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Formal methods provide an approach in which design steps can be shown to satisfy a specification.
However, if a formal specification is wrong, then although the design steps may satisfy the formal
specification, they are unlikely to satisfy the requirements of the system. Since most users are unfamiliar
with formal methods, requirements specifications are often written in English. Such requirements,
expressed in English, are then somehow translated to formal specifications. This transition has some
potential for introducing errors and inconsistencies.

In this paper we propose an interactive approach to proceeding from an informal specification to a formal
specification in a systematic manner. The approach uses research in the area of natural language
understanding to analyse English specifications in order to detect ambiguities and to generate an entity
relationship model. The entity relationship model is then used as a basis for producing VDM data types
and the specifications of some common operations.

We illustrate the effectiveness of our approach by applying it to the specification of part of a route
planning database system.
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1. INTRODUCTION AND MOTIVATION

The use of formal methods in software development has
been advocated as a way of improving the reliability of
software. A formal development life-cycle begins with a
formal specification. Design steps can then be proved
with respect to their specification. This verification of
design steps against their specification provides the
primary benefit of formal methods—namely that
design errors are detected earlier in the life cycle and
are not propagated further down the life cycle.

Thus specifications provide the foundation upon
which a system can be formally developed. However, if
a formal specification is wrong, then although the design
steps may satisfy the formal specification, they are
unlikely to satisfy the requirements of the system.

The specification of a system involves people of
different profiles who favour different representations.
At the beginning, natural language is used because the
specification acts as a contract between the users and the
developers. Most of the time, the only representation
that users understand and agree on is natural language.
At the other end, developers find natural language
specifications ambiguous and incomplete and may
therefore prefer formal specifications. The transition
from informal specifications to formal ones can be an
error prone and time consuming process. This transition
must therefore be supported to ensure that the formal
specifications are consistent with the informal ones.

Hence, we propose an approach that aims to improve
the process of producing formal specifications. The
approach aims to use research in the area of natural
language understanding in order to analyse specifica-
tions written in English and then attempts to produce
VDM data types. We believe that if successful, this
approach will:

e help to ensure some consistency between the informal
specifications and their formal versions.

e help with the process of identifying data types from
English specifications in a systematic manner. This
differs from existing approaches where the process of
producing the data types is informal and perhaps even
mystical.

e help an analyst identify ambiguities and incomplete-
ness in English specifications.

We do not, however, believe that our approach will
somehow enable an analyst unfamiliar with formal
methods to produce acceptable formal specifications.
Nor do we believe that such an approach can somehow
produce complete formal specifications from written
specifications without an analyst’s involvement. The
approach is likely to be most useful in situations where
an English specification already exists or is being
developed before it is formalised.

2. AN OVERVIEW OF THE APPROACH

Our approach is based on the view that much of the work
in the area of natural language understanding can be
utilised to aid the production of formal specifications. In
particular, much attention has focused on the problem of
handling ambiguities and quantification. For example,
Warren and Pereira’s [19] system for interpreting natural
language queries for a geographical database and
McCord’s [14] work for a student database both tackle
the problems of quantification and ambiguities in
English text.

For our purposes, we adopt McCord’s approach to
natural language processing [14] since it extends the
approach taken by Colmerauer [5], Pereira [16], and
Warren and Pereira [19]. As we illustrate below,
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McCord’s approach appears to be more suitable for
handling the kind of quantification problems one is likely
to encounter in producing formal specifications.

McCord’s approach proceeds in two phases. First,
he produces an analysis based on the grammar rules of
the language, and then he uses a semantic analysis phase
to produce statements in a meaning representation
language called Logical Form Language (LFL). For
example, the sentence:

“All companies maintain a stock system.”

results in the logical form:
all(company(X), ex(stock(system(Y)), maintain(X, Y)))

where the first arguments of al/ and ex define the kind of
objects over which the expression in the second argument
is quantified. McCord uses the term base to refer to the
first argument, and focus to refer to the second argument.
As this example shows, LFL expressions can be nested in
a manner similar to expressions in predicate logic. As a
more complex example consider the sentence:

“The company maintains a description for each item
of stock.” ’

This produces the logical form:
all(item(X, stock), the(company(Y),
ex(description(Z), for(X, maintain(Y, Z)))))

where the indefinite article “a” is translated to the
existential quantifier, “‘each” to the universal quantifier
and the form of the definite article is kept.

As this example illustrates, McCord’s approach
improves upon the use of Definite Clause Grammars
(as used in Prolog) since the order in which the words
occur in the sentence differs from the order of their
quantification in the logical form. Given such a
capability for analyzing sentences, we can summarise
our approach as in Figure 1. The written specification is
taken as an input and logical forms are produced for
each sentence. A sentence may be ambiguous and can
therefore result in several logical forms. Hence, an
analyst would be made aware of any ambiguous
sentences and would have to select the logical forms
that best represent the intended meaning of the
sentences.* Such logical forms then act as a basis for
producing the data types. Further, based on the data
types there are some common operations (e.g. adding,
deleting, updating) whose specifications can be produced
automatically by the system.

As the diagram suggests, the process of producing
a formal specification from an informal one is iterative.
We can not assume that the original specification is
complete or that it is consistent. If an analyst finds
ambiguities, he or she may reword a sentence in the

*An approach that concentrates solely on improving English
specifications, could reduce the need for familiarity with formal
methods by paraphrasing the logical forms.

Specification
in English

Natural language

English
analysis grammar

VDM
knowledge

Data type analysis

VDM specifications

FIGURE 1. Overview of the approach.

original specification. Likewise, if an analyst believes
that the system has not produced a complete entity
relationship model, she may add sentences to the original
specification.

The following sections describe each phase of our
approach. Section 3 describes how the entity relationship
model is identified, and section 4 describes how we
obtain the VDM data types. Section 5 shows how we
produce specifications of operations in the Vienna
Development Method (VDM) [12]. Section 6 illustrates
the effectiveness of the approach on an English
specification that was written independently of our
work. We refer the reader to [15] for a comparison of
our approach with related research (e.g. with Balzer’s
approach [3], and Loucopoulos and Champions’ work
(13]).

We assume that the reader is familiar with VDM but
include those aspects of logical form that are required for
understanding this paper. However, the reader can refer
to McCord [14] for a tutorial account of logical form.

3. IDENTIFYING THE ENTITY
RELATIONSHIP MODEL

The first task in identifying a data type is to obtain the
entities in the specification and the relationships between
the entities. We base our identification process on the
view that the nouns and verbs present in the English
document contain the entities and relationships [8, 11].
For example, consider the sentences:

1. The pilot chooses the waypoints from the air.
2. A complex aircraft uses a radar.

The nouns suggest the entities:
{pilot, waypoint, air, complex aircraft, radar}
and the verbs the relationships:
{choose, use}

However, such a set of verbs and nouns may contain
irrelevant entities and relations. Hence, we allow an
analyst to filter such a list of entities and relations before
proceeding.
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We can, of course, obtain a list of nouns and verbs by
simply scanning the text. However, this approach does
not help one to:

1. Find the relationships between entities. For example
in the sentence:

“A company maintains a description for each item
of stock.”

although we can list the nouns as ‘“‘company”,
“description”, ‘“item” and “stock”, we do not
obtain a relationship between these entities.

2. Extract compound nouns without ambiguity. For
example, in the sentence:

“A computer-assisted flight planning system is used
by a complex aircraft.”

“planning” is a part of the compound noun
“computer-assisted flight planning system” whose
form must be preserved when translated to logical
form.

3. Define the degree of the relationships between the
identified entities (i.e. whether the relationships are
one-to-one, many-to-one, etc.). '

The following subsections show how the use of logical
form enables us to overcome these problems.
3.1. Identifying the entities

The nouns form the basic list of entities. Below, we see
how entities can be extracted from sentences that contain
simple and compound nouns.

3.1.1. Simple Nouns

Simple nouns are extracted from noun phrases contain-
ing just one noun. For example, the sentence:

“The aircraft may hit an obstacle.”

contains two noun phrases: “The aircraft” and ‘“an
obstacle”. Each noun phrase is composed of a unique
noun and each noun is extracted as an entity with its
associated quantifier.

Relational nouns are also extracted in a similar
fashion. For example the sentence:

“The system of an aircraft can be considered to
comprise the plan of the pilot.”

results in the entities:
{system, aircraft, plan, pilot}.

Proper nouns identify particular objects and therefore do
not normally constitute entities. Hence in a sentence like:

“An example route is planned for a flight from
Blackpool to Doncaster.”

“Blackpool” and “Doncaster”” do not constitute entities.

3.1.2. Compound nouns

Compound nouns are nouns which are composed of two

or more nouns or a combination of nouns and adjectives.
For example, consider the sentences:

1. A complex aircraft uses a radar.
2. The flight planning software package calculates the
route tracks.

In the first sentence, the noun phrase “A complex
aircraft” is composed of the adjective “‘complex” and the
noun “aircraft”. In the second sentence, the noun phrase
“The flight planning software package” is composed of
four nouns. In both sentences, the whole noun phrase is
extracted as an entity. That is, the entities identified are:
“complex aircraft” and “flight planning software
package”. Identifying entities by using just the head
noun may, of course, lead to confusion. For example, in
a specification of an aircraft system, both the description
of a simple aircraft and a complex aircraft may occur.

3.2. Identifying relations

A natural way of identifying relationships is to use verbs
and relational nouns.

3.2.1. Identifying relationships within relational nouns

Relational nouns always define relationships between
nouns. Consider the sentences:

1. The company maintains a description for each item of
stock.

2. The system of a simple aircraft can be considered to
comprise the plan of the pilot.

In the first sentence, there is a relation between ‘‘item”
and “‘stock”. In the second, two relations are defined: the
first between “‘simple aircraft” and “system’; the second
between “‘plan” and “pilot”. The relations extracted are
shown in Figure 2.

3.2.2. Identifying relationships within verb phrases

Verbs generally refer to actions, events and processes
[11]. In particular, transitive verbs define relationships
between two entities. Let us consider the sentences:

1. The pilot chooses the waypoints from the air.
2. The system of a simple aircraft is considered to
comprise the plan of the pilot.

In the first sentence, the verb ‘“‘chooses” relates the
entities “pilot” and “waypoints”. This information is
readily available from the logical form of the first

Pilot Simple Airc. Stock
of of of
Plan System Item

FIGURE 2. Relationships extracted.
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Pilot System
Choose Comprise
Waypoint Plan

FIGURE 3. Verb relations extracted.

sentence:
the(pilot(X), the(waypoint(Y), the(air(Z),
from(Z, choose(X, Y)))))

where choose relates the variables X and Y which are
defined to be of type pilot and waypoint.

The second sentence has two verbs, making it a little
more complex to analyse. The verb “comprise” intro-
duces the main action (which is represented in natural
language as an infinitive complement of the verb
“consider’), and is therefore extracted as the relation-
ship between the “‘system of a simple aircraft” and the
“plan of the pilot”. The verb “consider” plays a
subsidiary role and does not relate any entities. Once
again this information can be extracted from the logical
form of this sentence, which takes the form:

the(system(X ), ex(aircraft(Y)&simple(Y)&of (X, Y),
the(plan(Z), the(pilot(T)&of (Z, T),
be(X, consider(X , comprise(X,Z)))))))

In cases like this, where the logical form contains more
than one verb, the inner verb phrase identifies the
relationship between the entities. The relations extracted
for the above sentences are given in Figure 3.

3.3. Quantification and the determination of the degree

Early attempts at natural language analysis assumed that
quantifiers occurred explicitly in the text. Thus it was
assumed that the presence of a universal quantifier was
always indicated by words like “‘every” and ““all”, and
the presence of an existential quantifier was indicated by
words like “some” [9]. However, many sentences are
implicitly quantified by articles.

In this subsection we first examine how such implicit
quantifiers can be identified and then show how
quantified LFL statements can sometimes aid the
identification of the degree of a relation.

3.3.1. Identifying implicit quantifiers

Most studies of quantification identify quantifiers from
the articles present in the sentences [1,9]. Initial studies
of quantification regarded both definite and indefinite
articles as existential quantifiers. More recent studies
have shown various problems with this assumption and
have shown how indefinite articles can also lead to
universal quantifiers. Below we present our approach to

identifying quantifiers from the definite and indefinite
articles.

The definite article “‘the”

McCord translates the definite article “the” into the
unique existential quantifier. For example, in the
sentence:

“The best student was awarded a prize.”

we can interpret ‘“The” as the unique existential
quantifier.

However, McCord acknowledges that sometimes
“the” should be translated to the usual existential
quantifier but does not give any guidance. In the case
of obtaining the meaning of sentences in a requirements
document, we cannot assume that one of these
interpretations holds throughout the application. For
instance, consider the sentences:

“The students passed the exams.”
“The student passed the exams.”

The first sentence does not suggest the unique existential
quantifier, while the second does not suggest the normal
existential quantifier.

As we will see later, obtaining appropriate quantifiers
is an important prerequisite for our approach to
identifying the degrees of relationships. Hence, we have
attempted to improve upon McCord’s approach to this
problem.

In our approach, we do not simply translate “the” into
the unique existence—instead we use the singularity or
plurality of the noun to determine if it should be
translated to the unique existence or normal existence.
That is, if the quantified noun is singular, we adopt the
unique existence, otherwise we interpret it as the usual
existential quantifier.

We concede that there remain sentences for which
these approaches remain inadequate. For instance, the
following example given by Hess [9] is not covered:

“The unicorn is a mythical creature.”

In this sentence, we do not presuppose the existence of
unicorns, but the sentence nevertheless makes perfect
sense.

The indefinite article “a”

The use of the indefinite article as a quantifier is always a
source of ambiguity [1]. The indefinite article can
sometimes be translated to the existential quantifier
and sometimes to a universal quantifier. For our work,
we adopt the approach proposed by Hess for interpreting
the indefinite article [9]. The primary rule suggested by
Hess takes the form:

Rule 1:

The subject of a sentence is existentially quantified
if the verb phrase is in the past tense, or in the
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progressive aspect, or in the perfective aspect.
Otherwise the subject is universally quantified.

For example, consider the following sentences:

1. A text editor makes modifications to a text file.
2. A text editor made modifications to a text file.

In the first sentence, the “text editor” is universally
quantified since the present tense is used but it is
existentially quantified in the second sentence since the
past tense is used.

Hess also suggests more specialised rules which can be
summarised as follows:

Rule 2:

A subject is universally quantified if the past tense is
used and the verb requires a spatial or a temporal
postmodifier. A subject is also universally quantified if
the verb is in progressive form and is modified by
expressions such as ‘‘always”, “in general” and
“regularly”.

Rule 3:

In a restrictive noun phrase, those arguments that are
referred to by the main verb are universally quantified
and those that are not referred to by the main verb are
existentially quantified.

For example, in the sentences:

1. A man who loves a woman is happy.
2. A man that loves a woman respects her.

the third rule suggests that “woman” should be con-
sidered to be existentially quantified in the first sentence
and universally quantified in the second sentence.

3.3.2. Obtaining the degree from the quantifiers

In this subsection we show how the quantifiers associated
with each entity can be used to determine the degree of a
relationship. It is not always possible to determine the
degree of a relation from the quantifiers. However, we
describe how our system gives a default degree for some
cases. Of course, the user is allowed to override the
system determined degrees.

Consider the following examples and their logical
forms:

1. A complex aircraft uses a radar.
all(aircraft(X)&complex(X),
ex(radar(Y),use(X,Y)))

2. The company maintains a unit cost for each item of
stock.

all(item(X , stock), the(company(Y),
ex(unit(cost(Z)), for(X, maintain(Y, Z)))))
3. The students passed the exam.
all(student(X ), the(exam(Y), pass(X,Y)))

In the first two examples, the first entity in the relation is
quantified by the universal quantifier and the second by
the existential quantifier. In the examples we have
encountered, usually only one occurrence of the variable
quantified by the existential quantifier is involved in the
relation. Hence, based on our current experience, in such
cases we interpret the logical form quantifier “ex” as
referring to the quantifier 3! which denotes the unique
existence. That is, many occurrences of the first variable
are related to only one occurrence of the second variable.
Then, by definition, we have a many-to-one relationship
from the first entity to the second. In the third example,
our interpretation of “the” results in a many-to-one
relation between “‘student” and “exam”.

Some one-to-many relationships can also be detected.
For example, consider the following sentences and their
logical forms:

1. The company maintains a description for each item of
stock.

all(item(X , stock), the(company(Y),
ex(description(Z), for(X, maintain(Y, Z)))))
2. The student passed all exams.
the(student(X ), all(exam(Y), pass(X,Y)))

In the first sentence, the phrase “‘each item of stock”
suggests that we are talking about one stock system that
contains many items (i.e., a one-to-many relation
between the entities “‘stock” and “‘item™).

Sentences where the first entity is singular and
quantified by “the” define one-to-many relationships.
The second sentence is a typical example. An exception
to this rule occurs when the second entity is also
quantified by “the” and is singular. In this case, we
infer a one-to-one relationship between the entities.

We have now given several cases in which we can
identify the degree of a relationship. In other cases, when
it is difficult to predict the degree of a relation, we let the
analyst identify the degree.

At this stage we should have a complete list of entities
and relationships, and therefore the entity relationship
model. The next section shows how we can obtain VDM
data types from such models.

4. PRODUCTION OF VDM DATA TYPES

In general, the entity relationship model produced as a
result of the above process will be quite complex. As an
example, appendix B contains the diagrams obtained for
a problem that we illustrate in section 6. As the diagrams
show, we may have several sub-models. The diagrams
may contain many-to-many relationships as well as one-
to-one, many-to-one, and one-to-many relationships.
The process of translating such diagrams to VDM and
Z has already been studied by a number of authors (e.g.
[6,17]). Since our approach is similar to these studies, we
summarise our translation and refer the reader to these
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Stock

Item

Reorder Level

Description Unit Cost Quantity

FIGURE 4. The stock problem.

papers for a more detailed account of the problems
involved."

We can model many-to-many relationships as sets of
pairs. However, as with SSADM [2] we require the user
to have resolved many-to-many relationships so that our
entity relationship diagram only contains one-to-one,
one-to-many and many-to-one relatignships. We model
these relationships as follows:

e One-to-one relationships are modelled as one-to-one
maps in VDM.

e The many sides of a one-to-many relationship can be
modelled by using a map, a sequence or a set. Based
on the examples in the literature (e.g. [12,18]), we
prefer the first of these approaches, since VDM’s map
data type appears to be more natural for modelling
this kind of relationship. However, when the user
specifies that the order of the items is important, the
second option is adopted.

e A many-to-one relationship is modelled by a map
from the many side to the one side.

In addition to these simple transformations, we also
need to consider situations where there is a many-to-one
mapping to leaf entities. Benyon [4] argues that such leaf
entities should be attributes of the parent entity. Hence,
in such situations we use a composite object to model the
relationships.

As an example, the following data type is obtained
when the above transformations are applied to Figure 4:

Stock_t = Item-ID — Item_t

Item_t :: description  : Description_t
unit-cost :Cost_t
quantity . Quantity t
reorder-level : Level_t

5. THE SPECIFICATION OF COMMON
OPERATIONS

The development of specifications in VDM can be very
complex. It is not our intention to develop a tool that

YA related aspect, that of producing data type invariants, is
mentioned in the section on future work.

produces all possible specifications. However, there are
several specifications that are common across applica-
tions. These include the specification of operations that
add items, delete items and list items that satisfy
requirements. In this section we describe how such
specifications are generated once the preceding step has
identified the data types.

The general format of an operation specification in
VDM is as follows:

OPER (input:In_t) output:Out_t
ext ...state...

pre ...input...state...

post ...input...output...state...

The first line is called the signature of the operation. The
signature is composed of the name of the operation
(OPER), a list of input parameters and their types and a
result and its type. The second line records those state
variables to which an operation has external access.
These state variables can be read only (rd) or read and
write (wr) and the name of each variable is followed by its
type. The pre-condition of an operation records
assumptions about the arguments and state variables to
which it is to be applied. The post-condition relates the
before and after states and is an assertion that is required
to hold after the operation is applied.

We can view this format as a template that needs to be
filled to obtain a specification. In general, the template
used is dependent on the operation required and the data
type identified. Thus to add an item to a map we provide
a template which specifies that:

e there is one input argument (the item to be added),
and one output argument (the identifier of the item
added),

e a state variable with write access (the map),

e no precondition,

e a postcondition that records the requirement that the
identifier of the added item is new and that the map
has been updated appropriately.

The information required for naming the arguments
and the types is readily available as a result of the
previous phase that identifies the types. Specifying the
same operation for a sequence or a set is not substantially
different from the specification for a map. We also adopt
a similar template based approach to obtain specifica-
tions for deleting and updating maps and sequences (see
[15] for details). The next section shows how our system
works in practice.

6. A CASE STUDY: A FLIGHT PLANNING
DATA BASE

The approach described in this paper has been
implemented in Prolog-2 [7]. This section illustrates the
use of the implementation to develop a specification of a
database for a flight planning system from an English
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specification. The English specification was written
without prior knowledge of our work and was written
independently of us.

Our current implementation of LFL does not handle
conjunctions or pronoun references. Hence sentences
that contain conjunctions in the original text are
transformed so that individual conjuncts form separate
sentences, and pronoun references are identified expli-
citly. In addition, the original text contained a table
which provides structural information. This information
is represented by adding three sentences. Appendix A
contains the transformed text together with an identifi-
cation of the kind of transformation.

This transformed text can now be analysed by the
system. For each sentence, the system attempts to
produce a logical form. When a sentence is ambiguous,
the system displays the different logical forms and
requires the user to select the logical form that
corresponds to the intended meaning. For example,
when analysing the sentence:

“The pilot draws the tracks of the route on the map.”

the system displays three different logical forms that
correspond to the following meanings:

1. “The pilot draws (the tracks of the route) on the
map”. That is, the information is drawn on the map.

2. “The pilot draws (the tracks of the route on the
map)”’. That is, the tracks are already on the map and
the drawing is done somewhere else.

3. “The pilot draws the tracks of (the route on the
map)”’. That is, the route is given on the map and its
tracks are drawn somewhere.

The user can then select the intended meaning. In this
case study, out of the 41 sentences analysed:

e Twenty one sentences are not ambiguous.

e Eleven sentences produce two interpretations each.

e Nine sentences produce more than two interpreta-
tions.

Of the nine sentences that have more than two
interpretations, the system produces reasonable inter-
pretations for seven of them. However, two of the
sentences result in an unexpected number of interpreta-
tions. These sentences are:

1. The planned tracks will assure the safe arrival of the
aircraft over Doncaster when they are flown in correct
order by the aircraft.

2. The pilot chooses the waypoints from Blackpool to
Doncaster in a complex aircraft.

The first sentence results in 32 interpretations and the
second sentence results in 12 interpretations. If we
analyse the first sentence, we find that it is composed of
two conjuncts and four prepositional phrases. Our parser
produces 32 different syntax trees and each syntax tree
results in a logical form. Likewise, in the second sentence,
the presence of three prepositional phrases produces 12

syntax trees and each syntax tree is translated to a logical
form. These two examples clearly demonstrate that the
use of multiple prepositions can lead to sentences that are
difficult to interpret by a natural language understanding
system. Not surprisingly, such sentences are also difficult
for a human reader. Indeed, style checkers, like the one
employed by Grammatik [10], discourage the use of
multiple prepositions. In our approach we could
encourage the user to reformulate those sentences that
have more than five interpretations.

In the next stage the system suggests 55 entities and 52
relations to the user. The user is allowed to remove any
unexpected entities and relations. In this case study, the
only suggested entity that we remove is “Whole range”.
We remove this since “Whole range” is a pre-modifier of
the noun phrase “Electronic equipment” in the text (19th
sentence in appendix A). These combined relations result
in the entity relationship model given in appendix B.

Given an entity relationship model, a user may notice
incomplete parts. For example, expected relations may
not be identified by the system. In this case study the
initial entity relationship model produced does not show
a relation between the entity route and the entity
waypoint. Although we understand that a route is
composed of waypoints, there is no explicit sentence
giving this relationship. Hence, we could add the
following sentence:

“The route is composed of waypoints.”

which would reduce the incompleteness of the specifica-
tion as well as the entity relationship model.

The next stage aims to produce a VDM data type from
the entity relationship model. In this example, suppose
that we are interested in modelling the Route and
therefore select the sub-model given in Figure 5.
Further, we prune this sub-model by removing the
Number and the Track entities that were obtained from
the English document but which are not relevant in this
case.

The model is now clearly defined. The user is asked
about the importance of the order in the definition of the
Route. In this case, suppose we think that the order is
important, then the system produces the data type:

Route_t = Waypoint_t*

The last stage is the specification of the operations.
The pre-defined templates enable the generation of the
specifications given in appendix C.

7. CONCLUSION

We have proposed an approach to the development of
formal specifications from English specifications. The
approach takes advantage of research in the area of
natural language understanding in order to identify
ambiguities and incompleteness in written specifications.
The logical forms of the English sentences are used to
obtain an entity relationship model which is then used to
produce VDM data types. Although the process of
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producing formal data types from entity relationship
models has been widely studied, we believe that our
process of producing the entity relationship models is
new.

We have implemented our approach on a restricted
grammar and have used it to specify part of a flight
planning database system. The system manages to
highlight potentially syntactic and semantic ambigu-
ities. The entities and relationships produced appear to
be appropriate. Most of the degrees are identified
automatically by the system. The entity relationship
diagram produced is broader than the part of the system
we were seeking to model. Such broader diagrams would
encourage analysts to gain a better understanding of the
environment in which the specified component would
operate. The VDM data types and the specifications
produced are also appropriate for this example.

To conclude, our initial case studies suggest that the
approach we have proposed is promising. In particular,
we believe that the approach suggested could improve
the process of producing specifications.

8. FUTURE WORK

At present there are several weaknesses of the approach
that we are addressing. These include:

e The production of data type invariants. One approach
that we are currently attempting is to translate an
invariant written in English into logical form and then
to VDM. This approach, described in [15], involves
relating the logical form of the invariant to the
identified data type. For the case study discussed in
this paper, it is able to translate the sentence:

“All adjacent waypoints are different.”
into the following invariant:
Route_t = Waypoint_t*

inv-Route_t(route) &
Vil € inds route-Vi2 € inds route -
adjacent(il,i2) = route(il) # route(i2)

The analyst then has to define adjacent:

adjacent: N x N — B

adjacenttmpn) Am=n+1Vvn=m+1

e The production of a wider range of specifications. At
present the system produces a small predefined range
of specifications and the user is left to develop his or
her own specifications given the data types. The
template based approach given in this paper is limited
and one could attempt to translate given English pre
and post conditions to their logical versions.
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APPENDICES
A THE AIRCRAFT PROBLEM

An example route is planned for a flight from
blackpool to doncaster.

The route is planned as a number of the discrete
tracks between the intermediate waypoints.

The planned tracks will assure the safe arrival of
the aircraft over doncaster when they are flown in
correct order by the aircraft. (R)

The pilot may have unnecessarily flown through a
storm. (C1)

THE COMPUTER JOURNAL,

Vor. 37, No.9, 1994

$20z 14dy || uo1senb Aq 99//9€/€52/6//E/e191e/|ulod/woo dno-olwepeoe//:sdiy woil papeojumoq
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The pilot may have unnecessarily flown through a
controlled airspace. (C1)

The aircraft may hit an obstacle. (C2)

The aircraft may hit another aircraft. (C2)

The pilot of a simple aircraft without a sophisti-
cated electronic navigation system would

be cleared to undertake a risky flight.

The pilot chooses the visible waypoints from the
air. (R)

The pilot draws the tracks of the route on the map.
The pilot steers a heading giving the required
tracks along the ground.

The pilot scans the ground for the visible
features. (PR)

The pilot verifies the visible features against
the map.

The system of a simple aircraft can be considered
to comprise the map of the pilot.(C3)

The system of a simple aircraft can be considered
to comprise the plan of the pilot.(C3)

The system of a simple aircraft can be considered
to comprise a heading indicator. (C3)

The system of a simple aircraft can be considered
to comprise the visual sens of the pilot.(C3)

The system of a simple aircraft contrasts with the
system of a complex aircraft.

A complex aircraft uses a whole range of the
electronic equipment to support the navigation.
A complex aircraft uses a computer-assisted flight
planning. (C4)

A complex aircraft uses an inertial navigation
system. (C4)

A complex aircraft uses a radar. (C4)

A complex aircraft uses a moving map display. (C4)

A complex aircraft uses a route display. (C4)

A complex aircraft uses a waypoint display. (C4)

A complex aircraft uses an autopilot. (C4)

The pilot chooses the waypoints from blackpool to
doncaster in a complex aircraft. (R)

The route is composed of waypoints. (T)

The pilot identites each waypoint with a number.
(C5)

The pilot identifies each waypoint with a grid
reference. (C5)

The grid reference contains the latitude. (T)

The grid reference contains the longitude. (T)
The information is used as input to a flight
planning software package.

The flight planning software package calculates
the route tracks. (C6)

The flight planning software package calculates
the distance between waypoints. (C6)

The flight planning software package calculates
the heading for the wind conditions. (C6)

The flight planning software package calculates
the non-violation of a controlled airspace. (C6)
The derived information may be listed for the
pilot to record on the map. (C7)

The derived information may be transferred to a
cassette tape. (C7)

The cassette tape is used to load the navigation
database on the aircraft.

The autopilot uses the data to fly the aircraft
according to the plan of the pilot.

Ci : All the sentences referred by Ci are the result of the
split of the same conjunct.

T : The sentence is added to replace a table.

PR : A pronoun reference is encountered and resolved.
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B E-R DIAGRAMS FOR THE AIRCRAFT

PROBLEM
Route
plan_as A compose_of \o'
‘ Number l I Waypoints ' l7 Track J
of Y
Disc. Tracks
Identify identify
l Number J ’Grld Rohunool
I
contain contain
[ Longitude l l Latitude J

FIGURE 5. The ER diagram of the route planing system.

Simple Airc.

Pilot
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of

System

Map Plan

Heading Ind.

Visual Sens

FIGURE 6. The ER diagram of a simple aircraft.

FIGURE 7. The ER diagram of the flight planning package.

FPSP
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Route track Distance Non Violation
of
Cont. Aisp.
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Route Display

FIGURE 8. The ER diagram of a complex aircraft.
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FIGURE 9. The ER diagram of the pilot.
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FIGURE 10. The ER diagram of the planned tracks.

Wind Condition Cassette Tape Example Route
\
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FIGURE 11. The remaining diagrams.
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C SPECIFICATION OF THE OPERATIONS
(a) Add a waypoint

ADD-WAYPOINT (way: Waypoint_t)
ext wr route : Route_t

pre true L

post route = route r~ [way]

(b) Deleting a waypoint

DELETE-WAYPOINT (i: N)

ext wr route : Route_t

pre i € inds(route)

post Jroutel:Route_t « Iroute2: Route_t -

route = routel ~[route(i)] v route2 A route =
route2

(c) Updating a waypoint

UPDATE-WAYPOINT (way:Waypoint_t,i: N)

ext wr route:Route_t

pre i € inds(route)

post route(i) = way AVj € inds(route) i # j =route(j) =
route(j)
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