identify additional
functions or events that may not be included in the
context diagram initially. Through this process of
drawing context diagram and event scripting, we
incrementally build up the system model.

An event script provides the first source of information
for identifying objects. For example, from the event
script, Student Registers for Class, we identify Student
and Class as objects since they are participants of the
event. A participant of an event is one which causes a
change in the state of a system. This type of objects is
known as domain objects. For each domain object that
participates in the event, we define an operation that
corresponds to the object’s activity in the event. This
operation is known as an action. An action is an
operation of a domain object that causes a change in
the state of the object. Hence, there will be an action for
Student and Class corresponding to the event Student
Registers for Class. For simplicity, we shall call this
action, Register. Thus, Student and Class will each have
a Register action.

In addition to domain objects, there are also other
objects that are involved in an event. These objects play a
supportive role in the event. Their presence in the event
does not change their own state nor the state of the
system as a whole. They are specified and defined for the
purpose of the event. This type of objects is known as

supporting objects. An example of a supporting object in
the event Student Registers for Class is Schedule. This
object keeps information of a student’s schedule. The
operations performed by Schedule do not contribute to
any change in the state of the Student-Records System.

There are two main differences between a supporting
object and a domain object:

1. Supporting objects do not have actions since their
operations do not change the state of a system.

2. The state of supporting objects is insignificant. In
other words, we are not concerned with the state a
supporting object can take.

Supporting objects are distinguished from domain
objects to provide analysts with a level of abstraction for
identifying objects.

3.2. Identifying object relationships

Objects are related to one another and events form a
basis for deriving the relationships among objects. For
each event script, we construct an object-relationship
diagram indicating the relationships among the domain
and supporting objects in that event. An object-
relationship diagram is a graphical representation of
the static links that exist amongst objects in an appli-
cation domain. Constructing the object-relationship
diagram at event level allows the analysts to focus on a
smaller subset of objects that exist in an application
domain.

Figure 3 illustrates the relationships among the objects
in the event Student Registers for Class. The relationship
between Student and Class is an association; this
relationship is represented by a line connecting the two
objects. The association between Student and Class is
derived from the fact that both objects participate in the
same event Student Registers for Class. These two
objects are said to possess common actions (Jackson,
1983; Layzell and Davis, 1993). A relationship has
cardinality constraint represented by the vertical bars on
the line connecting objects. A single bar represents one

T Student

1l
1

Schedule

:F

H Class

-

L)

L

Pre-requisites Section

FIGURE 3. Object-relationship diagram for the event Student
Registers for Class.

THe COMPUTER JOURNAL,

VoLr. 37, No.8, 1994

$20z 14dy 01 uo 1senb Aq z8186£/699/8//E/e101e/|uloo/woo dno-olwepeoe//:sdiy woil papeojumoq

OBJECT-ORIENTATED SYSTEMS MODELLING—JACKSON APPROACH 673

instance relationship, a double bar represents a many
(one or more) instance relationship. Since a student can
register for many classes, the relationship is a many
instance relationship; therefore, a double bar is used on
the link closer to the Class object. Similarly, for each
class, there can be one or more students registered for the
class, hence, the relationship is a many instance
relationship. Thus a double bar is also used on the link
closer to the Student object. Supporting objects are
distinguished from domain objects by an extra broken
line at the top of the box.

3.3. Identifying object attributes

Object attributes are also derived from event. Consider
again the event, Student Registers for Class. This event
requires student number, major code and minor code
which are information associated with the Student
object. These information thus represents the data
attributes of the Student object. Student number is
included to identify the specific instance of Student. The
major code and/or minor code are included for the
purpose of checking on the prerequisites which is
connected with the event. For each association, we
identify link attributes to connect the objects in the
relationship. A link attribute is the key that uniquely
identifies the other object. In this example, the link
attributes for Student is depth. id, class number, term id.
These link attributes will be used to identify the class that
a student is registered with. Figure 4 shows the definition
of the domain object, Student, based on the event
Student Registers for Class.

3.4. Identifying object services

Besides actions, a domain object has other operations;
these operations do not update the state of the object and
are known as services. Services can be distinguished as
class services or instance services. A class service is an
operation that belongs to a class but not the instances of

STUDENT Event: Student Registers for Class

Object Type: Domain Object

Action:
Attributes: Register(class number, term id,
student number section number)
major code

[minor code] Class Service:
StudentExists(student number)
Link Attributes: —return Boolean value
{ dept.id

class number Service:

term id

}*

Constraint Policies:
Maximum no. of courses per
term =8

FIGURE 4. Composition of Student for event Student Registers for
Class.

SCHEDULE Event: Student Registers for Class
Class Service:
ScheduleExists(student number,
class number)

—return Boolean value

Object Type: Supporting Object

Attributes:
registration date
{ class number

section number Service:
days offered conflict(days-offered, time-
time offered offered)
location —return Boolean value
+* addcourse(class number, section

number, days-offered, time-
offered location)
—no return values

Link Attributes:
student number
class number

FIGURE 5. Composition of supporting object, Schedule.

the class. Generally, a class service defines an operation
that acts on instances of the class. An instance service, on
the other hand, is an operation that is applicable only to
the instance. For the event Student Registers for Class,
we identify StudentExists(student number) as a class
service of Student. This service determines if a student
object having a particular student number exists in the
system. An instance service for a Student object might
be GetName() or GetAddress(). These services will
return the name and address of a particular student
respectively.

Therefore, an operation in the proposed approach is
distinguished as an action, a class service or an instance
service.

The definitional description of supporting objects
is similar to that of domain objects except that a
supporting object does not have actions. The definition
process proceeds by examining the static information
that a supporting object contributes to the execution of
an event. In the Student Registers for Class event, we
note that the supporting object Schedule has to hold
information pertaining to the time-table of the Student
object. The attributes of the Schedule object will
therefore include class number, section number, days-
offered, time-offered and location. Figure 5 defines the
Schedule object. Since a Schedule object is related to the
domain objects Student and Class, it will thus have
student number and class number as its link attributes.
Identification of the class services and instance services
for supporting objects is also based on the operations
needed to facilitate and support the activities of the
event.

4. FUNCTION SCRIPTING

A function script describes a function due to a functional
request as indicated in the context diagram. It is an
activity in the system that yields data values from the
system. Examples of functions are producing a weekly
report, producing a student transcript, printing a
Schedule, etc. Functions do not change the state of a
system.

THE COMPUTER JOURNAL,

Vor. 37, No. 8, 1994

$20z 14dy 01 uo 1senb Aq z8186£/699/8//E/e101e/|uloo/woo dno-olwepeoe//:sdiy woil papeojumoq

674 D. C. C. Poo anD S.-Y. LEE

Function S.1f Student Requests for Student Grade Report

Input: student number
From: Student

Temporal Info: At the end of term, after the Academics have submitted the class grades for all the classes

Meaning:

The Student Grade Report of a student can be printed out at the end of the term, after the academics have submitted the class grades for all the classes.

Activity:

1. Create Student Grade Report

2. Verify the existence of STUDENT using student number

3. Get (student number, student_name, address, phone number) of STUDENT

4 For every CLASS that STUDENT is registered for during the term using term id

— get the (class number, course name, credit hours, student grade)

Add credit hours to total hours

S. Derive the hours-attempted, the hours-completed, the credits-earned, the term-GPA, the cumulative-hours-attempted, the cumulative-hours-

completed, the cumulative-credits-earned, cumulative-GPA

FIGURE 6. Function script of Student Requests for Student Grade Report.

A function can be activated from a source as indicated
in the context diagram or as a post-event activity.

The purpose of function scripting is to help analysts
identify further objects and to refine the definition of
domain and supporting objects identified earlier through
event scripting. Refinement of definition is carried out by
examining the requirements of functional requests and
making changes to the already identified domain and
supporting objects. These changes include adding further
data attributes or services to satisfy the requirements.

Figure 6 is a function script corresponding to the
functional request Student Requests for Student Grade
Report (see Figure 1). The structure of a function script
is similar to an event script except that there is no post-
function activity for a function. A function does not
activate another function or any other events since its
purpose is to yield information from a system. A
function script includes the following information: the
input data required, the source of the data, the pre-
conditions for the successful execution of the function
and the description of the function.

4.1. Agent objects

In the assignment of responsibility for the management
of functions, a function that pertains to one object type is
assigned to that object type. For example, the functional
request student’s declaration of major. The output data
flow connected with this functional request is made up of
information such as student number, student name,
address, phone number, major code, minor code and
registration date. This request is directly connected with
an object of type Student. Since this function can be
satisfied directly in Student, we shall specify it within the
definition of Student. We do so by defining a service as
part of the Student’s set of operations.

However, for a functional request that involves more
than one object type, another object possibly of a
different type is introduced to handle the execution of the
function. An example will illustrate this. Let us consider
the functional request Student Requests for Student

Grade Report. This request is connected with two types
of objects, Student and Class. For this case, a new object,
Student Grade Report is introduced. This object will
manage the control flow in the function. We call this type
of object an agent object. An agent object, as the name
implies, is an object that renders services on behalf of
other objects. It acts as a controller responsible for the
collection of information. For example, the agent object,
Student Grade Report, is responsible for the collection of
information pertaining to the class grades of a student. It
also computes information such as hours attempted,
hours completed, etc., and generates these information in
a format required by the user. To achieve these, the
Student Grade Report agent object has to interact with
the Student object as well as the Class object.

From a design point of view, the use of agent objects
encourages localization of effects of changes. To
illustrate, let us consider the agent object Student
Grade Report. This object would handle the collection
of information from the various objects, i.e. Student and
Class objects to fulfil the functional request. Since
Student Grade Report contains the format information
of the report, any future changes to the format would be
localised within the agent object Student Grade Report.
The other two objects, Student and Class objects, would
not be affected by the changes. However, if the
responsibility of producing the Student Grade Report
is assigned to either the Student or Class object, any
format changes to the report would require making
changes to the Student or Class object. One side effect of
this arrangement is the need to determine which of the
two objects should the responsibility be delegated to. By
using the agent object, Student Grade Report, the
delegation of the responsibility is clear and unambigu-
ous. This would thus enhance the software maintenance
process (see also Jacobson, 1992).

4.2. Determine object relationships

The objects identified in function scripting are also inter-
related to one another. We use an object-relationship

THE COMPUTER JOURNAL,

Vor. 37, No.8, 1994

$20z 14dy 01 uo 1senb Aq z8186£/699/8//E/e101e/|uloo/woo dno-olwepeoe//:sdiy woil papeojumoq

OBJECT-ORIENTATED SYSTEMS MODELLING—JACKSON APPROACH 675

| 7| STUDENT
STUDENT ¥
GRADE
REPORT o ot
H- cLASS

FIGURE 7. Object-relationship diagram for the function Student
requests for Student Grade Report.

diagram to depict such relationships. Figure 7 is an
object-relationship diagram for the objects identified for
the function Student Requests for Student Grade
Report. An agent object is indicated in the diagram as
a box with a continuous line at the top of the box. Figure
7 shows that the agent object, Student Grade Report, is
linked to Student and Class objects. The relationships
between an agent object and the other objects are uni-
directional and this is reflected by the cardinality
constraint on the relationships in the object-relationship
diagram. In Figure 7, we note that Student Grade Report
is related to Student and Class. However, we are not
interested if Student and Class is related to Student
Grade Report.
The definition of an agent object includes:

1. Data attributes to facilitate the processing of the
corresponding function.

2. Class services.

3. Instance services required by the function.

Figure 8 shows the composition of the agent object,

Student Grade Report Function: Student Requests for
Student Grade Report
Object Type: Agent Object

Class Service:

Attributes: Create(student number)
term id —no return values
{ grade
credit hours Service:
}* computeGPA()
total hours —no return values

total hours attempted
total hours completed —no return values

credits earned computeHrsCompleted()

term-GPA —no return values

cumulative hours attempted computeCreditsEarned()

cumulative hours completed —return values

cumulative credits-earned computeCumulativeGPA()
cumulative GPA —no return values
computeCumulativeHrsAttempted()
—no return values
computeCumulativeHrsCompleted()
—no return values
computeCumulativeCreditsEarned()
—no return values

PrepareReport()

—no return values

computeHrsAttempted()

Link Attributes:
student number
{ class number }*

FIGURE 8. Composition of Student Grade Report.

Student Grade Report, for the corresponding function
Student Requests for Student Grade Report. An agent
object does not have actions since the state of an agent
object is insignificant too. Changes to an agent object’s
data attributes are made for administrative purpose only.

An example of a function activated as a result of an
event can be found in the event Student Registers for
Class (see Figure 3 for the event script). The functional
request Student Requests for Student Class Schedule
activates the function that produces the Student Class
Schedule. The function is activated when the event
Student Registers for Class happens. Figure 9 shows the
function script for the functional request Student
Requests for Student Class Schedule.

5. CONSOLIDATION OF OBJECTS IN THE
SYSTEM

By identifying events and functions, the previous three
steps have assisted us in identifying domain objects,
supporting objects and agent objects for an application
domain. Relationships among these objects have also
been identified, albeit in a very segmented manner. In
step 4, we consolidate the information gathered from the
previous three steps, refine the definition of objects and
identify further services required to support and facilitate
the activities of the application system.

The refinement of object definitions would involve the
use of abstraction mechanisms such as generalization—
specialization and the aggregation concepts (see Jacob-
son, 1992). In addition, a dictionary of object definitions
will be compiled in this step. The structure of an object
definition includes the following information:

e Name of object.

e Type of object.

e Names of objects from which attributes and behav-
iour are inherited.

e Names of objects which inherits its attributes and
behaviour.

e Attributes identified with the object.

e In the case of domain objects, actions of the object.

e Class services and instance services provided by the
object.

e In the case of domain objects, the domain policies
relating to its actions.

o Relationship attributes with other objects in the
application domain.

Figure 10 shows the consolidated definition of the
Student class from the previous steps.

5.1. State transition diagrams

For each domain object identified, a state-transition
diagram is also constructed. This diagram shows the
local dynamic behaviour of domain objects. A state-
transition relates the present state of a domain object to
its possible future states. By considering the state-
transitions, we would more accurately define a domain

THE COMPUTER JOURNAL,

VoLr. 37, No.8, 1994

$20z 14dy 01 uo 1senb Aq z8186£/699/8//E/e101e/|uloo/woo dno-olwepeoe//:sdiy woil papeojumoq

676 D. C. C. Poo aND S.-Y. LEE

Function S.1f Student Requests for Student Class Schedule

Data: student number
From: event S.2¢ or S.3e

Temporal Info: STUDENT has finalised his registration for the term

Meaning:

The Student Class Schedule of a student can be printed out either through the events S.2¢ or S.3¢

Activity:

1. Verify the existence of SCHEDULE using student number

2. Compute the total_hours for the courses registered for the term using the credit_hours for all courses in SCHEDULE
3. Format the SCHEDULE

4 Output the formatted SCHEDULE

FIGURE 9. Function script for Student Requests for Student Class schedule.

object since a domain object does not conduct its
activities in a random manner in the real world.

Take for instance a Student object and a Class object
in the Student-Records System. A student must declare

Object Class: Student

Inherits From:

Inherits By: Action:

Attributes: Matriculate()

student number Register(class number, term id, section

student name number)

address CancelRegistration(class number, term id,

phone number section number)

major code Declare(major code, minor code)

[minor code] Grade(course grade)
ChangeGrade(course grade)

Type: Domain object

Link Attributes: Confer(date)

{ dept.id
class number Class Service:
term id StudentExists(student number)
section number —return Boolean value
course grade AssignNo()

1* —no return values

advisor code CheckGraduatingStudent()
—return a list of student number that are due
to be conferred degree

Service:

MeetGrade(major, hours, grade)
—return Boolean value
CheckRegistration()

—return Boolean value
CheckCourseGrade(class number)
—return class number and grade
DisplaySchedule()

—no return values

GetStudentInfo()

—return details of student
GetRegisteredCourses(term id)

—return list of courses registered for the term
TakeClass(class number, term id, section
number)

—return Boolean value
UpdatedGrade(class number, term id, section
number)

—return Boolean value

GetGrade(class number)

—return grade

PrepareDeclaration()

—no return values

FIGURE 10. Definition of domain object, Student.

his major (and minor) before he can register for classes; a
class cannot enrol/register students unless it has been
offered for the term. Figure 11 shows the state-transition
diagram of the domain object Student in the Student-
Records System. It shows the set of states that Student
can take and the actions that would bring it to a
particular state given a present state. Any action that do
not conform to any of the state-transitions is considered
as invalid. A valid state-transition for Student is
(REGISTERED, Grade, GRADED), i.e. if a student
object is in the state REGISTERED and the action is
grade, then the object will proceed to the GRADED
state upon the successful completion of the action.

A state-transition diagram records the entire life
history of an object. Since an object’s life history
consists of a beginning and an end, we may need to
add further actions to the set of actions derived from
event scripting in the earlier step. Consider as an example
the Student object. From event scripting, we have
identified register, cancel, declare and grade as the
actions of Student. However, we note that a student’s
life history in a university begins when he is matriculated
into the university and ends when he graduates from the
university. Therefore, two additional actions, matricu-
late and graduate are necessary and they are added into
the life history of Student.

A consolidated object-relationship diagram is pro-
duced from the set of segmented object-relationship
diagrams specified in the earlier steps. Figure 12 is a
first-cut consolidated object-relationship diagram for the
Student-Records System. The object-relationship dia-
gram will be refined using abstraction mechanisms
like generalization—specialization and aggregation. The
refinement process will be further elaborated below.

5.2. Aggregate objects

An aggregation is a kind of association between a whole
and its parts in which the whole is composed of the parts.
The aggregation relationship is a special form of
relationship with the following properties (Rumbaugh
etal., 1991):

o Transitivity—if A is part of B and B is part of C, then
A is part of C.

THE COMPUTER JOURNAL,

VoL. 37, No. 8, 1994

$20z 14dy 01 uo 1senb Aq z8186£/699/8//E/e101e/|uloo/woo dno-olwepeoe//:sdiy woil papeojumoq

OBJECT-ORIENTATED SYSTEMS MODELLING—JACKSON APPROACH 677

register grade
grade
matriculate declare register confer
>0—=% >0 >0
START DECLARED register GRADED END
MATRICULATED REGISTERED CONFERRED

FIGURE 11. State-transition diagram for domain object Student.

e Anti-symmetry—if A is part of B, then B is not part of
A.

e Some properties of the assembly propagate to
the components as well, possibly with some
modifications.

The relationships between Class, Pre-requisites and
Section are refined by making Class as an aggregate of
Pre-requisites and Section. Pre-requisites is made a
component of Class because it has a tight relationship
with respect to Class (see Figure 13). The latter has the
responsibility to ensure that a Student object registering
into the class meets its prerequisites. Thus, the charac-
teristics of Class that is connected to its prerequisites is
delegated to its component, Pre-requisites. Making Pre-
requisites a component of Class would thus better reflect
the class association between the two objects. As can be
seen from Figure 13, Pre-requisites is a supporting
object.

5.3. Generalization—specialization

Identified classes are organized into a hierarchical
classification tree with classes higher up in the tree
being superclasses of those classes lower down the tree.
The latter are known as subclasses. A superclass is a
generalized class of its subclasses (and the subclasses
are specialization of the superclasses). However, objects
are organized into a classification tree only when they are
semantically related. Assume that the student population
in the university of which the Student-Records System is
a part is differentiated into under-graduate and post-
graduate students. Both categories of students are
semantically related in that they are students of the

university. They share certain common properties.
However, there are other properties that are unique to
a particular category; for example, the registration
criteria for under-graduates are different from those
of the post-graduates. Therefore, the Student in the
Student-Records System could be defined as a superclass
of Under-Graduate Student and Post-Graduate Student
as shown in Figure 14.

6. DYNAMIC BEHAVIOUR SPECIFICATION
THROUGH USE SCENARIOS

In this step, the dynamic behaviour of a system is
specified. This is carried out by considering how a system
will be used by its users. The purpose of this step is
to understand the interactions among the objects, to
identify further objects, where necessary, and enhance on
the set of operations defined for the objects. If the
modelling process in the earlier steps had identified all
the domain objects and actions, then this step would lead
to the identification and definition of services.

6.1. Use scenarios and interaction diagram

To understand object interactions, we shall use inter-
action diagrams and use scenarios to help us describe
how a user would use the system. A use scenario
describes a behaviorally related sequence of activities in
a dialogue that a user has with a system. A use scenario is
similar to what Jacobson called a use case (Jacobson,
1992). A user is one who uses a system and is different
from an external entity in a context diagram. For
example, a student is an external entity of the Student-
Records System but he may not be the user. An external

Student
Grade
Academic H Report
Advi
visor H Section
> 4

HH }

Student H4 H{ Class |

1

N Ll
Student H 1] Pre-requisites
Transcript H Schedule

FIGURE 12. First-cut object-relationship diagram for a Student-Records System.

THE COMPUTER JOURNAL,

VoL. 37, No. 8, 1994

$20z 14dy 01 uo 1senb Aq z8186£/699/8//E/e101e/|uloo/woo dno-olwepeoe//:sdiy woil papeojumoq

Section

——
——

——
——

Pre-requisites

678 D. C. C. Poo aND S.-Y. LEE
Studetn
, Grade
Academic [T Report
Advisor
Ll T
LA
B Student HH
T
Student H
uden " H Schedule
Transcript

FIGURE 13. Consolidated object relationship diagram for a Student-Records System.

entity is one who triggers events and make functional
requests on a system whereas a user is one who uses a
system; the latter is a facilitator of events or functional
requests. An example of a user is the data-entry clerk in
the registrar’s office.

A use scenario is different from an event or function. It
may encompass one or more events or functions. For
example, the use scenario student registration consists of
an event Student Registers for Class and the activation of
a function that serves the request Student gets Student
Class Schedule.

A list of use scenarios for a system is first drawn
up. Each use scenario is described using a use scenario
script. Figure 15 is a use scenario script for student
registration. The information contained in the script
includes:

e Name or identifier of the use scenario.

e The possible users of the use scenario, i.e. the
interviewee(s) or references, if appropriate.

The activation.

The events involved.

The functions involved.

Objects involved.

The description of the transaction sequence involved
in the use scenario.

e Results/effects of the use scenario.

6.2. Port and interface objects

The interaction of objects involved in a use scenario is
illustrated using an interaction diagram which is a
graphical representation of the communications among
the objects of a system. In this way, designers can, in
principle, validate the structure of the use scenario
(Jacobson, 1992). In Figure 16, we see that new objects
such as Registration Window had been introduced in the
interaction diagram. Registration Window is an example
of a port. A port connects a user to a system. It is an
interface between the real world and the system. It
receives inputs from the users, calls on the respective
objects with the inputs and channels whatever outputs
the system may have for its user to the user. Ports are
introduced in order not to let changes in the interface of a
system affect the definition and design of domain,
supporting or agent objects. This is necessary as changes
to a system interface are common and should typically
affect only the ports (Jacobson, 1992).

A port may be decomposed into its constituent objects
known as interface objects. The levelling concept of the
data flow diagramming technique (Yourdon and Con-
stantine, 1979) is used to depict the composition of a
port. In the levelled diagram, interface objects and their
interactions will be depicted. For example, the port
Registration Window is decomposed into a set of

ACADEMIC H
ADVISOR STUDENT

GRADE

REPORT
STUDENT |— SECTION
TRANSCRIPT] F +

—H
STUDENT H HH cLass
UNDER- [
GRADUATE]‘ T F
PRE-
POST- | HSCHEDULE REQUISITES

GRADUATE

FIGURE 14. Object relationship diagram for a Student-Records System.

THE COMPUTER JOURNAL,

Vor. 37, No.8, 1994

$20z 14dy 01 uo 1senb Aq z8186£/699/8//E/e101e/|uloo/woo dno-olwepeoe//:sdiy woil papeojumoq

OBJECT-ORIENTATED SYSTEMS MODELLING—JACKSON APPROACH 679

Use Scenario Student Registration

Users: Clerk

Activation: None

Event: S.2e—Student register for Class

Function: S.1f—Student Requests for Student Class Schedule

Domain Objects: STUDENT, CLASS
Supporting Objects: SCHEDULE, PREREQUISITES, SECTION
Port Object: Registration Window

Meaning:

STUDENT may register for a certain number of CLASSES, specifying the SECTION of the CLASS he wishes to register for, provided:
1) the STUDENT meets the PREREQUISITES for the CLASS (if any)

i) there are seats available for that CLASS

—if the SECTION that he wish to register for is filled, i.e., seats available =0, alternate SECTIONS of the CLASS may that do not have
conflicts with the requested SCHEDULE be offered to him for selection (if there is any)
—.if there is conflict with the requested SCHEDULE, alternate SECTIONS of the CLASS that do not have conflicts with the requested

SCHEDULE are offered to him for selection

Maximum number of CLASSES that STUDENT must register for per term =8
A student class Schedule will be generated when registration process is completed.

Activities:

Clerk give command to register STUDENT for CLASSES
The Registration Window is displayed

Clerk enters student number

Check if STUDENT with student number exists

Get student information using student number

Creates Schedule for STUDENT using student information
Display student information

Repeat{

Clerk enters class number and section number

PN AW =

Check if SECTION of CLASS with (class number, section number) exists

STUDENT register for (class number, section number)
STUDENT ensures number of CLASSES registered < 8
CLASS register STUDENT

CLASS ensures Pre-requisites are met by STUDENT
CLASS ensures seats availability
checks SECTION for seats availability
checks if SECTION’s seat conflict with SCHEDULE
if conflict, suggest alternative
Given alternative, get confirmed choice
SECTION registers STUDENT using student number
STUDENT complete register action

STUDENT calls SCHEDULE to display the registered CLASS

SCHEDULE calls Registration Window to display the registered CLASS

} until STUDENT has registered for all the CLASS for the term

9. Clerk gives command to print out the Student Class Schedule
10. Schedule prepare format of Student Class Schedule
1. Printer print student class schedule

Result/Effect: Output Student Class Schedule

FIGURE 15. Use scenario script of Student Registration.

interface objects such as a Menu object, a Scroll Bar
object, a Selection List object, etc.

Figure 16 is an interaction diagram for the use
scenario Student Registration. Each participating
object in a use scenario is represented as a column in
the interaction diagram. The order of the columns is
insignificant and the columns are ordered in a manner
that enables a clear interpretation of the interaction
diagram. If the interaction diagram involves several
instances of the same class, we can either draw different
columns representing the different instances or use
the same column to represent them depending on the

legibility of the representation. All the behaviour of an
object in the use scenario is attached to the column
representing the object.

The interaction diagram is similar to that used in
the Jacobson’s method (Jacobson, 1992) except that
the different types of operations (actions, class ser-
vices or instance services) are distinguished from one
another. A block in an interaction diagram is represen-
tative of an operation. A shaded block is an action.
In Figure 16, the shaded blocks for Student, Class
and Section represent the Register action of the three
objects.

THE COMPUTER JOURNAL,

VoL. 37, No.8, 1994

$20z 14dy 01 uo 1senb Aq z8186£/699/8//E/e101e/|uloo/woo dno-olwepeoe//:sdiy woil papeojumoq

680 D.C. C. Poo anNnD S.-Y. LEE

Registration Student Course- Schedulx Print
indow Container Container Container Button
create(
displayOn(}; I:]
displayOn()
displayOn() i \r]
P - L
(studehit nmuber) \r StudentExit(student number) -
(student name, §ddress, phone = —
‘number, registrjtion date < (student nal'ne, address, phone jpumber)
< create(studkm number, name, phone ~
- l P
select(¢ourse number, sectjon number) > ClassExist(cousse number, term -
7
Register(coursg number, section nymber, term-id) _
DisplaySelectign(section number, fime offered, -
_ (sectign number, << ays offered)
- select{section number)
= L (section numbe}) ~
- >
- (course fjumber, section nunjber, time-offered, days-offered, 1<DisplaySchedu1 [(Course number,
<

location)

section number, |time offered,

print() days offered, lodation)

L repareSchedulé()

FIGURE 16. Levelled object interaction diagram for Registration Window.

6.3. Messages

Objects communicate with one another by sending
messages. An arrow in an interaction diagram is a
message sent from one object to another. A message is
associated with an operation. There are three types of
message.

The first type of message is indicated by a regular
arrow. It is an activation of an operation which could be
an action or a service.

The second type of message, represented by an arrow
with an empty arrowhead, is an activation of a service
prior to the execution of an action. The activated service
is connected with a pre-action condition check. For
example, prior to the registration of a student into a class
in the Student-Records System the condition ‘the student
must not have already been registered for 8 classes’ must
be satisfied. We express this in the interaction diagram by
a message sent to a service called CheckRegistration().
With this type of message, we can express the fact that
the action Register can only take place when the con-
dition [realised through the service CheckRegistration()]
is satisfied.

The third type of message, represented by an arrow
with a darkened arrowhead, is an activation of a service
after the successful completion of an action. For example,
in Figure 16, after the completion of the action Register
of Student, a service DisplaySchedule() is triggered. The
service will display the information related to the class
a student is registered for. It is thus a post-action
service.

6.4. Class and instance services

In an interaction diagram there are class services and
instance services. A striped block is representative of a
class service whereas an empty block is an instance
service. A data flow is indicated in an interaction
diagram by a broken arrow. There are times when we
want to represent a data flow out of the system that does
not require a user’s response to it. We represent this
type of data flows by a broken arrow with a circle at its
tail.

6.5. Decomposing port

The decomposition of the port begins with an initial
screen design. This is done through interactions with the
users of a system. Figure 17 shows an example of a
screen design. Using the screen design, a port such as
Registration Window is decomposed into their constitu-
ent interface objects. Figure 18 is an object-relationship
diagram showing the relationships between the port,
Registration window, and its constituent interface objects.
Figure 18 shows the result of the decomposition process
for Registration Window.

7. CONCLUSION

On the outset, it is mentioned that a software develop-
ment method is necessary to guide developers in a
systematic step-by-step approach to constructing sys-
tems. Many object-oriented methods have been pro-
posed over the years. They generally address two

THE COMPUTER JOURNAL,

Vor. 37, No.8, 1994

$20z 14dy 01 uo 1senb Aq z8186£/699/8//E/e101e/|uloo/woo dno-olwepeoe//:sdiy woil papeojumoq

OBJECT-ORIENTATED SYSTEMS MODELLING—JACKSON APPROACH 681

Student No. :
Name : Phone Number :
Address : Term :
Major Code : Minor Code :

[OK | | CANCEL |

ay

. Mon | Tues | Wed |Thurs| Fri
Tim

0900
1000

1000
1100

1100
1200

1200
1300

Course No. : Section No. :

Section No Days Time

1300
1400

1400
1500

1500
1600

1600
1700

[OK] [CANCEL | [END |

MESSAGE
AREA

PRINT

FIGURE 17. Screen design.

concerns in the application of the technique: object
model construction and software maintainability.
However, it was felt that functional requirement
changes to a system are not well addressed in the
methods.

In this paper, an object-oriented development
method based on the approach advocated by the
Jackson method is proposed and discussed. The
modelling process of the proposed method separates
the real world subject matter about which a system is

to compute from the functions to be provided by a
system for its users. In this way, changes to the volatile
functional requirements on a system will not have
adverse effects on the other parts of a system that have
little or no connection with the changes. Through this
approach to modelling and constructing systems, it is
hoped that the overall maintainability of the system
could be improved beyond what the object-oriented
paradigm could offer. Evaluation of the proposed
method is presently being carried out.

Register
Window

Ll

1 1 1 1 1
Print Student Schedule Course Message
Button Container container Container Display Box
L L l
6 2 1 9 1 3 2
Student Student Student Course Course Course
Display Box Button Data Entry Selection List Button Date Entry
Schedule
Display Box

FIGURE 18. Registration Window and interface objects.

THE COMPUTER JOURNAL,

VoL. 37, No.8, 1994

$20z 14dy 01 uo 1senb Aq z8186£/699/8//E/e101e/|uloo/woo dno-olwepeoe//:sdiy woil papeojumoq

682 D. C. C. Poo aAND S.-Y. LEE

ACKNOWLEDGEMENTS

The authors would like to acknowledge the financial
support granted by the National University of Singapore
(grant RP910689). They are grateful to the University in
granting them the opportunity to carry out the work as
described in this paper.

REFERENCES
Booch, G. (1991) Object-oriented Design. Benjamin/
Cummings.

Jackson, M. A. (1983) Systems Development. Prentice-Hall.

Jacobson, 1. (1992) Object-Oriented Software Engineering.
Addison-Wesley, Reading, MA.

Layzell, P. J. and Davis, C. G. (1993). The Jackson Approach to
System Development: An Introduction. Chartwell Bratt.

Martin, J. (1983) An Information Processing Manifesto. Savant,
Carnforth, UK.

Martin, J. and Odell, J. J. (1992). Object-Oriented Analysis and
Design. Prentice-Hall, Englewood Cliffs, NJ.

Meyer, B. (1988) Object-oriented Software Construction.
Prentice-Hall, Englewood Cliffs, NJ.

Rumbaugh, J. et al. (1991) Object-Oriented Modelling and
Design. Prentice-Hall, Englewood Cliffs, NJ.

Weiss, S. (1989) Object-Oriented Analysis and Design: The
Synthesis Model. Wayland Systems, Seattle, WA.

Wirfs-Brock, R. and Wilkerson, B. (1989). Object-oriented
Design: a responsibility-driven approach. In Proc. OOPSLA
‘89, pp. 71-75.

Yourdon, E. and Constantine, L. (1979) Structured Design:
Fundamentals of a Discipline of Computer Program and
Systems Design. Yourdon Press.

THE COMPUTER JOURNAL,

VoLr. 37, No.8, 1994

$20z 14dy 01 uo 1senb Aq z8186£/699/8//E/e101e/|uloo/woo dno-olwepeoe//:sdiy woil papeojumoq

