Book REVIEWS 727

This book provides an elementary introduction to
classical recursive descent compiling and is aimed at
the undergraduate. Its style is clear and unambiguous.
The prerequisites of the reader are that they are familiar
with elementary MODULA-2, basic data structures and
a simple assembly language. MODULA-2 is used both as
a source language and an implementation language to
illustrate one compiling technique. The reader is not
required to have a mathematical background and no
knowledge of automata theory is required.

The author takes an evolutionary approach rather
than top-down approach. This works well, introducing
the reader to simple concepts before leading through to
more complex ideas. The reader is introduced to the
overall concept of compiling by a description of the main
elements of a compiler, which sets the scene for the rest of
the text. The book then continues with assembly
language before introducing parsing.

The assembly language SAL—Simplified Assembly
Language—(a simplified version of Intel 8086 assembly
language) is used throughout the book to provide a
practical illustration of the concepts of compiling. The
assembler uses recursive descent and it is the use of the
assembler rather than any abstract ideas which leads the
student to understand recursive descent compiling.
Readers need to understand basic SAL and its explana-
tion in Chapter 2 is relatively straightforward.

Compiling is tackled by describing its components and
then introducing the methods of compiling expressions
before continuing on to compiling control structures
through to compiling procedures and modules. Final
chapters include error recovery and a brief introduction
to compiler optimization. Each chapter concludes with a
discussion (useful for student revision) and exercises.

The code used to illustrate concepts throughout the
book is very readable. The absence of overflow checks,
etc., avoids unnecessary distraction for the student trying
to grasp the basic concepts. The software is available on
disk from the publisher.

The strength of the text is its clear concise style with an
undaunting approach. It is unashamedly aimed at the
non-expert and assumes very little knowledge of the
subject. Some may consider its weakness to be its lack of
depth but the aim of the book is to provide an elementary
grounding in the subject. Other methods of compiling are
not referred to in the text and this may be considered a
disadvantage. Certainly, a section containing a discus-
sion of other types of compiler may be useful.

Overall, the book offers a straightforward explanation
and illustration of recursive descent compiling for the
undergraduate.

JupITH JONES
De Montfort University

GEORGE CoULOURIS, JEAN DoOLLIMORE AND TiM KINDBERG
Distributed Systems— Concepts and Design. 2nd edn.
Addison-Wesley. 1994. ISBN 0-201-62433-8. £23.95, 644
pp. hardbound.

The second edition of Distributed Systems— Concepts
and Design is very different from the first: it has an
additional author and it is more than twice as thick.

The book briefly puts distributed systems in a
historical perspective and then covers networking, IPC
and RPC, structure of distributed operating systems, file
servers and name servers, time and coordination,
replication, centralized and distributed transactions,
concurrency control, recovery and fault tolerance,
security, and distributed shared memory. The book
ends with the presentation of several case studies.

The book reflects a preference of the authors for
breadth rather than depth. It is very complete in its
coverage of important experimental distributed-systems
research, but the price for this is that theory of
distributed systems is only marginally covered.

The preface suggests that the book can be used for
undergraduate as well as for postgraduate teaching.
Although the volume of the material in the book
certainly justifies this (covering the whole book would
take roughly 50h of lecturing), I find the level of
presentation basically that of undergraduate teaching.
The book explains principles but not algorithms, it
explains what but not how.

Chapter 3 (‘Networking and Internetworking’), for
example, presents the OSI reference model and explains
what each layer is supposed to achieve, but does not
discuss how this is done. I believe treatment of fault
models and fault tolerance is essential in a book on
distributed systems and I find the treatment of this
subject too shallow. What I find especially missing is a
discussion of the fundamental possibilities and impossi-
bilities for masking faults under various fault models.

In spite of this defect, I find the book very useful as a
first introduction to distributed systems. All the material
on distributed systems I could ever hope to teach in an
undergraduate course is present and up to date. The
descriptions of the systems discussed are balanced and
clear. Questions, at the end of each chapter, are useful for
students to test their understanding of the material.

SAPE J. MULLENDER
University of Twente

ANDREAS PAEPCKE (ed.)

Object Oriented Programming: The CLOS Perspective.
Cambridge University Press. 1993. ISBN 0 13 092990 5.
£27.95. 202 pp. hardbound.

This is not a book about the methodology of object-
oriented programming nor is it a book that teaches you
how to program using the Common Lisp Object System
(CLOS). Rather, it is a book that is intended to
demonstrate the influence that the features of a
particular object-oriented programming language, i.e.
CLOS, can have on your approach to object-oriented
programming. In other words, a book that provides a

THE COMPUTER JOURNAL,

Vor. 37, No.8, 1994

$20z 14dy 0z uo 1senb Aq 0G86E/.2./8//L /8191 e/|uloo/woo dno-olwepeoe//:sdiy woij papeojumoq

