Book REVIEWS 727

This book provides an elementary introduction to
classical recursive descent compiling and is aimed at
the undergraduate. Its style is clear and unambiguous.
The prerequisites of the reader are that they are familiar
with elementary MODULA-2, basic data structures and
a simple assembly language. MODULA-2 is used both as
a source language and an implementation language to
illustrate one compiling technique. The reader is not
required to have a mathematical background and no
knowledge of automata theory is required.

The author takes an evolutionary approach rather
than top-down approach. This works well, introducing
the reader to simple concepts before leading through to
more complex ideas. The reader is introduced to the
overall concept of compiling by a description of the main
elements of a compiler, which sets the scene for the rest of
the text. The book then continues with assembly
language before introducing parsing.

The assembly language SAL—Simplified Assembly
Language—(a simplified version of Intel 8086 assembly
language) is used throughout the book to provide a
practical illustration of the concepts of compiling. The
assembler uses recursive descent and it is the use of the
assembler rather than any abstract ideas which leads the
student to understand recursive descent compiling.
Readers need to understand basic SAL and its explana-
tion in Chapter 2 is relatively straightforward.

Compiling is tackled by describing its components and
then introducing the methods of compiling expressions
before continuing on to compiling control structures
through to compiling procedures and modules. Final
chapters include error recovery and a brief introduction
to compiler optimization. Each chapter concludes with a
discussion (useful for student revision) and exercises.

The code used to illustrate concepts throughout the
book is very readable. The absence of overflow checks,
etc., avoids unnecessary distraction for the student trying
to grasp the basic concepts. The software is available on
disk from the publisher.

The strength of the text is its clear concise style with an
undaunting approach. It is unashamedly aimed at the
non-expert and assumes very little knowledge of the
subject. Some may consider its weakness to be its lack of
depth but the aim of the book is to provide an elementary
grounding in the subject. Other methods of compiling are
not referred to in the text and this may be considered a
disadvantage. Certainly, a section containing a discus-
sion of other types of compiler may be useful.

Overall, the book offers a straightforward explanation
and illustration of recursive descent compiling for the
undergraduate.

JupITH JONES
De Montfort University

GEORGE CoULOURIS, JEAN DoOLLIMORE AND TiM KINDBERG
Distributed Systems— Concepts and Design. 2nd edn.
Addison-Wesley. 1994. ISBN 0-201-62433-8. £23.95, 644
pp. hardbound.

The second edition of Distributed Systems— Concepts
and Design is very different from the first: it has an
additional author and it is more than twice as thick.

The book briefly puts distributed systems in a
historical perspective and then covers networking, IPC
and RPC, structure of distributed operating systems, file
servers and name servers, time and coordination,
replication, centralized and distributed transactions,
concurrency control, recovery and fault tolerance,
security, and distributed shared memory. The book
ends with the presentation of several case studies.

The book reflects a preference of the authors for
breadth rather than depth. It is very complete in its
coverage of important experimental distributed-systems
research, but the price for this is that theory of
distributed systems is only marginally covered.

The preface suggests that the book can be used for
undergraduate as well as for postgraduate teaching.
Although the volume of the material in the book
certainly justifies this (covering the whole book would
take roughly 50h of lecturing), I find the level of
presentation basically that of undergraduate teaching.
The book explains principles but not algorithms, it
explains what but not how.

Chapter 3 (‘Networking and Internetworking’), for
example, presents the OSI reference model and explains
what each layer is supposed to achieve, but does not
discuss how this is done. I believe treatment of fault
models and fault tolerance is essential in a book on
distributed systems and I find the treatment of this
subject too shallow. What I find especially missing is a
discussion of the fundamental possibilities and impossi-
bilities for masking faults under various fault models.

In spite of this defect, I find the book very useful as a
first introduction to distributed systems. All the material
on distributed systems I could ever hope to teach in an
undergraduate course is present and up to date. The
descriptions of the systems discussed are balanced and
clear. Questions, at the end of each chapter, are useful for
students to test their understanding of the material.

SAPE J. MULLENDER
University of Twente

ANDREAS PAEPCKE (ed.)

Object Oriented Programming: The CLOS Perspective.
Cambridge University Press. 1993. ISBN 0 13 092990 5.
£27.95. 202 pp. hardbound.

This is not a book about the methodology of object-
oriented programming nor is it a book that teaches you
how to program using the Common Lisp Object System
(CLOS). Rather, it is a book that is intended to
demonstrate the influence that the features of a
particular object-oriented programming language, i.e.
CLOS, can have on your approach to object-oriented
programming. In other words, a book that provides a

THE COMPUTER JOURNAL,

Vor. 37, No.8, 1994

$20z 14dy 01 uo 1senb Aq 9GG86E//2./8//E/e191Me/|uloo/woo dno-olwepeoe//:sdiy wolj papeojumoq

728 Book REVIEWS

view of object-oriented programming in general form a
CLOS perspective.

The book takes the form of a collection of papers and
is divided up into five parts. Each part has a brief
introduction describing its purpose and the papers it
contains. Part I Introduction opens with ‘An introduc-
tion to CLOS’ which concentrates on some of the more
unusual features of the language and is intended to give a
reader unfamiliar with CLOS enough background to
understand the rest of the book. Although this
introduction gets bogged down in obscure details about
the semantics of multiple inheritance at one point, I think
it succeeds in its goal overall (although I knew something
about CLOS already). Unfortunately, to get the most out
of the book you also need to have at least some
awareness of Common Lisp syntax and semantics
already, but this is probably unavoidable in a book of
this nature and if you have got a rough idea about how
Lisp works, you can follow what is going on most of the
time.

If you did not know anything about CLOS before you
opened the book, the introductory chapter is likely to
challenge your view of object-oriented programming.
CLOS takes a functional view of object-oriented
programming which means that methods do not belong
to any particular class and can be specialized on more
than one argument. For example, the way a person eats
something might depend on whether they’re an adult or a
child and also on what they’re eating (ice-cream, jelly,
biscuit, etc.). Most object-oriented languages would
require you to decide whether the eat method belongs
to the Person class or the Food class but in CLOS it
belongs to neither and can be specialized on both.

Some of the philosophy behind CLOS and the reasons
why the language is designed the way it is are described in
the second paper in the Introduction, ‘CLOS in
Context—The Shape of the Design Space’. This is a
very interesting paper for anyone interested in language
design because it highlights a number of language
design choices and discusses various trade-offs between
them.

Part II contains a number of papers about the
language feature for which CLOS is possibly most
famous, its metaobject protocol. Although the basic
architecture of CLOS is fixed (classes, methods, slots,
etc.), the language is intended to be extensible. Thus, it is
possible to define new kinds of classes which behave in
different ways from a standard class, e.g. persistent
classes might store their instances in a database whilst
atomic classes might use locks to prevent concurrent
method invocations on a particular instance. A meta-
object protocol is a technique for opening up the
implementation of a system and allowing it to be
changed in a controlled but incremental fashion using
the techniques of object-oriented programming at the
meta-level (system or implementation level) rather than
the application level. The four papers in this section
present various examples of meta-level programming in

CLOS and also discuss the use of metaobject protocols in
a wider system context.

Part III of the book contains three papers comparing
CLOS with other well-known object-oriented program-
ming languages (C+ +, Eiffel and Sather, and Small-
talk). Although it might be expected that the more
unusual features of CLOS would crop up again and
again in each comparison, making the material rather
repetitive, in fact this does not happen because each
comparison is from a slightly different perspective. For
example, the C+ + comparison is language based and
concentrates on the semantics of inheritance, the Eiffel/
Sather comparison is more systematic and based on a
framework of questions about different aspects of object-
oriented programming systems, whilst the Smalltalk
comparison concentrates on the meta-level and ends up
proposing a new class model for Smalltalk.

Part IV presents three papers on CLOS uses and
methodology. The first paper is about documenting
object-oriented software but was too CLOS-specific and
did not offer any new insights in my view. The second
paper describes the implementation of LispView, an
interface to Open-Look built using CLOS. It ends with a
summary of lessons learned from using CLOS which
argues that some of the more exotic CLOS language
features really are indispensable. The final paper describs
the use of CLOS to implement a hybrid knowledge
representation tool. This application had stretched the
metaobject protocol to its limits (and beyond!) so the
paper contains an interesting critique of this aspect of
CLOS.

Part V is concerned with the efficient implementation
of CLOS on both specialized hardware (Lisp machines)
and general-purpose architectures. The two papers in
this section concentrate on the way in which method
dispatch is implemented in CLOS but both are rather
specialised and perhaps of less interest to the general
reader than the rest of the book.

The book ends with a useful biography of each
contributor, something which is often missing from a
multi-author book of this nature.

Overall, I found the CLOS perspective on object-
oriented programming presented here to be very
interesting. The book contains a rich amount of
material covering a wide range of topics. Although
some of the material has appeared before in conference
proceedings, this is still a useful collection to have if you
are interested in CLOS and worth dipping into even if
you are not. My only proviso would be that some
familiarity with Lisp syntax is required in order to get the
most out of the book but I do not consider this to be a
major obstacle.

ROBERT STROUD
University of Newcastle

EpwARD V. BERARD

Essays on Object-Oriented Software Engineering:

THE COMPUTER JOURNAL,

VoL. 37, No. 8, 1994

$20z 14dy 01 uo 1senb Aq 9GG86E//2./8//E/e191Me/|uloo/woo dno-olwepeoe//:sdiy wolj papeojumoq

