An Incremental Protocol Verification Method

CHUNG-MING HUANG AND JENQ-MUH Hsu

Institute of Information Engineering, National Cheng Kung University, Tainan, Taiwan 70101, ROC

Protocol verification is an activity to assure the correctness of communication protocols. Global state
reachability analysis is one of the most straightforward and easily automated protocol verification
methods. This paper proposes an incremental protocol verification method for the Extended
Communicating Finite State Machine (ECFSM) model. Incremental protocol verification allows
protocols to be modified at the run time of global state reachability analysis. Then, instead of re-
exploring the modified protocols from scratch, global state reachability analysis is continued
incrementally at the modification point. To enhance the efficiency, the proposed method incorporates
the dead and live variables concept that is used in Chu and Liu’s global state reduction technique (Chu and
Liu, 1989). Using the proposed incremental protocol verification method, incremental protocol design
environments are achievable for ECFSM-based Formal Description Techniques (FDTs), e.g. ISO’s
Estelle. Our application of the proposed method to Estelle is also briefly introduced in this paper.

Received January 31, 1994, revised August 26, 1994

1. INTRODUCTION

Being the backbone of distributed systems and computer
networks, a communication protocol is a set of rules that
governs the interactions among the communication
entities (Bochmann, 1989; Linn, 1989; Liu, 1989;
Pehrson, 1989; Sidhu, 1989b). In order to assure a
protocol be free from logical errors, a complex and
repeated cycle consisting of re-specification and re-
verification is executed until there is no logical error in
the protocol. In the past decade, many formal methods
have been used to formally specify communication
protocols. Many of these methods are based on the
state transition model, such as the Communicating
Finite State Machines (CFSM) model (Brand and
Zafiropulo, 1989), petri nets (Diaz, 1982) and formal
grammars (Anderson and Landweber, 1984; Umbaugh
et al., 1983).

Protocol verification is an activity to detect logical
errors, such as deadlock, unspecified receptions and
channel overflow (when communication channels are
finite), in communication protocols (West, 1992; Gouda,
1993; Horlzmann, 1993). To have automatic protocol
verification, many formal protocol verification methods
were proposed in the past decade. Global state reach-
ability analysis is one of the most straightforward ways
to automatically detect logical errors in communication
protocols specified in the state transition model (Lin
et al., 1987; Chanson et al., 1993). Using global state
reachability analysis, a global state reachability graph
containing all possible transition sequences and all
reachable global states in the communication protocol
is generated.

Although global state reachability analysis is easily
automated, global state reachability analysis suffers from
the global state explosion problem. In order to relieve the
state explosion problem, many state reduction techni-
ques (Ioth and Ichikawa, 1983; Gouda, 1984, 1985; Lin

et al., 1987) and various protocol verification methods
(Frieder and Herman, 1989; Huang et al., 1990; Frieder,
1992) have been proposed in the past decade. Unfortu-
nately, very few of these reduction techniques and
various verification methods are based on the ECFSM
model. Chu and Liu’s reduction technique is one of the
few reduction techniques which are based on the
ECFSM model (Chu and Liu, 1989). By analyzing the
dead and live variables, global states which have the
same values for live variables and different values for
dead variables can be treated as the same.

Based on the CFSM model, Huang et al. have
proposed an incremental protocol verification method
that shows its effectiveness when the modification is
small (Huang et al., 1990). Using the CFSM-based
incremental protocol verification method, an incremen-
tal protocol design environment has been developed and
executed on the OPSS production system (Frogy, 1982;
Gupta et al., 1988; Acharya et al., 1992). Incremental
protocol verification means that protocol verification is
continued incrementally at the modification point. In the
traditional non-incremental verification approach,
whenever one or more transitions have been modified,
the global state reachability analysis should be re-started
from the initial global state. All of the global states,
including those states that are error-free and those global
states that are not related to the modification, should be
re-explored. Even if there are 1000*xn or 10000*n global
states and only one global state contains an error, all
of the 1000*n or 10000*n global states need to be
re-explored once again after the modification. Incre-
mental verification can process those global states that
are related to the modification and continue the global
state reachability analysis incrementally at the modifi-
cation point.

Since the current Formal Description Techniques
(FDTs) (Sidhu, 1989a; Chanson et al., 1993), such as

THE COMPUTER JOURNAL,

Vor. 37, No. 8, 1994

$20z 14dy 01 uo 1senb Aq £Z86£/869/8///e101e/|ulod/woo dno-olwepeoe//:sdiy woil papeojumoq

AN INCREMENTAL PROTOCOL VERIFICATION METHOD 699

ISO’s Estelle (Budkowski and Dembinski, 1987; ISO,
1987; Linn, 1988; Algayers et al. 1993) and CCITT’s
SDL (Belina and Hogrede, 1984; CCITT, 1988), are
based on the extended state transition model, e.g. the
Extended Communicating Finite State Machine
(ECFSM) model, the incremental protocol verification
method must be modified in order to be applied to the
ECFSM-based FDTs. By integrating the concept of dead
and live variables in Chu and Liu’s global state reduction
technique (Chu and Liu, 1989), a new ECFSM-based
incremental protocol verification method is proposed in
this paper. Using the dead and live variables concept,
global states that have the same values for live variables
and different values for dead variables can be treated as
the same. There are two main concerns in the proposed
ECFSM-based incremental protocol verification method
that incorporates the dead and live variables concept: (1)
the change of equivalent global states’ equivalence that
results from some dead (live) variables becoming live
(dead) ones and (2) the effect on the global state
reachability graph that results from adding/deleting
transitions. For the first concern, some originally
equivalent global states may become unequivalent due
to some dead variables becoming live ones and some
originally unequivalent global states may become
equivalent due to some live variables becoming
dead ones. For the second concern, some global
states should be deleted on the deleting transitions
case, some unextendable global states may become
extendable on the adding transitions case and some
logical errors can be removed, but new logical errors may
be generated on both adding and deleting transitions
cases.

Based on the new method, incremental protocol
verification can be directly applied to the ECFSM-
based FDTs, i.e. Estelle and SDL, to have FDT-based
incremental protocol design environments. Using the
proposed new ECFSM-based incremental protocol
verification method, we have developed an Estelle-
based incremental protocol design system on SUN
SPARC workstations. The rest of the paper is organized
as follows. Section 2 gives the formal model of the
ECFSM and a brief review of Chu and Liu’s global state
reduction technique. Section 3 presents the new
ECFSM-based incremental protocol verification
method. Section 4 briefly introduces the application of
the new method to Estelle and gives an example to show
the usage. Section 5 discusses issues of the new
incremental protocol verification method. Finally,
Section 6 has the conclusion remarks.

2. PRELIMINARY

In this section, the formal model of the ECFSM and
the related definitions are introduced at first. Then, a
brief review of Chu and Liu’s global state reduction
technique using the dead and live variables concept is
presented.

2.1. ECFSM

In the ECFSM model, the behavior of each protocol
entity is described as an ECFSM with a set of context
variables that can be accessed during state transition.
Each state transition in the ECFSM-based model is
associated with a head state, a tail state and a label
consisting of two parts: a condition part followed by an
action part. The condition part consists of an input event
and/or a predicate. The action part consists of a sequence
of statements that operate on context variables and/or
output events. A transition in the ECFSM model is
executable when the entity has reached the head state of a
transition and the condition part of the transition
becomes TRUE. A condition becomes TRUE if and
only if its component predicate and input event become
TRUE. The context variables of each ECFSM are
independent and there are no globally shared variables
among the ECFSMs. Protocol entities communicate
with each other by message passing through a number
of First-In-First-Out (FIFO) unidirectional queues
(channels). Figure 1 shows an Alternating Bit Protocol
(ABP) that is formally specified in the ECFSM
model, where ‘?” represents input, ‘!’ represents output, a
circle represents a state, and an arrow represents a
transition.

Each ECFSM can be represented as a seven-tuple
(%, S, s, V, P, A,), where

3 is the set of messages that can be sent or received.

S is the set of states.

5o 1s the initial state of the ECFSM.

V is the set of context variables.

P is the set of Boolean expressions that operate on

context variables.

6. A is the set of actions that operate on context
variables,

7. 6 is the set of transition functions, where each

transition function is generically represented as

follows: Sx Ex P(V) > XL x A(V) x S.

SNk wN =

Channel S-to-R

ID(x’) 1D(1-x) .
Sender l Receiver

PAQ): yox \a
P (1) o (5 "Dy g

new M(y"); y=x"

\ ChlnR-h)-S /

1D(y) I D(1y)

FIGURE 1. An ABP that is formally specified in the ECFSM model.

THE COMPUTER JOURNAL,

Vor. 37, No.8, 1994

$20z 14dy 01 uo 1senb Aq £Z86£/869/8///e101e/|ulod/woo dno-olwepeoe//:sdiy woil papeojumoq

700 C.-M. HuaNG AND J.-M. Hsu

The transitions in the ECFSM model can be classified
into two types:

e Spontaneous transition: the transition whose con-
dition part has no input event, ie. Sx P(V) —
EXxAV)xS.

e When transition: the transition whose condition part
has an input event with/without a predicate, i.e.
SXEXPV)—>ExAV)xS.

Consequently, the states in the ECFSM-model can be
classified into three types:

e Spontaneous state: the state whose outgoing transi-
tions are all spontaneous transitions.

e When state: the state whose outgoing transitions are
all when transitions.

e Mixed state: the state whose outgoing transitions
consist of spontaneous and when transitions.

In the ECFSM model, a global state is represented as
an n x n matrix, where » is the number of entities. Each
element in the diagonal records the state of the
corresponding entity and the values of the context
variables declared in the entity; each element in the off-
diagonal records the sequence of messages with
appended parameter values in transit on the correspond-
ing queue. Figure 2 shows the abstract format of a global
state structure in the ECFSM model. For convenience,
let GS; — e — GS; represent transition e is executed at
global state GS; and global state GS; is generated after
the execution of e, where GS; is called the parent state
and GS is called the child state, e is called an outgoing
transition of GS; and e is also called an incoming
transition of GS;.

2.2. Review of Chu and Liu’s reduction technique

In the ECFSM model, a context variable is accessed in
two ways: reference and assignment. A context variable
is referenced (or read) when it is accessed in a predicate,
in the right-hand side of an infix assignment operator,
e.g. “:= operator in Pascal, or in the parameter list of a
send event. A context variable is assigned (or written)
when it is accessed in the left-hand side of an infix
assignment operator or in the parameter list of a receive
event.

Let x be a context variable of entity a and p be a state
of the ECFSM describing entity a. Then x is dead at p if,
starting from state p, x will not be referenced in all
possible future execution paths of entity a or the next
possible accesses to x in all possible future execution
paths of entity a are all assignments. For example, in
the Alternating Bit Protocol (ABP) that is depicted in
Figure 1, variable y is dead at every state of entity Sender.
This is because y is referenced in two transitions, one is
from state 3 to state 1 and the other one is from state 3 to
state 2; in the labels of both transitions the reference to y
is immediately preceded by a receive event assigning a
value to y. Hence, all possible next accesses to y are

- Qii-r SitVinL Vizo o Vin) Qii+r -
Qi+1,i

Si: thestate ofentity i,i=1, .., N.

nj: the number of context variables declared for entity i, i =1, .., n.
Vik: the k¢ context variable of entity i,i=1,..,n, k=1, .., nj.

Qjj: communication channel from entity i to entity j,i,j=1, .., n,i=]j.

FIGURE 2. The structure of a global state matrix.

assignments starting from every state of entity Sender. By
the same argument, " is dead at every state of entity
Receiver.

Itis observed that the future behavior of entity a, starting
from p, does not depend on the current value taken on by a
variable x that is dead at p. The reason is that the other
variables that are not dead will not be influenced or
changed their taken values by the dead variables. There-
fore, any two global states whose corresponding element
values are identical to each other except the values taken on
by the dead context variables can be considered as
equivalent (Chu and Liu, 1989).

3. INCREMENTAL PROTOCOL
VERIFICATION FOR THE ECFSM MODEL

In order to apply the incremental processing for the
ECFSM model, context variables and predicates should
be taken into consideration in the incremental verifica-
tion method. Furthermore, in order to have more
efficient incremental processing for the ECFSM model,
the incremental verification method is augmented with
the dead and live variables concept. In this section,
logical errors that can be detected are briefly introduced
at first. Then, the new ECFSM-based incremental
protocol verification method is presented.

3.1. Logical errors

In our proposed ECFSM-based global state reachability
analysis, some logical errors can be detected. These
logical errors are defined as follows (assume # is the
number of protocol entities):

A global state contains a deadlock error if the
following conditions are satisfied:

1. All of the communicating channels Q;_ ;, where
I=1,....n,J=1,...,n, 1 #J, are empty.

2. All of the current state S; of entity I, I =1,...,n,
have no outgoing spontaneous transition, or some of
them have outgoing spontaneous transitions but the
associated predicates are false.

3. There is a state S; of entity E; such that S; is not a
terminal state, when terminal states are defined in the
protocol.

ThHE COMPUTER JOURNAL,

VoL. 37, No. 8, 1994

$20z 14dy 01 uo 1senb Aq £Z86£/869/8///e101e/|ulod/woo dno-olwepeoe//:sdiy woil papeojumoq

AN INCREMENTAL PrROTOCOL VERIFICATION METHOD 701

A global state contains an unspecified reception error if
the following conditions are satisfied.

1. If there is an 7, such that all of the head messages of
the communicating channel Q,_,;, J=1,...,n,
J # I, are unspecified in the current state S; of
entity E;, or some of the head messages of commu-
nicating channel Q;_,, J=1,....n, J#I, are
specified but their associated predicates are false.

2. The current state S; of entity E; has no outgoing
spontaneous transition, or has some outgoing
spontaneous transitions but their associated predi-
cates are false.

A global state contains a transmitted lock error if the
following conditions are satisfied:
Foranentity I, I =1,...,n,

1. All of the outgoing transitions are spontaneous
transitions.
2. All of the associated predicates are false.

A global state contains a channel overflow error if the
number of messages in a communicating channel is
greater than the channel size.

3.2. The incremental protocol verification algorithm

Incremental protocol verification is divided into two
parts: adding new transitions and deleting old transi-
tions. Adding new transitions can eliminate some logical
errors. For simplicity, the partial global state graph
shown in Figure 3 is used for explanation. For example,
adding a spontaneous transition can make a global state,
which contains a head state of an added transition, with
a deadlock error to be error-free. In Figure 3, assume
global state R; contains a deadlock error. Then, if a
transition W that is executable in R, is added, then R,
becomes extendable and R; is not an erroneous state any
more. Additionally, adding new transitions may also
generate new global states from the global states that
contain the head states of the added transitions.
Therefore, adding new transitions may have a side
effect of generating new errors.

FIGURE 3. The partial global state graph used for explaining adding/
deleting transitions.

Deleting transitions can eliminate logical errors too.
Deleting transitions can remove those global states
whose incoming transitions belong to the deleted
transitions. However, deleting transitions may also
have a side effect of generating new logical errors. For
example, if a global state’s communicating queues are all
empty and all of its executable outgoing transitions
belong to the deleted transitions, then the global state
may have a deadlock error after the modification.
Therefore, the parent states of the deleted states need
to be checked. Moreover, all of the global state sequences
rooted from the deleted global states need to be removed
in the global state graph. The global states that should be
removed when a transition is deleted can be classified
into three classes. For simplicity, the partial global state
graph shown in Figure 3 is still used for explanation.

1. The removed global state is unique in the global state
graph. In this case, this global state should be
removed and all of the global state sequences rooted
from this state should be removed too. For example, if
transition X is deleted, then global state A;, which is
generated by executing X and is unique in the global
state graph, and those global state sequences rooted
from A, should be removed.

2. The removed global state is the first occurrence of a set
of equivalent global states. In this case, this global
state and all of the global state sequences rooted from
this state are removed, and one of the equivalent
states, i.e., a second occurrence that is not generated
by executing the deleted transitions, is promoted as
the first occurrence. For example, if transition P is
deleted, global state C, and those global state
sequences rooted from C; are removed. Since C,
has an equivalent state C,, which is generated by
executing another transition @, C, can be promoted
as the first occurrence.

3. The removed transition is the second occurrence of a set
of equivalent global states. In this case, this global
state is removed without any side effect. For example,
if transition Z is deleted, then global state B, should
be removed. Global state By, which is the same as B,
and is the first occurrence and is generated by
executing transition Y, is not affected.

Adding/deleting transitions may result in the change
of dead and live variables sets. As a result, some
originally equivalent global states may become unequi-
valent due to their corresponding dead variables
becoming live ones; some originally unequivalent
global states may become equivalent due to their
corresponding live variables becoming dead ones. For
convenience, the partial global state graph depicted in
Figure 4 is used for explanation.

1. Dead variables becoming live ones. Assume variable y
is dead originally. Using the dead and live variables
concept, global states GS4 and GSjp are equivalent.
Let variable y become live after modification.

THE COMPUTER JOURNAL,

Vor. 37, No.8, 1994

$20z 14dy 01 uo 1senb Aq £Z86£/869/8///e101e/|ulod/woo dno-olwepeoe//:sdiy woil papeojumoq

702 C.-M. HuaNG AND J.-M. Hsu

S,<x=0,y=0, x=0> ¢
A(0) I <a=0,b=l,cs=0>

GS,

5.<x=0,y=0,220> ¢
¢ I <a=0,b=0,c=0>

5,<x=0,y=1, 320> ¢
¢ I,<a=0,be0,c=0>

§,<x=0,y=0,3=0> D(0)
¢ I,<a=0,b=0,c=0>

B,<x=0,y=0,3=1> ¢
A()) I,<as0,bal,c=0>

Gmeruing new global states after modification

Removing global states after modification

FIGURE 4. The partial global graph used for explaining dead and live
variables change.

Consequently, GSp and GS, become unequivalent,
because)’s values are different in GS 4 and GSp. Thus,
GSp should be explored, i.e., GSp becomes extend-
able, after modification.

2. Live variables becoming dead ones. GS- and GSp are
originally unequivalent. Let variable z become dead
after modification. Consequently, GS. and GSp
become equivalent because their element values are
equal except the value taken on by the dead variable z.
Assume GSp becomes the second occurrence. Thus,
GSp’s descendant state sequences are removed
because GSj, is the second occurrence.

For convenience, some notations are used to explain
the ECFSM-based incremental protocol verification
algorithm. EXTENDABLE is a pool storing those
global states that have not been explored. GLOBAL-
STATE is a pool storing those global states that have
already been explored.

Algorithm G-S-R-A, which is shown below, forma-
lizes the global state reachability analysis with the
concept of dead and live variables for n-entity proto-
cols. There are three main steps in the global state
reachability analysis. Step 1 evaluates dead and live
variables of each state of the » ECFSMs. Step 2 initializes
the initial global state. Step 3 is the main step of G-S-R-
A. Each global state in Extendable is checked. If a global
state G'S has no executable outgoing transition, then
GS’s logical correctness is checked in Step 3. Depending
on designer’s convenience, incremental verification
processing can be invoked if logical errors are detected
in Step 3-1. If a global state GS is extendable, all of GS’s
executable transitions are executed in Step 3-2. The
equivalent property of each newly generated child global
state of GS is checked based on the dead and live
variables concept.

Algorithm G-S-R-A:

Step 1: Evaluate dead and live variables of each state of
ECFSM;, I =1,...,n.

Step 2: Initialize the initial global state GS;,;, and add
GS;,i: to EXTENDABLE.
Step 3: while EXTENDABLE is not empty do
Remove a global state GS from EXTEND-
ABLE.
if GS does not have any executable transition
then
Step 3-1: case of
GS is not a terminal state:
Mark GS as an erroneous state
according to the error type and add
GS to GLOBALSTATE.
if the designer wants to modify the
protocol at this point then
Call the incremental verification
processing.
GS is a terminal state:
Mark GS as a terminal state and
add GS to GLOBALSTATE.
endcase
else
Step 3-2: for each executable outgoing transi-
tion e of GS such that GS — e — GS'
do
if there is a GS; in EXTENDABLE
or GLOBALSTATE that is
marked as unique or the first
occurrence such that GS; is
equal to GS' except for the
values taken on by dead
variables
then
Mark GS; as the first occurrence
if it is originally unique.
Mark GS’ as the equivalent state
of GS; and add GS’ to GLOBAL-
STATE.
else
Mark GS' as an unique state and
add GS' to EXTENDABLE.
endif
endfor
endif
endwhile

Incremental verification processing contains seven
steps, which are described as follows:

Step 1: Modify the protocol: add transitions and/or
delete transitions.

Step 2: Evaluate dead and live variables of each state of
the modified ECFSM;, I =1,... ,n.

Step 3: Analyze the effect that is resulted from some
dead variables becoming live ones.

Step 4: Analyze the effect that is resulted from some live
variables becoming dead ones.

Step S: Inspect the logical correctness of the related global
states and modify the associated information,
which are resulted from deleting transitions.

THE COMPUTER JOURNAL,

VoL. 37, No.8&, 1994

$20z 14dy 01 uo 1senb Aq £Z86£/869/8///e101e/|ulod/woo dno-olwepeoe//:sdiy woil papeojumoq

AN INCREMENTAL PROTOCOL VERIFICATION METHOD 703

Step 6: Inspect the logical correctness of the related
global states and modify the associated
information, which are resulted from adding
transitions.

Step 7: Go to Step 3-1 of algorithm G-S-R-A.

Step 1 adds and deletes transitions. Step 2 reevaluates
the dead and live variables of each state after adding and
deleting transitions. Step 3 calculates those global states
that are originally regarded as equivalent but become
unequivalent due to their dead variables becoming live
ones. The details of Step 3 are presented in the algorithm
Dead-to-Live-Analysis, which is shown below. A global
state GS that has the condition of dead variables
becoming live ones may become equivalent to other
global states after the dead-to-live change. Step 1 deals
with this situation. If GS becomes other global state’s
equivalent state, GS’s child states need to be removed
because GS becomes the second occurrence. Procedure
Clear removes the descendant global state sequences
rooted from the global states that have to be removed. If
GS becomes other global state’s equivalent state, GS’s
originally equivalent states need to be checked. That is,
those states which are originally regarded as equivalent
to GS may be regarded as unequivalent due to the
corresponding dead variables becoming live ones. Step 2
deals with the condition. In Step 2-1, if an originally
equivalent state GS"” becomes unequivalent to GS due to
the dead-to-live effect, GS” is checked to see whether it
becomes an equivalence of another state. In Step 2-2, if
GS" is still equivalent to GS, then GS” becomes an
equivalent state of GS’ in case GS becomes an equivalent
state of GS’ due to the dead to live effect.

Algorithm Dead-to-Live Analysis:

for each GS that is marked as unique or the first
occurrence in EXTENDABLE or GLOBAL-
STATE and GS’s component state contain a state
S such that S has dead variables becoming live ones
do
Step 1: if there is a GS' in GLOBALSTATE or
EXTENDABLE which is marked as unique
or the first occurrence such that GS is equal to
GS’ except the values taken on by the dead
variables and GS' is not a descendant state of
GS
then
Mark GS' as the first occurrence if GS' is
originally unique.
Mark GS as an equivalent state of GS'.
for each child (GS) do
Clear(child(GS), all deleted transi-
tions)
endfor
endif
Step 2: for each state GS” that is an equivalent state of
GS do
if GS” becomes different from GS due to
the dead-to-live change

Step 2-1: then
if there is a GS” in GLOBALSTATE
or EXTENDABLE that is marked
as unique or the first occurrence such
that GS" is equal to GS" except the
values taken on by the dead variables
then Mark GS” as the equivalent state
of GS".
else Add GS” to EXTENDABLE.
Step 2-2: else
if GS becomes an equivalent state of
GS' then
Mark GS” as an equivalent state of GS’
endif
endif
endfor
endfor

Procedure Clear(GS, T'):

Step 1: Remove GS from GLOBALSTATE or
EXTENDABLE.
Step 2:
case of GS

A unique state:
for each child(GS) do
Clear(child(GS), T).
endfor

The first occurrence:
Promote one of the equivalent state GS’
of GS that is not GS’s descendant state
and is not generated by executing
transition T as the first occurrence;

Add GS’ to EXTENDABLE.

for each child(GS) do
Clear(child(Gs), T).
endfor

The second occurrence:
Do nothing.

endcase

Step 4 of the incremental verification processing
calculates those global states that become equivalent due
to their live variables becoming dead ones. The details of
Step 4 is presented in algorithm Live-to-Dead-Analysis,
which is shown below. For those global states that have
been checked in Step 3, they do not need to be checked
again. That is, in case a global state contains some
variables whose attributes changed from dead to live and
some variables whose attributes changed from live to dead,
this global state is checked in Step 3. After the selection,
each of the affected global states GS is checked to see
whether GS becomes other states’ equivalent state or not.
If the answer is positive, then the equivalence information
of GS’s originally equivalent states are modified, and GS’s
descendant state sequences are removed.

Algorithm Live-to-Dead-Analysis:

for each GS that is marked as unique or the first
occurrence in EXTENDABLE or GLOBALSTATE

THE COMPUTER JOURNAL,

VoL. 37, No.8, 1994

$20z 14dy 01 uo 1senb Aq £Z86£/869/8///e101e/|ulod/woo dno-olwepeoe//:sdiy woil papeojumoq

704 C.-M. HuaNG AND J.-M. Hsu

and GS’s component states don’t have dead variables
becoming live ones but contain a state S such that .S
has live variables becoming dead ones do
if there is a GS’ in EXTENDABLE or GLO-
BALSTATE that is marked as unique or the
first occurrence such that GS’ is equal to GS
except the values taken on by dead variables
and GS' is not a descendant state of GS
then
Mark GS’' as the first occurrence if it is
originally unique.
Mark GS as an equivalent state of GS'.
Modify each equivalent state of GS as an
equivalent state of GS’.
for each child(GS) do
Clear(child(GS), all deleted transitions).
endfor
endif
endfor

Step 5 of the incremental verification processing
inspects the logical correctness of the related global
states and deletes those states that need to be removed
for the deleting transitions case. The details of Step 5 is
presented in Algorithm Delete-Process, which is shown
below. As mentioned previously, logical errors can be
eliminated when the incoming transitions of the
corresponding global states are deleted. But, some new
errors may also be generated after deleting transitions.
For example, let global state GS be generated by
executing transition e, which has been deleted, from
global state GS,. If GS, has only one executable
outgoing transition, i.e. the deleted transition e, and
GS, is not a terminal state, then GS, becomes an
erroneous state. Step 1 has the logical correctness
inspection of the related global states. After the
inspection, Step 2 removes those global states, which
are generated by executing the deleted transitions, and
their descendant states.

Algorithm Delete-Process:
for each deleted transition e do
for each GS in GLOBALSTATE or EXTEND-
ABLE such that GS, — e — GS do
Step 1: if GS, becomes an erroneous state
then
Mark GS, as an erroneous state accord-
ing to the error type
endif
Step 2: Remove GS from GLOBALSTATE or
EXTENDABLE and delete the associated
errors.
for each child(GS) do
Clear(child(GS'), all deleted transitions).
endfor
endfor
enfor

Step 6 of the incremental processing selects those
global states that become re-extendable for the adding

transitions case. Algorithm Add-Process, which is shown
below, depicts the details of Step 6. When an entity’s
state in a global state GS is the head state of an added
transition, GS becomes re-extendable even if GS has
originally been explored.

Algorithm Add-Process:

for each global state GS that is unique or first
occurrence in GLOBALSTATE do
if GS’s component states contain a state S that is
equal to the head state of a new transition T
then
Delete the corresponding errors associated with
G S that will not occur after the new transition
being added.
Add GS to EXTENDABLE.
endif
endfor

After selecting the re-extendable global states, Step 7
of incremental verification processing returns to Step 3-1
of Algorithm G-S-R-A to explore new global states and
detect additional logical errors.

4. APPLICATION AND USAGE

In this section, we briefly present the application of the
new incremental verification method to ISO’s Estelle at
first. Then, an example is given to show the usage.

4.1. Application

Based on the new incremental protocol verification
method proposed in this paper, we have developed an
incremental Estelle translator on SUN SPARC work-
stations (Huang et al., 1993). In this way, an Estelle-
based incremental protocol design system is achieved.

The framework of an Estelle specification is a set of
cooperating entities. Figure 5 shows the abstract format
of an Estelle specification. Each entity is described as a
module. Each module is attributed with systemprocess,
systemactivity, process or activity. Entitites interact with
each other by exchanging messages through channels. A
channel is full-duplex that transmits messages between
two connected modules. The actual behavior of a module
1s specified as a process. An Estelle process definition
specifies a queue discipline associated with each inter-
action point, the initial condition and all possible
transitions for the corresponding ECFSM. The general
transitions form of Estelle is also depicted in Figure 5, in
which TRANS is a keyword delimiting the transition
declaration part, FROM is the current state, TO is the
next state, WHEN is the input event, PROVIDED is the
predicate part to be satisfied and ACTION is the action
part to be executed.

In order to have an efficient and automatic verification
system, a subset of Estelle is supported in our system.
Based on the similar concerns presented in (Courtiat,
1987, 1988; Courtiat and Saqui-Sannes, 1992; Algayers

THeE COMPUTER JOURNAL,

Vor. 37, No.8, 1994

$20z 14dy 01 uo 1senb Aq £Z86£/869/8///e101e/|ulod/woo dno-olwepeoe//:sdiy woil papeojumoq

AN INCREMENTAL PROTOCOL VERIFICATION METHOD 705

Protocol Specification

[Channel Definitions B
[Module Type Definitions 1
Module Body Definitions
rTypcs, Variables, States, Si Modules, ... Definiti l

Initialized Part for the body

Transitions Definitions

g:mfidal
gin

{ Action : Pascal-like Statements }
end

[Module Variables Definitions l

Initialized Part for the specification
[Initialize Module Variables with module bodies l

[Channel Connection Definitions]

FIGURE 5. The abstract format of an Estelle specification.

et al., 1993), the Estelle supported in our system has the
following restrictions:

1. As it is mentioned in (Couriat, 1987, 1988; Courtiat
and Saqui-Sannes, 1992), global synchronization for
systemprocess modules may lead to undesired over-
specifications. Hence, systemprocess and process
modules are not supported. Only systemactivity and
activity attributes are supported to restrict the
execution to have interleaving semantics (Algayers
et al., 1993).

. Dynamic features are not allowed, i.e. module
instances cannot be created dynamically. In other
words, a static configuration which is similar to that
in (Algayers et al., 1993) is supported.

. In order to have fully automatic execution, incom-
plete definitions of functions/procedures are not
allowed, and ‘any’ and °..." undefined types are not
allowed either.

The Estelle translator interprets the Estelle specifica-

tion to be executable, analyzes the dead and live variables

of each state of each entity and so on. The Estelle
translator contains the following functionalities:

1. An ECFSM table generator. It can generate the
ECFSM table in which ECFSMs are linked as a
link list and therefore the number of entities can be
decided from the table. Each ECFSM is also built as a
tree. The ECFSM table contains the module bodies
and interaction points declared in the Estelle
specification.

. A module body generator. It can generate the module
bodies declared in the Estelle specifications. Each
module body is a structure that contains some data
and pointer fields. The module body contains the
initial state, state list, variable list, and transition list.

. A communication channel generator. It can generate
the channels between entities from the channel
declaration part of the Estelle specifications. The
channel structure is important to decide the

communicating role, e.g. subject or object entity.
Each channel is uni-directional and First-In-First-Out
(FIFO).

4. A dead and live variables generator. It can decide dead
and live variables for each state. The process of
seeking dead and live variables is divided into two
stages. In the first stage, all transitions are traversed to
decide each variable’s first access type, i.e. assigned or
referenced, for each transition. In the second stage,
each ECFSM graph is traced to decide the dead
variables of each state of each entity.

5. A global state structure generator. It can decide the
number of queues from the communication channel
generator and the number of ECFSMs from the
ECFSM table. The communication queues of the
entities that have been connected using a ‘CON-
NECT’ statement should exist in the global state
structure, otherwise they can be eliminated.

Based on the Estelle translator, we have developed an
associated protocol design system on SUN SPARC
workstations. A Graphical-User-Interface (GUI) is also
provided. The main features of the associated protocol
design system are as follows:

1. Protocol designers can load Estelle specifications in
text files or interactively edit Estelle-specified proto-
cols using the provided editor.

2. Protocol designers can (i) control, e.g. set the number
of generated (erroneous) global states as the tempor-
ary halt point, (ii) observe, e.g. display a list of
generated (erroneous) global states, or a list of
specified transitions and (iii) trace, e.g. display the
transition sequences from the initial global state to an
erroneous global state, the execution of protocol
verification (Figures 6 and 7).

3. Protocol designers can perform adding/deleting
transitions at the temporary halt point. That is,

O] An Estelle-based Incremental Protacol Verification System N

Fle 9)(Tansiue) <.) ves i o)(Opuon)(Report 9) bowrerze J___)
B

R Load Estelle File
Directory /homel/nsujm/estelle :
File Namc : Wideabase.est

Ty ()

Etete Fies © fvotocol verification Configuration Setup
B-340113-4-1. €31 SYSTEM CHANNEL BOUND @ @7 1,
D-940112-2. 051 .
DISPLAY GENERATING GLOBAL P BY STEP YES

hruje.esl \

51208t SYSTEM BLOCKING AFTEF GEN| 2 UMBER OF GS :[Tves | wo

D-940119-1.es1
g A1l Erroneous Global States)

D-940113-4-6. a8l SYSTEM TERMINATION WITH
Imper of 6.5, D[200)

4 SYSTEM BLOCKING AFTER GEN§
E

Nidea.ost

@ v e w

threel6.sst Terminating Number of Erroj| bal states : J0 oo
threell. eat Terminating Number of Gend obal states : 200 5c)
3

Dy eTTCTTy Ny TAT STy OTHER
state state 0, state_l , state 2 , s - ate_d, state S,
state_6, state_] , state B, state_ 9, state_l B

var
Phaseflag : integer
NegotFlag @ integer :
ExPid : integer ;
Pid : integer

J

\f”e : /hamel/hsujm/estel le/MideaBase . est A

FIGURE 6. Setting some control parameters.

THE COMPUTER JOURNAL,

Vor. 37, No. 8, 1994

$20z 14dy 01 uo 1senb Aq £Z86£/869/8///e101e/|ulod/woo dno-olwepeoe//:sdiy woil papeojumoq

706 C.-M. HuaNGg AND J.-M. Hsu

fo] 'An Estolle-based Incremental Protecol Verificatlon System
Cnwiac) ke) ves oo)(Opuon)(Repat v)(laacmeaal)@@
© Protocol Veritication System s| & ERRONEOUS GLOBAL STATES INFORMATION 3

Erroenous Global States ERROENOUS
PROTOCOL FILE GL08AL 1A 03, PATH

YT

o IS WNSPECITIED RECEPTION
m - 592 UNSPECIFIED RECEPTION 0
VERFICATION METHOD wansumeo | [1625 UNSPECITIED RECEPTION 1
e
Dead and Lie o || wsrrctrin wicerrion]|| | *
Analysis ‘.
VENFYING PrAsE 0ea0 L0g 7
m : Selected Global State Information 1
plobal State ID 46 15
Tather 6. § 1D 38
Protocel Verification |riring Entity machine n 22
Tramsition 10 9 v 30
ENTITY INFORNA | 3 recase)0 .
JINKING MODULE :tentaty e chlldun G6s 10 89 60
LINKING MODULE-BODY : “entity_s_bod | Duplicatave 65 49 ‘;::
TOTAL VARIABLES ~ : 7 eemenommonoosseeoeeeno
T01AL STATES Rt it machine » ”n
T0TAL TRMSITIONS : 22 T Phaoat. 0
TOTAL LINK CHANNEL : 1 (VAR Phasef lag (]
<VAR) Negotzlag 0
» VAR) ExPi 0 103
. TRANSITION INFOR] | vAR) Pid 0
WAR) SC14 ! 16
o | state state_0, state1 , state 2, || (VAR RCid 128
state§, state_7 , state 8, state| (VAR Tine 0 16
en
161
>)| 1
OGCT2r il 4
|]m OK
Press "OK" To Exit
(__J PLEASE PRESS "0K* TO EXIT ENTITIES INFORMATION I [rﬁ
T T TV TS W ES TS T TE R TOUE ST BET

=

FIGURE 7. Observing and tracing verification result.

protocol designers can edit the added transitions that
are specified in Estelle using the provided GUIL
Protocol designers can also use the GUI to list all of
currently existing transitions and delete the corre-
sponding transitions for removing the associated
logical errors (Figure 8).

The incremental verification process is invoked
optionally when logical errors are detected. The incre-
mental verification process compares the new dead and
live variables with the old dead and live variables,
identify the equivalent properties among global states,
delete some global states and the associated logical
errors, identify those global states that become
re-extendable and so on.

An £4 Adding New Transhisns
'—" —-) Selected Protocol Entty: machine_m
Increment|
FROM state_2, Stale List
=}
Adding Transtions state_d
10 state_Q otate i
Ddu‘hl'l'mnnm E} R g
»ack wnen con_1nk_SetupReq,
(Reset Incremental |
PROVIDED —
Selecied Ly LEob P
| Deleting the Selected Transition
Protocol €Y Selected Protocol Entity machine_m
q
Selected Transiton 10 7
Jrom sta
when col
vegin Selected Transmon tormenon
Phasef |
ExPid :| | from stated to state_0
Negotf1 when con_)1nk.ReStartReq(P1d)
end | begin
Phaseflag := 1 - Phasef lag ;
ExPid :2 0 ;
Negotflag := 1 ;
| end ;
Press of L
Y [D Adding
var
PhaseFlag : 1nt
NeqotFlag @ 1iny
ExPid : intege e
Pid : integer \
\file : /homel/hsujn/estelle/Miq pRess ~“0n- To Ex1t Adding New Transitions

FIGURE 8. Adding and/or deleting transitions.

4.2. Usage

Figure 9 shows a protocol used for the multimedia
application, in which the client (user) side sends text-
based data to the server (provider) side, the server
(provider) side tries to send image-based or video-based
data to the client (user) side periodically. The underlying
network is an ethernet-based bus. There are two users,
1.e. User 0 and User 1, on the client side. Each one holds
bus usage alternatively. There are also two providers, i.e.
Server 0 and Server 1, on the server side. These two
providers try to send data for every T, time units (delay
(T)) in transition S05) alternatively. Since the data sent
from server to client, i.e. image-based or video-based
data, always need a long time period, a provider is
allowed to send when its paired users, which is coupled
by the id (0 or 1), has hold the bus usage once, or when
both users in the client side don’t want to use the bus.
Since the amount of data from server to client is very
large, the server side should send a request message to
users to hold the bus usage. After receiving the
acknowledgement, a provider can preparehto send. The
ideal scl;eme is pure 1nterleav1ng (user0 — serverQ or
server) — userO) Y (userl X serverl or serverl "3

userl), and the cycle is repeatedly executed. However,
the client side has the higher privilege to use the bus
according to users’ need. Since both sides can initiate the
usage as they like, some collisions situations may occur
when both sides try to hold the bus at the same time.
When the number of collisions is greater than N, the
server side will initiate a negotiation, e.g. renew the
receive buffer size, transmission speed, and etc. The
following usage scheme is used in the protocol to resolve
the bus usage: where (trans,, trans,) represents transi-
tions trans; and trans, colliding; function GerCounter()
in transitions SO07 and S12 decides how many data
transmission sessions the server are allowed in the current

then then ..
cycle; (trans, D trans,)" represents transition
then then

sequence trans; — -- -
for n times.

— trans, is repeatedly executed

e Pure interleaving: As mentioned above.

e If Server 0 requests, but User 0 does not want to use,
then Server 1 requests. In this case, Server 0 can start
to send. After User 0 sending a respond message and
switching to User 1, then Server 1 can start to play.

then then

The transmon sequence 1s SOS — T03 — T04
they 506 ™ $0s ™' 703 4 104 ™9 S07 "4 TO7 MY
(S13 29 1127 T13’—"»" 315)"”" s14 T14 they
715" 51129 705 29 503 %' 504 ™' T06 ™'

where 7 is decided by GetCounter() in the transmon
So7. Otherwise, i.e. User 0 does not send any message,
Server 1 cannot play and lose the chance after the
predefined time interval, i.e. T}.

o If User 0’s sending data collides with Server 0’s
request message, User 0 gets the usage, Server 0 needs
to retry again. " eTnhe tIrg?nsitioPen sequence is

(505, T05) 4 708 % T10 ' 508 ™' S09.
e If User 1's sending data collides with Server 0’s

THE COMPUTER JOURNAL,

VoL. 37, No.8, 1994

$20z 14dy 01 uo 1senb Aq £Z86£/869/8///e101e/|ulod/woo dno-olwepeoe//:sdiy woil papeojumoq

AN INCREMENTAL PROTOCOL VERIFICATION METHOD 707

TO1

TO2:

TO3:

TO4 :

TOS5 :

TO6 :

TO7 :

TO8 :

Server

Client Site :
all variables’ initial values are 0
initial state : 0

. delay(T;) , PhaseFlag =0 Too: ? MsendReq(Pid), Pid = 1 T17: PhaseFlag = 1
' ! StartReq(SCid) * ExPid:=1-ExPid; SCid := 1 - SCid : ! NegotReq
: 'MsendAck (1-ExPid
? ReStartReq (Pid) i . S (id) . ? NegotOver
PhaseFlag:=1 - PhaseFlag ; ExPid:=0 T10: - - - T18: NegotFlag = 0
NegotFlag:=1 ExPid:= 0 ; !Collide (SCid) & g
? MsendReq(Pid) T11: ? ReadytoSend (Pid). J19: ? SetupReq, PhaseFlag = 1
ExPid := 1 - ExPid SCid :=1-SCid
' T12: ? Mdata T20: !SetupAck;
! MsendAck (1 - ExPid) PhaseFlag := 1 - PhaseFlag
: T13: T21: PhaseFlag = 1
! Tdata(SCid) ! MdataAck !SetupReq
?TdataAck(RCid) . 9 . ? SetupAck
SCid = 1-SCid T14: ZResmue T22: —pioseFiag = | - PhascFlag
? ReadytoSend (Pid) .
T15: ! NextCycle
2 MsendReq(Pid) , Pid = 0) ? ReStartReq (Pid)
SCid =1-SCid T16 : “PhaseFlag:=1-PhascFlag; ExPid := 0
NegotFlag:=1 ; SCid := 1 - SCid
Site :

variable ReadyFlag’s intial value is 1

all of the other variables’ initial values are 0

initial state : 0

S01 :

S02:

S03 :

? StartReq(Cid) S09:

$10

S14

NeogtFlag := 0
PhaseFlag := 1 - PhaseFlag

NegotFlag =1 S10 :

'RestartReq(SPid) ; SPid := 0
ReadyFlag:=1

? Tdata (Cid) Si1:

S04 :

S05:

S06 :

S07:

S08 :

ExCid :=1- ExCid ;

T TdataAck (1-ExCid) S12:

delay(T,) , NegotFlag = 0 &

ReadyFlag = 1 S13:

! MsendReq (SPid) ; ReadyFlag :=0

? MsendAck(RPid) , RPid = 0 Sl4:

SPid :=1-SPid ;
? MsendAck(RPid) , RPid = 1

SPid := 1 - SPid;Counter := GetCounter() S15:

1ReadytoSend(SPid)
? Tdata (Cid)

S15
? Collide(Cid) S17: ? Tdata(Cid)
SPid :=0; ReadyFlag :=1 : ExCid :=1 - ExCid
? =
2 MsendAck(RPid) S18; —_NegotReq, PhaseFlag =1
? NextCycle PhaseFlag =0
ReadyFlag :=1 S19: NegotOver
SPid = ExCid & ReadyFlag :=0
T ReadytoSend(SPid) S20: ? SetupReq
Counter:=GetCounter()
Counter >0 .
!Mdata ; Counter := Counter -1 S21: PhaseFlag := 1 - PhaseFlag
!SetupAck
Counter =0 S22 delay(T,) , PhaseFlag =1
TResume : T'SetupReq
? MdataAck S23 ? SetupAck

2 Tdata (Cid)

“SPid :=0 ; TryCounter := TryCounter + 1 S16:

IF TryCounter > N then begin
TryCounter := 0 ; NegotFlag := 1 end

ExCid :=1 - ExCid

FIGURE 9. The protocol used for explanation.

: PhaseFlag := 1 - PhaseFlag;

THE CoMPUTER JoURNAL, VoL. 37, No.8, 1994

$20z 14dy 01 uo 1senb Aq £Z86£/869/8///e101e/|ulod/woo dno-olwepeoe//:sdiy woil papeojumoq

708 C.-M. HuaNn:G AND J.-M. Hsu

request message after User 0 has used the bus, _

Server 0 needs to retry again. The transition sequence
is 705 503 ‘g smmﬂ_‘:' T06 e (505, T05) 5
708 5 710 25 508 25 509.

o If Server 0 requests, then User 0’s sending data
collides with Server 1’s request message. In this case,
User 0 can send data and Server Odlﬁeds to retry aga{%&
The mnsition sequence is Sogm — T03 o T04 frod
S06 ol (S05,T05) — T09 — T15 — S08 —
S10 — S11.

o If Server 0 (Server 1) starts to send, then User 1 (User
0) wants to send, then User 1 (User 0) is granted (the
period is short comparing with that of sending image
or video data, so let users to use the bus), but User 0
(User 1) can send after Server 0’s (Server 1’s) sendil%
data has ﬁni;lsel:ed. Thdewtra.nsitiag sequence is ... frod
(512,705) =5 813 T ™11 X5 112 25 113 35

$16 % s15 %5 (513 %9 T12 % 113 % s15y
—_

e If Server 0 requests, User 0 sends data, Server 0 sends
data, then User 1’s sending data collides with Server
1’s requests message. In this case, Server 1 l&eeds tot
againMThe t&nsition{ Sequence is S?hi. — IL;(E —
047 506 % 705 5035 504 °% 796 13
padd T(‘)IL—» (Slgm—v T12t; T13 = SlS);u—v SM:}:‘

T14 o Tl?hm—» S}hla — (S05,705) = T09 —

T15 = S08 — S10 — S11.

As mentioned previously, when the number of
collisions is greater than N, the server will initiate a
negotiation. Client has the privilege to send the required
setup conﬁguratl;&t'l to server ﬁ‘rhs"}' The‘ hﬂfransiti n
sequence is .5’19'2 — L(I)Z — &17 — S18 = T21 =
520 5 521 25 122 25 $19 =5 T'18. Server can initiate
the setup configuration after waiting T, time units (delay
(T3) in transition §22), if client does not initiaEfathe setxg
conﬁﬁgratim}h'l’he trsgsition sequence ,,,LS, 502 d 702 ol
T17 - S18 = §22 - T19 = T20 = S23 — S19 —
T18. If server side’s requesting negotiation message
collides with user’s sending data, the client side needs to
go to the initial state for preparing J;l.}.e negohigtion. TE
transli}tg?n sequence is (802,705) - T16 — S17 —
T17 = S18 —

In the client side, Pid and Negotflag are dead variables,
and the others are live. In the server side, Cid is a dead
variable and the others are live. Using the dead and live
variables analysis, the number of generated global states
is 6891 and there is one type of unspecified reception
error in the protocol, which is shown in Figure 7. In
contrast, the number of generated global states is 23 381
to detect the unspecified reception error using the
exhaustive method. The unspecified reception occurs
when server sends a setup message after T, time units and
client also sends a setup message at the same time. To
eliminate the logical error, a new transition is added in
each entity. In the client side, transition 722:

?SetupReq
PhaseFlag := 1 — PhaseFlag

is added from state 2 to state 0; in the server side
transition $24:

?SetupReq
PhaseFlag := 1 — PhaseFlag

is added from state 2 to state 0. Additionally, we want the
negotiation to restart after collision, so transition 723

NegotFlag = landPhaseFlag = 0
PhaseFlag := 1 — PhaseFlag;\NegotReq

is added from state 0 to state 1 in the client side,
transition S25:

?NegotReq, PhaseFlag = 0
PhaseFlag := 1 — PhaseFlag o

@]
is added from state 0 to state 1 in the server side. The
adding procedure is shown in Figure 8. 8

After modification, variable NegotFlag is changsg
from dead to live on the client side. All variablsy
attributes have no change on the server side. Ti
associated protocol design system will have the dead
and live variable analysis, modify the associated glo@l
states, and then continue the verification. As a resit,
some global states need to be re-explored. Using the dead
and live variables analysis, the number of global statesof
the modified protocol is 6959, in which 68 global stafes
are newly generated. Without using incremental proe%—
sing, all 6959 global states should be re-explored again.
Using the exhaustive analysis, the number of glo%]
states of the modified protocol is 23925, in which 644
global states are newly generated. :

eo

i

5. DISCUSSION

¢R69/8/.E/010

The complexity of incremental verification,
O(ky » x™), is similar to that, e.g. O(kg * X¢), of the
traditional global state reachability analysis. Fr%l
theoretic viewpoint, the rate of n;/ng is the key poiat.
However, from system users’ viewpoint, the rate‘g)f
K;/Kg is also important. Unfortunately, the reduction
rate of k is always neglected. Considering a system t%t
needs 1000 h to execute an application, no one will useit
willingly. However, if the system is improved for 10

speedup, ie., 1h for executing the same applicatiog,
users definitely may be willing to try the improwéd
system. It is with the K;/K; rate that incremental
processing is improved. In fact, most of currently existing
global state reduction techniques also improve the
K; /K rate.

Incremental processing is in fact similar to the pattern
match algorithms used in AI's production systems, €.8
the OPSS production system (Forgy, 1982; Gupta et dl.,
1988; Acharya and Gupta, 1992; Ishida et al., 1992). In
these production systems, incremental tests and incre-
mental processing of pattern match are used. Otherwise,
these systems are not able to execute a lot of practical
applications. The exploration of global states based on
the global state reachability graph is really similar to
the pattern match based on the working memory in

THE COMPUTER JOURNAL,

Vor. 37, No. 8, 1994

AN INCREMENTAL ProTOCOL VERIFICATION METHOD 709

roductlon systems. Incremental design especially shows
ts effectiveness when the modification is small. An open
question is whether it is possible to calculate the rate of
k;/kg- The main difficulty is that it is impossible to
calculate the execution time of each statement in a
program, which is machine-dependent; and it is very
hard to decide how many statements have been executed,
which is program-dependent (specification-dependent).
Therefore, the invoking of incremental processing is
decided by users, i.e. incremental processing provides an
optional choice for designers’ convenience. In other
words, incremental processing can be viewed as a
heuristic for protocol design and the designers decide
to invoke it optionally.

Two conditions that are suitable to invoke incremental
verification process are exemplified as follows: (1) at the
final state of protoco!l design, in which case very few
logical errors exist and (2) communication protocols are
designed by protocol design experts whose capabilities

will result in very few logical errors during protocol .

design.

In addition to applying the incremental verification
method to protocol analysis, we expect that the
application domain of this method can be expanded
intuitively. That is, some protocol design methodologies
can be associated with our incremental verification
method. For example, protocol synthesis (Zafiropulo
et al., 1980; Rajagopal and Miller, 1991, Shiratori ef al.,
1991) and stepwise protocol design (Chow et al., 1985;
Lin, 1991; Lin and Tarng, 1993) may be possible
application domains. At each stage of protocol synthesis
or stepwise protocol design, incremental verification can
be invoked to analyze the newly generated state space
from the previous stage to the current stage.

6. CONCLUSION

Protocol verification is an important issue for computer
networking. Global state reachability analysis is one of
the most straightforward and easily automated methods
for protocol verification. Although global state reach-
ability analysis suffers from the state explosion problem,
protocol designers still need to use it. The main reason is
that man power verification contributes much more to
the cost than computer power does. Therefore, before a
better automatic verification technique is proposed,
protocol designers still need to use global state reach-
ability analysis to detect logical errors automatically at
the early stage of protocol design. Global state reduction
techniques and our proposed incremental verification
method provide some heuristics to improve the efficiency
of global state reachability analysis.

In this paper, we have presented an ECFSM-based
Protocol verification method. Our method also incorpo-
rates the dead and live variable concept to improve
efficiency. Both the effects of dead variables becoming
live ones and live variables becoming dead ones should
-be considered at first; then the effect of adding/deleting

transitions in the global state reachability graph are
identified. Using the proposed ECFSM-based incre-
mental protocol verification method, we have developed
an Estelle-based incremental protocol verification
system. Thus, an FDT-based incremental protocol
design environment is achievable.

ACKNOWLEDGEMENTS

The research is supported by the National Science
Council of the Republic of China under the grant NSC
81-0408-E-006-568.

REFERENCES

Acharya, A, Tambe, M. and Gupta, A. (1992) Implementation
of production systems on message-passing. IEEE Trans.
Parallel and Distributed Syst., 3, 477-487.

Algayers, B., Coelho, V., Doldi, L., Garavel, H., Lejeune Y.
and Rodriguez, C. (1993) VESAR: a pragmatic approach to
formal specification and verification. Comp. Networks ISDN
Syst., 25, 779-790.

Anderson, D. P. and Landweber, L. H. (1984) A grammar-
based methodology for protocol specification and implemen-
tation. In Proc. ACM 9th Data Communication Symp., pp.
63-70.

Belina, F. and Hogrefe, D. (1989) The CCITT-specification and
description language SDL. Comp. Networks ISDN Syst., 16,
311-341.

Brand, D. and Zafiropulo, P. (1983) On communicating finite-
state machines. J. ACM, 30, 323-342.

Bochmann, G. v. (1989) Protocol specification for OSI. Comp.
Networks ISDN Syst., 18, 167-184.

Budkowski, S. and Dembinski, P. (1987) An introduction to
Estelle: a specification language for distributed systems.
Comp. Networks ISDN Syst., 14, 25-59.

CCTT Recommendation Z.100. (1988) Specification and
Description Language SDL, AP IX-35.

Chanson, S. T., Loureiro, A. A. F. and Vuong, S. T. (1993) On
tools supporting the use of formal description techniques in
protocol development. Comp. Networks ISDN Syst., 28,
723-739.

Chow, C. H,, Gouda, M. G. and Lam, S. S. (1985) A discipline
for multi-phase communicating protocols. ACM Trans.
Comp. Syst., 3, 315-343.

Chu, P. M. and Liu, M. T. (1989) Global state graph reduction
techniques for protocol validation in the EFSM model. In
Proc. IEEE Pheonix Conf. on Computers and Communica-
tions, pp. 371-377.

Courtiat, J. P. (1987) How could Estelle become a better FDT?
In Proc. Protocol Specification, Testing and Verification, pp.
43-60.

Courtiat, J. P. (1988) Estelle*: a powerful dialect of Estelle for
OSI protocol description. In Proc. Protocol Specification,
Testing and Verification, pp. 171-186. .

Courtiat, J. P. and Saqui-Sannes, P. de. (1992) ESTIM: an
integrated environment for the simulation and verification of
OSI protocols specified in Estelle*. Comp. Networks ISDN
Syst., 25, 83-98.

Diaz, M. (1982) Modeling and analysis of communication and
cooperation protocols using petri net based models. Comp.
Networks, 8, 419—-441,

Forgy, C. L. (1982) RETE: a fast algorithm for many
pattern/many object pattern match problem. Artif. Intell.,
19, 17-37.

Frieder, O. and Herman, G. E. (1989) Protocol verification
using database technology. IEEE J. Selected Areas Commun.,
7, 324-334.

THE COMPUTER JOURNAL,

VoL. 37, No.8, 1994

¥202 Iudy 01 uo 1senb Aq £286£/869/8/.¢/8101e/|UlWoo/Wwo0 dno-ojwapeode//:sdiy woli papeojumoq

710

C.-M. HuaNG aAND J.-M. Hsu

Frieder, O. (1992) A parallel database-driven protocol
verification system prototype. Software Practice Exp., 22,
245-264.

Gouda, M. G. (1993) Protocol verification made simple: a
tutorial. Comp. Networks ISDN Syst., 25, 969-980.

Gouda, M. G. and Han, J, Y. (1985) Protocol validation by fair
progress state exploration. Comp. Networks ISDN Syst., 9,
353-361.

Gouda, M. G. and Yu, Y. T. (1984) Protocol validation by
maximal progress state exploration. IEEE Trans. Commun.,
32, 94-97.

Gupta, A., Tambe, M., Kalp, P., Forgy, C. and Newell, A.
(1988) Parallel implementation of OPS5 on the encore
multiprocessor; results and analysis. J. Parallel Program.,
17, 95-124.

Horlzmann, G. J. (1993) Design and validation of protocols: a
tutorial. Comp. Networks ISDN Syst., 25, 981-1017.

Huang, C. M., Chang, Y. I. and Liu, M. T. (1990) A computer-
aided protocol design by production systems approach. JEEE
J. Selected Areas Commun., 8, 1748—1762.

Huang, C. M., Hsu, J. M, Lai, H. Y., Pong, J. C. and Huang,
D. T. (1993) An Estelle interpreter for incremental protocol
verification. In Proc. IEEE Ist Int. Conf. on Network
Protocols (ICNP), pp. 326-333.

Ishida, T., Gasser, L. and Yokoo, M. (1992) Organization self-
design of distributed production systems. IEEE Trans.
Knowledge Data Eng., 4, 123-134.

ISO—Information Processing Systems—Open Systems Inter-
connection (1987) ESTELLE—A Formal Description Tech-
nique Based on Extended State Transition Model. DIS. 9074.

Itoh, M. and Ichikawa, H. (1983) Protocol verification
algorithm using reduction reachability analysis. Trans.
IECE Jap., E66, 88-93

Lin, F. J,, Chu, P. M. and Liu, M. T. (1987) Protocol
verification using reachability analysis: the state explosion

problem and relief strategies. In Proc. ACM SIGCOMM
Workshop, pp. 126—135.

Lin, H. A. (1991) Constructing protocol with alternatiye
functions. IEEE Trans. Comp.,, 42, 376-386.

Lin, H. A. and Tarmng C. L. (1993) An improved method for
constructing multiphase communication protocols. IEEE
Trans. Comp., 42, 15-26.

Linn, R. J. (1988) The Features and Facilities of ESTELLE.
National Institute of Standards and Technology.

Linn, R. J. (1989) Conformance testing for OSIL. Comp,
Networks ISDN Syst., 18, 203-219.

Liu, M. T. (1989) Protocol engineering. Adv. Comp., 29,
79-195.

Pehrson, B. (1989) Protocol verification for OSL Comp,
Networks ISDN Syst., 18, 185-201.

Rajagopol, M. and Miller, R. E. (1991) Synthesis of
comunication protocols: survey and assessment. IEER
Trans. Comp., 40, 468—476. 2

Shiratori, N., Zhang, Y. X., Tatahsshi, K. and Noguchi, &
(1991) A user friendly software environment for protoc?;i
synthesis. IEEE Trans. Comp., 40, 477-486.

Sndhu, D. P. (1989a) Experiecnce with formal methodi
in protocol development strategy. In Proc. Fo
Description Techniques II, pp. 437-453. North-Holla
Amsterdam.

Sidhu, D. P. (1989b) Semi-automatic implementation of OS;
protocols. Comp. Networks ISDN Syst., 18, 221-238. 2

Umbaugh, L. D., Liu, M. T. and Graff, C. J. (1983
Specification and validation of the transmission contrdl
protocol using transmission grammar. In Proc. IE
COMPSAC, pp. 207-216.

West, C. H. (1992) Protocol validation—principles
applications. Comp. Networks ISDN Syst., 24, 219-242.

Zafiropulo, P. et al. (1980) Towards analyzing and synthesiz
protocols. IEEE Trans. Commun., 28, 651-660.

/1°S

Boo b

¥20¢ IMdy 01 uo }senb Aq £7286£/869/8/LE/9101Me/|YEBU0d/

THE COMPUTER JOURNAL,

Vor. 37, No.8, 1994

