Book REVIEWS 725

speculations about the relationship between karma and
backpropagation, there is a clear thread running through
the argument and I found myself enjoying his thought
provoking style.

In summary, the book has an enormous variety of
material (making it especially difficult for a reviewer to
give an objective and well-rounded assessment!), most of
which is both readable, accessible and interesting. There
are reservations I have outlined in some of the aims of
the book, but my overall assessment is a very strong
commendation of a work which genuinely attempts to be
multidisciplinary. This is a pioneering approach which
deserves both exposure and at the same time our
indulgence, if in its enthusiasm it occasionally steps
over a distant boundary a little too clumsily.

J. SHAWE-TAYLOR
Royal Holloway
University of London

REFERENCES

Howard, R. (1990) Dynamic Programming and Markhov
Processes. MIT Press, Cambridge, MA.

Linnainmaa, S. (1970) The Representation of the Cumulative
Rounding Error of an Algorithm as a Taylor Expansion of the
Local Rounding Errors (in Finnish). Master’s Thesis,
Department of Computer Science, University of Helsinki,
Helsinki.

Minaky, M. and Papert, S. (1988) Perceptrons, expanded edn
MIT Press, Cambridge, MA.

Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986)
Learning representations by back-propagating errors.
Nature, 323.

JouN EpTON (ed.)
Expert Systems and Optimisation. Avebury Technical.
1994. ISBN 0-291-39809-X. £49.50, 293 pp. hardbound.

In the process industry, chemical and process plants are
becoming increasingly complex. There are moves
towards increasing the flexibility of the manufacturing
operations and of minimizing stocks of finished
products. Simultaneously, customers are becoming
increasingly demanding in terms of their requirements
for rapid delivery of smaller quantities to ensure that
their own stock holding is minimized. It is no surprise
thererfore that many manufacturers in the process
industries are looking for ways of optimizing the
operation of their existing plant with minimal outlays.
This book attempts to summarize the current state of the
art in the application of expert and knowledge-based
systems to achieve these aims.

The book consists of 21 papers organized into five
sections. The sections are as follows, with a brief
summary of the topics covered. Part 1 provides an
overview with one paper on intelligent systems for
modelling and control and a second providing an
overview of Al in process control. Part 2 covers process
control with three papers. The first examines the role of

expert systems in control engineering, the second
automatic tuning of PID regulators with the third
discussing Al and future trends in process control. Part
3 covers process monitoring, with five papers covering
topics such as sensor data validation, fault diagnosis, Al
approaches to process supervision and the role of expert
systems in time series prediction. Part 4 covers
optimization with seven papers on such topics as expert
process scheduling, knowledge based planning systems
and the use of advanced optimization techniques in
process control. Part 5 comprises four papers by
industrialists presenting case studies.

The book provides a fair coverage of the application of
expert systems to process planning, monitoring and
control, concentrating mainly on applications rather
than the latest theoretical work. As is common in such
collections of papers, the papers vary considerably in
both their depth and attention to detail. However, this
book would be a useful addition to a university reference
library, showing the state of the art in industrial
applications of expert system technology.

C. CZARNECKI
De Montfort University

JonN ELDER

Compiler Construction—A Recursive Descent Model.
Prentice Hall International (UK) Ltd. 1994. ISBN 0-
13-291139-6. £19.95. 437 pp. softbound.

Authors of books on compilers have a dilemma: should
they focus on underlying theory in the exposition or
should they stress the programming exercise? Gries’ early
book with the same title was unique in that it blended
both. Perhaps there has been considerable increase in
underlying theory as well as the complexity of features in
programming languages which make attempting the
blend a tall order.

This book has focussed on the program construction
aspect of compilers at the expense of recent develop-
ments in theory. It is a detailed exposition (extending
over 19 chapters) of the design and construction of a
compiler for a language called MODEL, a subset of
MODULA-2, that generates code for a hypothetical
general-register based machine called TARGET. An
advantage of a running example through successive
phases of compilation, resulting in a complete compiler,
is that all pertinent aspects of compilers needed by the
example are discussed; this is a general lacuna in books
which focus on the underlying theory—they do not have
enough glue to aid in putting it all together, leaving first-
time compiler writers short on directions. A disadvan-
tage accruing from a sharp focus on the design and
construction of a single compiler is that it is limited in its
coverage by the chosen example. Such a book is useful
only to introduce student-programmers to the crafts-
manship of compiler construction. Graduate students of
Computer Science, and professional compiler-writers,

THE COMPUTER JOURNAL,

Vor. 37, No.8, 1994

$20z I4dy 01 uo 1senb Aq 91.G86£/522/8///e191e/|ulod/woo dno-olwepeoe//:sdiy woil papeojumoq

726 Book REVIEWS

both need a sufficient dose of evolving theory so as to
improve it correspondingly through research, or through
better engineering by deploying technology based on
such theory.

As MODULA 2 is the chosen compiler implemen-
tation language, the presentation of the design and
implementation exhibits better delineation of informa-
tion pertinent to the different phases of compilation. This
is a decided improvement over books which have
presented similar designs expressed in PASCAL or C,
as they do not have even first-level support for abstract
data types. The use of MODULA 2 allows locality in
modelling of information pertinent to different compila-
tion phases and activities, such as symbol table definition
and use, checks for well-formed MODEL program
structures in semantic analysis, and code generation in
the separate chapters on these topics. Integration effected
through IMPORT of these modules is relatively clean,
compared to the distribution of such information in
older recursive descent based compilers for PASCAL
(which led to a stepwise enrichment of phase-based
information structures in all of the recursive-descent
parsing procedures in these compilers).

An important part of the book is the collection of
exercises at the end of each chapter. These exercises are
themselves a source of learning, as they extend the
discussion of compilation to aspects of programming
languages that are not a part of MODEL.

The presentation in terms of content and style is a hop-
step-and-jump from the structured programming move-
ment that started over 25 years ago. The sprint for this
event started with the author’s involvement in porting
Ammann’s CDC 6600 Pascal Compiler (developed by
stepwise refinement based on recursive descent parsing)
to the ICL 1900 series, with two other books in this series
co-authored by his senior collaborator, Jim Welsh, as the
hop and the step. It is in this regard that the book falls
short.

The proponents of structured programming have
steadily moved on to increasingly formalized descrip-
tions of the programming process. The directions they
have set for themselves is to establish a science of
programming. Taking this spirit forward requires that
even complex programming problems, such as compiler
construction, be addressed formally. Hence, there is no
escape from attempting to use underlying programming
language theory in any discussion on compiler construc-
tion, regardless of the current state-of-the-art of this
theory, or the universal acceptance of any particular
formalisation. Such a discussion shows up the scientific
versus intuitive aspects of compilation. It is relative to
their theory that the compilation function as a syntactic
transformation under semantic invariance should be
modelled. Such a discussion could also provide a basis
for expressing engineering design concerns in the
efficiency, robustness, and fault tolerance (error recov-
ery!) in compilers. All these properties are clearly enjoyed
by the developed compiler, for it presents a stable

architecture that has evolved over time. Making this
formally explicit is a responsibility of proponents of
good programming practices.

Another point of note: by perpetuating an old style of
handcrafting of programs, the programmers of the
future will get rooted into history. Automatic genera-
tion of compiler components through use of compiler—
compiler tools is widely accepted in practice and readily
available in standard environments such as UNIX.
Indeed, it is the most pragmatic fallout from improve-
ments in the theory of programming languages. Expres-
sing compiler design and construction through use of
tools allow the designer to concentrate on programming
language specifications, rather than on programming.
After all, formal specification of programming languages
is motherhood to several formal specification
approaches. Positive experience in use of this style can
only rub off on other programming exercises as well.

Till the arrival of the first solutions to retargetable
code generation methods, the structure of compilers was
completely dominated by the structure of source
languages. Today, the idea that code generation can be
modelled as a tree-pattern-matching based covering-
problem is widely accepted. Systematic approaches to
code selection can be explored—even through use of
parsing technology. Locally optimal code selection is
possible without resorting to complex flow analyses, all
through modelling of target machines, and using tool-
based approaches to deriving the code selection part of
code generation. Posing some aspects of code generation
to be local optimisation problems, and others (such as
global register allocation or instruction scheduling for a
pipe-lined RISC processor) as global optimisation
problems, introduces a sharper focus on modelling of
engineering properties of generated code.

The use of tool based approaches in teaching compiler
construction provides a path for scale-up from classroom
toy exercises to full-blown programming languages and
industrially available target machines.

Today’s compilers interface to a comprehensive
programming environment, consisting of editors, brow-
sers, debuggers and program composition facilities.
Some of these aspects have been mildly dealt with in
this book. The code generated by today’s compilers also
need to interface with a wide variety of extra-linguistic
platforms, such as operating systems through run-
time support libraries, database systems, graphical
user interface management systems, etc. They also need
to accommodate use of program fragments written
in other programming languages. As pragmatic
matters in compiler construction, they too need to be
addressed.

KEsav V. Nori
Tata Research Development and Design Centre

JuLiAN ULLMANN
Compiling in MODULA-2. Prentice Hall. 1994. ISBN
0-13-088741-2. £19.95. 425 pp. softbound.

THE COMPUTER JOURNAL,

VoL. 37, No. 8, 1994

$20z I4dy 01 uo 1senb Aq 91.G86£/522/8///e191e/|ulod/woo dno-olwepeoe//:sdiy woil papeojumoq

