726 Book REVIEWS

both need a sufficient dose of evolving theory so as to
improve it correspondingly through research, or through
better engineering by deploying technology based on
such theory.

As MODULA 2 is the chosen compiler implemen-
tation language, the presentation of the design and
implementation exhibits better delineation of informa-
tion pertinent to the different phases of compilation. This
is a decided improvement over books which have
presented similar designs expressed in PASCAL or C,
as they do not have even first-level support for abstract
data types. The use of MODULA 2 allows locality in
modelling of information pertinent to different compila-
tion phases and activities, such as symbol table definition
and use, checks for well-formed MODEL program
structures in semantic analysis, and code generation in
the separate chapters on these topics. Integration effected
through IMPORT of these modules is relatively clean,
compared to the distribution of such information in
older recursive descent based compilers for PASCAL
(which led to a stepwise enrichment of phase-based
information structures in all of the recursive-descent
parsing procedures in these compilers).

An important part of the book is the collection of
exercises at the end of each chapter. These exercises are
themselves a source of learning, as they extend the
discussion of compilation to aspects of programming
languages that are not a part of MODEL.

The presentation in terms of content and style is a hop-
step-and-jump from the structured programming move-
ment that started over 25 years ago. The sprint for this
event started with the author’s involvement in porting
Ammann’s CDC 6600 Pascal Compiler (developed by
stepwise refinement based on recursive descent parsing)
to the ICL 1900 series, with two other books in this series
co-authored by his senior collaborator, Jim Welsh, as the
hop and the step. It is in this regard that the book falls
short.

The proponents of structured programming have
steadily moved on to increasingly formalized descrip-
tions of the programming process. The directions they
have set for themselves is to establish a science of
programming. Taking this spirit forward requires that
even complex programming problems, such as compiler
construction, be addressed formally. Hence, there is no
escape from attempting to use underlying programming
language theory in any discussion on compiler construc-
tion, regardless of the current state-of-the-art of this
theory, or the universal acceptance of any particular
formalisation. Such a discussion shows up the scientific
versus intuitive aspects of compilation. It is relative to
their theory that the compilation function as a syntactic
transformation under semantic invariance should be
modelled. Such a discussion could also provide a basis
for expressing engineering design concerns in the
efficiency, robustness, and fault tolerance (error recov-
ery!) in compilers. All these properties are clearly enjoyed
by the developed compiler, for it presents a stable

architecture that has evolved over time. Making this
formally explicit is a responsibility of proponents of
good programming practices.

Another point of note: by perpetuating an old style of
handcrafting of programs, the programmers of the
future will get rooted into history. Automatic genera-
tion of compiler components through use of compiler—
compiler tools is widely accepted in practice and readily
available in standard environments such as UNIX.
Indeed, it is the most pragmatic fallout from improve-
ments in the theory of programming languages. Expres-
sing compiler design and construction through use of
tools allow the designer to concentrate on programming
language specifications, rather than on programming.
After all, formal specification of programming languages
is motherhood to several formal specification
approaches. Positive experience in use of this style can
only rub off on other programming exercises as well.

Till the arrival of the first solutions to retargetable
code generation methods, the structure of compilers was
completely dominated by the structure of source
languages. Today, the idea that code generation can be
modelled as a tree-pattern-matching based covering-
problem is widely accepted. Systematic approaches to
code selection can be explored—even through use of
parsing technology. Locally optimal code selection is
possible without resorting to complex flow analyses, all
through modelling of target machines, and using tool-
based approaches to deriving the code selection part of
code generation. Posing some aspects of code generation
to be local optimisation problems, and others (such as
global register allocation or instruction scheduling for a
pipe-lined RISC processor) as global optimisation
problems, introduces a sharper focus on modelling of
engineering properties of generated code.

The use of tool based approaches in teaching compiler
construction provides a path for scale-up from classroom
toy exercises to full-blown programming languages and
industrially available target machines.

Today’s compilers interface to a comprehensive
programming environment, consisting of editors, brow-
sers, debuggers and program composition facilities.
Some of these aspects have been mildly dealt with in
this book. The code generated by today’s compilers also
need to interface with a wide variety of extra-linguistic
platforms, such as operating systems through run-
time support libraries, database systems, graphical
user interface management systems, etc. They also need
to accommodate use of program fragments written
in other programming languages. As pragmatic
matters in compiler construction, they too need to be
addressed.

KEsav V. Nori
Tata Research Development and Design Centre

JuLiAN ULLMANN
Compiling in MODULA-2. Prentice Hall. 1994. ISBN
0-13-088741-2. £19.95. 425 pp. softbound.

THE COMPUTER JOURNAL,

VoL. 37, No. 8, 1994

$20z 14dy 60 U0 1senb Aq §2G86£/922/8// € /e191e/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Book REVIEWS 727

This book provides an elementary introduction to
classical recursive descent compiling and is aimed at
the undergraduate. Its style is clear and unambiguous.
The prerequisites of the reader are that they are familiar
with elementary MODULA-2, basic data structures and
a simple assembly language. MODULA-2 is used both as
a source language and an implementation language to
illustrate one compiling technique. The reader is not
required to have a mathematical background and no
knowledge of automata theory is required.

The author takes an evolutionary approach rather
than top-down approach. This works well, introducing
the reader to simple concepts before leading through to
more complex ideas. The reader is introduced to the
overall concept of compiling by a description of the main
elements of a compiler, which sets the scene for the rest of
the text. The book then continues with assembly
language before introducing parsing.

The assembly language SAL—Simplified Assembly
Language—(a simplified version of Intel 8086 assembly
language) is used throughout the book to provide a
practical illustration of the concepts of compiling. The
assembler uses recursive descent and it is the use of the
assembler rather than any abstract ideas which leads the
student to understand recursive descent compiling.
Readers need to understand basic SAL and its explana-
tion in Chapter 2 is relatively straightforward.

Compiling is tackled by describing its components and
then introducing the methods of compiling expressions
before continuing on to compiling control structures
through to compiling procedures and modules. Final
chapters include error recovery and a brief introduction
to compiler optimization. Each chapter concludes with a
discussion (useful for student revision) and exercises.

The code used to illustrate concepts throughout the
book is very readable. The absence of overflow checks,
etc., avoids unnecessary distraction for the student trying
to grasp the basic concepts. The software is available on
disk from the publisher.

The strength of the text is its clear concise style with an
undaunting approach. It is unashamedly aimed at the
non-expert and assumes very little knowledge of the
subject. Some may consider its weakness to be its lack of
depth but the aim of the book is to provide an elementary
grounding in the subject. Other methods of compiling are
not referred to in the text and this may be considered a
disadvantage. Certainly, a section containing a discus-
sion of other types of compiler may be useful.

Overall, the book offers a straightforward explanation
and illustration of recursive descent compiling for the
undergraduate.

JupITH JONES
De Montfort University

GEORGE CoULOURIS, JEAN DoOLLIMORE AND TiM KINDBERG
Distributed Systems— Concepts and Design. 2nd edn.
Addison-Wesley. 1994. ISBN 0-201-62433-8. £23.95, 644
pp. hardbound.

The second edition of Distributed Systems— Concepts
and Design is very different from the first: it has an
additional author and it is more than twice as thick.

The book briefly puts distributed systems in a
historical perspective and then covers networking, IPC
and RPC, structure of distributed operating systems, file
servers and name servers, time and coordination,
replication, centralized and distributed transactions,
concurrency control, recovery and fault tolerance,
security, and distributed shared memory. The book
ends with the presentation of several case studies.

The book reflects a preference of the authors for
breadth rather than depth. It is very complete in its
coverage of important experimental distributed-systems
research, but the price for this is that theory of
distributed systems is only marginally covered.

The preface suggests that the book can be used for
undergraduate as well as for postgraduate teaching.
Although the volume of the material in the book
certainly justifies this (covering the whole book would
take roughly 50h of lecturing), I find the level of
presentation basically that of undergraduate teaching.
The book explains principles but not algorithms, it
explains what but not how.

Chapter 3 (‘Networking and Internetworking’), for
example, presents the OSI reference model and explains
what each layer is supposed to achieve, but does not
discuss how this is done. I believe treatment of fault
models and fault tolerance is essential in a book on
distributed systems and I find the treatment of this
subject too shallow. What I find especially missing is a
discussion of the fundamental possibilities and impossi-
bilities for masking faults under various fault models.

In spite of this defect, I find the book very useful as a
first introduction to distributed systems. All the material
on distributed systems I could ever hope to teach in an
undergraduate course is present and up to date. The
descriptions of the systems discussed are balanced and
clear. Questions, at the end of each chapter, are useful for
students to test their understanding of the material.

SAPE J. MULLENDER
University of Twente

ANDREAS PAEPCKE (ed.)

Object Oriented Programming: The CLOS Perspective.
Cambridge University Press. 1993. ISBN 0 13 092990 5.
£27.95. 202 pp. hardbound.

This is not a book about the methodology of object-
oriented programming nor is it a book that teaches you
how to program using the Common Lisp Object System
(CLOS). Rather, it is a book that is intended to
demonstrate the influence that the features of a
particular object-oriented programming language, i.e.
CLOS, can have on your approach to object-oriented
programming. In other words, a book that provides a

THE COMPUTER JOURNAL,

Vor. 37, No.8, 1994

$20z 14dy 60 U0 1senb Aq §2G86£/922/8// € /e191e/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

