A Systematic Approach to Corrective
Maintenance

KAMYAR JAMBOR-SADEGHI, MOHAMMAD A. KETABCHI, JUNJIE CHUE AND
M. GHIASSI

Object Technology Laboratory, School of Engineering, Santa Clara University, Santa Clara,
CA 95053, USA

A process-driven, model-based solution to corrective maintenance is described. The solution approach
starts by identifying the set of ordered steps that should be performed to complete a corrective
maintenance task. Once the steps in the process are clearly defined, the information needed at each step is
organized into maintenance information models. A set of tools that operate on the models and provide the
capabilities needed for the process of corrective maintenance are then identified. Realizing the models and
providing the tools through a uniform interface lead to a software maintenance system that supports
effective and reliable corrective maintenance. An overview of SAMS, a Software Analysis and
Maintenance System developed based on this approach, is presented. SAMS integrates various tools that
are needed to support maintenance processes including the corrective maintenance process. SAMS tools
are developed on top of an object model of maintenance information realized using an object-oriented

database management system.

Received February 1 1994, revised June 6 1994

~

1. INTRODUCTION

Corrective maintenance is initiated as a response to a
software bug discovered during the operation of the
software system and is completed when the bug is fixed
and the software system is demonstratec to perform its
intended functionalities correctly. Bugs, which are
symptoms of system malfunction, are a common
occurrence in large and complex systems. The key to
effective corrective maintenance is identification of the
code segment responsible for the bug.
Corrective maintenance is difficult because:

1. Bug reports often only describe the malfunction at a
high level of functionality. It is difficult to establish
the link between a bug and the code responsible for it
in large and complex systems using a bug report.

2. Bug information is often ambiguous and lacks
necessary details.

3. Due to hidden dependencies fixing a bug may
introduce new bugs.

As shown in Figure 1, some of these difficulties are due
to the large information gap that exists between the code
and the bug.

The traditional corrective maintenance process con-
sists of three phases: locating the bug, fixing it and then
making sure no undesirable side-effects have been
introduced. To locate the bug, software maintainers
start by analyzing the bug information, then they try to
understand the code, and finally establish association
between the bug and the smallest portion of the code
responsible for it. To fix the bug, software maintainers
start by designing the changes to the buggy code, modify
the buggy code, and finally testing to make sure that the

bug is corrected and the functionality of the rest of the
system is unaffected. The steps to support the corrective
maintenance process is shown in Figure 2.

Software maintainers spend most of their time
searching to locate the buggy code and then testing the
fix and the entire software system to ensure that no
regression is introduced (Sedlmeyer et al., 1983). Step 4,
fixing the bug is relatively easy. However, without a
software analysis and maintenance system, the software
maintainers must complete steps 1, 2, and 3 in Figure 2 to
build a cognitive model of expected behavior based on
code and existing documents. The cognitive model that is
developed in this fashion is used to fill the gap between
the code and bug, as shown in Figure 3.

The task of developing the cognitive model heavily
relies on software understanding. Understanding soft-
ware can be approached from two directions (Seviora,
1987). In the code-driven (or bottom up) approach, the
programmer starts with the code and forms an abstract
description of what the individual parts of the program
do and then what the entire program does. In the
functionality-driven (or top-down) approach, the pro-
grammer knows the specifications for the program.
Using programming experience, the programmer forms
hypotheses of the overall structure of the program and
refines them to a point where they can be verified against
the code. Top-down and bottom-up approaches are
usually used together and iteratively.

Building this cognitive model for large and complex
software systems is difficult. Furthermore, in the absence
of correct and up-to-date documentation of software
such cognitive models are often incomplete and incon-
sistent and may even be incorrect. Further complications

THE COMPUTER JOURNAL,

Vor. 37, No.9, 1994

$20Z I4dy 0 uo 1senb Aq £///9€/¥9.2/6/.¢/e19Me/|ulliod/woo dno-ojwepeoe//:sdiy woij papeojumoqd

CORRECTIVE MAINTENANCE 765

Bug Report

Information gap

FIGURE 1. Bug report to code information gap.

are introduced when cognitive models developed by
different maintainers working on a corrective main-
tenance task differ. Finally, there is very little chance that
the knowledge and experiences gained in the process of
fixing a bug by one maintainer is shared in subsequent
maintenance activities by others. Several knowledge-
based software debugging systems have been developed
and they can be categorized into three groups based on the
approach used for understanding and debugging software.

In the program-analysis approach the programmer
would read the program, analyze it and try to understand
it. In the process, the programmer would check whether
the program is consistent with the specifications. If a
discrepancy between the specifications and the code is
discovered, the programmer would try to debug it. Proust
(Johnson and Soloway, 1985) and PUDSY (Murray,
1980) are examples of knowledge-based systems that
have adopted this approach.

In the I/O-based approach the program is executed with
carefully selected inputs. If the outputs deviate from what
is expected, the programmer examines the deviations to
find clues to identify or at least approximate location of
the bug. Falosy (Sedlmeyer et al., 1983) is an example of
a knowledge-based system that has adopted this approach.

In the internal-trace-based approach the programmer
decides what to observe and examines the information
collected to obtain further clues about the bug’s location.
The fault-localization process may proceed through
several stages with increasingly finer resolution until
the discrepancies between the expected and the observed
behavior suggest plausible bug hypothesis. MTA (Gupta
and Seviora, 1984) is an example of a knowledge-based
system that has adopted this approach.

The idea of developing a comprehensive knowledge
base to capture corrective maintenance knowledge to fill
the bug to code gap is good. However due to the

1. Analyze the bug report to understand the nature
of malfunction.

2. Develop an understanding of the software.

3. Based on information gathered in steps 1 and 2
establish association between the bug and the
code.

4. Design changes and modify the software to correct
the bug.

5. Test to make sure the bug is fixed.

6. Test to make sure all other functionalities are
working properly.

FIGURE 2. General process for corrective maintenance.

Cognitive model

of .
software behavior

6

FIGURE 3. Software maintainers’ cognitive model to fill the gap
between bug and code.

following reasons, building such a comprehensive
knowledge base is difficult.

1. Acquiring knowledge related to application domain,
software domain, and debugging is difficult. This
knowledge must be acquired through frustrating
process of interviewing the different domain experts,
as well as a comprehensive program analysis.

2. Representation of acquired knowledge in a coherent
and usable format is difficult due to the richness and
the variety of the knowledge needed in the corrective
maintenance process.

3. Applying the knowledge acquired to identify and fix
bugs in a large software system is a heuristic process.
Automation of this heuristic process is difficult.

Our intention is neither to build a comprehensive
knowledge base nor to automate the process of
corrective maintenance. Instead, our goal is to develop
an integrated system for software maintainers that
allows sharing of information about the software
system among maintainers by supporting various views
of the software system and by providing a set of tools
that simplify performing and verifying maintenance
activities. The proposed system allows integration of
the various aspects of the software system. The system
facilitates analysis of the various aspects (source code,
test suite, documentation and build procedures) and
provides the necessary tools to establish logical associa-
tions among components of each aspect as well as related
components across these aspects. For example, our
approach supports analysis and presentation of the
software application at both the structural and func-
tional levels at various levels of abstraction. In the testing
of software system, for example, our approach supports
logical organization of the test suites (white box versus
black box test suite) and provides the necessary tools to
establish an association (logical links) between a test case
and the segments of the code under test. All this
information are maintained by an object-oriented
repository which is the central component of the
system. Auvailability of such a system will enable
software maintainers to:

1. Form abstract models of the software system at
various granularity ranging from the very high level

THe COMPUTER JOURNAL,

Vor. 37, No.9, 1994

$20Z I4dy 0 uo 1senb Aq £///9€/¥9.2/6/.¢/e19Me/|ulliod/woo dno-ojwepeoe//:sdiy woij papeojumoqd

766 K. JAMBOR-SADEGHI et al.

block representation of file, module and function
levels all the way to the code level.

2. Establish association among the components of these
abstract models and provide tools necessary for
traversing among the various levels.

3. Localize a bug to its smallest possible segment of the
code.

4. Identify all other portions of the application that may
have been affected by fixing of a bug.

5. Form a regression test suite that will quickly verify
and validate correctness of any bug fix.

6. Record the maintainers experience on line for future
use.

The notion of developing a repository which maybe a
database or a knowledge base has been used in other
aspects of software maintenance such as software
understanding, design recovery, reuse and reverse-
engineering. Desire (Biggerstaff, 1989) is a system
which attempts to build a knowledge base of conceptual
abstractions and relationships among them. CIA (Chen
et al., 1990) is a tool for analyzing program structure.
The system extracts information from C programs and
stores the information in a relational database. The
REFINE (Reasoning Systems, 1985) system allows users
to define domain-specific languages by defining gram-
mars that serve as a mapping between objects in the
knowledge base and their textual forms.

This paper is organized as follows. Section 2 describes
the corrective maintenance process, and the information
and tools necessary to support it. Section 3 presents a
system that provides the information and tools through
an integrated, easy to use interface. Section 4 presents the
concluding remarks.

2. SYSTEMATIC APPROACHTO
CORRECTIVE MAINTENANCE

We have taken a systematic approach to the develop-
ment of a system to support corrective maintenance. The
approach starts by carefully analyzing the corrective
maintenance activities and develops a model of correc-
tive maintenance. Based on this model, we develop a
process for corrective maintenance. This process consists
of a set of ordered steps that should be performed to
complete a corrective maintenance task. The information
needed at each step is identified and organized into
information models. A set of tools that operate on the
information models are identified. Realizing the infor-
mation models and providing the tools through a
uniform interface lead to a software maintenance
system that supports corrective maintenance.

2.1. Corrective maintenance model

Our model of the corrective maintenance process is
shown in Figure 4. Software is developed as implementa-
tion of a set of requirements which constitutes its
intended functionality. For a variety of reasons, in the

Intended functionality

Forward engineering

Associate functionalities

Reverse engineering to components

Actual functionality

Refine Bug Associate reported
description bugs to
functionality

Bug

FIGURE 4. Model of corrective maintenance.

process of forward engineering of a system some
information present in the original requirements is lost,
misinterpreted or miscoded resulting in functionality
that does not exactly meet the intended requirements.
Identifying the discrepancies between the intended and
actual functionality of a system is a key factor in effective
corrective maintenance. To identify such discrepancies a
reverse-engineering process, to derive the actual func-
tionality of the system, is needed. The actual function-
ality of the software system is organized into a hierarchy
where each component in the functionality hierarchy
achieves its task through its components at the lower
levels. Information that is derived during the process of
reverse engineering allows for building the mapping
between the code and its actual functionality.

The multiple levels of functionality abstraction allow
for bug to functionality association to occur in an
iterative fashion with each step resulting in a more refined
and concise definition of the bug. This association can
also be extended to include the test suites as well. Once
the bug description is refined to a point where it can be
clearly associated with a functionality object, the
software components associated with the bug could be
easily identified.

2.2. Corrective maintenance process

Using the corrective maintenance model presented in
Figure 4, a complete process which should be followed
for a corrective maintenance task is shown in Figure 5.
This process is the refinement of the process shown in
Figure 2.

The process assumes that a hierarchical description of
software has been developed. It further assumes that
each node in the hierarchy is associated with an
execution path in the software. Developing the function-
ality hierarchy and establishing the associations among
functionality, execution path, and structural components
of software are described in the following subsections. A
careful analysis of the steps listed in Figure 5 leads to
the identification and characterization of the required
information and the supporting tools for corrective
maintenance. An additional benefit of developing this
process for corrective maintenance is that it serves as a

THE COMPUTER JOURNAL,

Vor. 37, No.9, 199%4

$20Z I4dy 0 uo 1senb Aq £///9€/¥9.2/6/.¢/e19Me/|ulliod/woo dno-ojwepeoe//:sdiy woij papeojumoqd

CORRECTIVE MAINTENANCE 767

1. Query bug based on a given criteria (e.g. bug
severity).

2. Identify and select the bug based on the result
of the query of step 1.

3. Browse the description of the bug to better
understand the faulty functionality.

4. Browse the actual functionality hierarchy for a
match of the bug description.

5. If a functionality description matching the bug
is found and no subfunctionality exists, then
goto step 8.

6. Since the bug description does not fully and
uniquely describe the faulty functionality,
localize the bug to the smallest subfunctional-
ity by ranking the subfunctionalities using test
coverage and complexity metrics and testing each
subfunctionality.

7. Modify the description of the original bug to
reflect the refinements; goto step 4.

8. Identify the execution paths that realize the
defective functionality.

9. Test the structural components (and the interface
among them) in the execution paths identified in
step 8 to further localize the bug to the
smallest set of structural components that still
displays the bug. Use test coverage and complex-
ity metrics to identify components that were
inadequately tested (most likely candidates).

10. Determine how the structural components identi-

fied in step 9 are to be modified.

11. Check out the structural components identified
in step 9.

12. Identify all other functionalities that may have
been affected. Keep this information for regres-
sion testing and add it to the history file of
the product.

13. Identify the set of existing test cases asso-
ciated with the affected functionalities.

14. Identify the set of existing test cases asso-
ciated with the structural components related to
the affected functionalities.

156. Collect test cases identified in steps 13 and 14
to form the ‘local regression test suite’.

16. Modify the components checked out in step 11.
Eliminate undesirable side-effects.

17. Test and validate that the bug is fixed and the
buggy behavior is no longer present.

18. Test to make sure all other functionality is
working properly by running the regression test
suite.

19. Check in the modified components.

20. Modify the actual functionality to reflect the
changes.

21. Change status of bug in the database to ‘fixed’.

FIGURE 5. Refined process for corrective maintenance.

starting point for developing Corrective Maintenance
Metrics. If we are able to compute the cost of operations
performed in each step, the number of times each step is
executed and the amount of information required by
each of the steps within the process, then a cost function
for corrective maintenance can be developed. The cost

function takes the information such as the size of
functionality and test suites used in the process as
input and returns a total estimated cost of conducting
corrective maintenance activities. Corrective mainte-
nance metrics bases on this approach is currently being
developed.

2.3. Required information for the corrective
maintenance process

Figure 6 illustrates the information and tools that are
needed to support the process described in Figure 5. The
information is grouped into five information models:
Structure information, functionality information, Execu-
tion Path information, Bug information and Testcase
information which are shown as bold rectangles in the
figure. Tools which are represented as rectangles in the
figure operate on the information models. The solid
labeled arrows represent the information and control
flows, while the gray lines establish the relationship
between information models and steps in the process.
The numbers on upper left corner of the boxes refer to
the steps in Figure 5.

The five types of information identified are not
independent from each other. They are interrelated.
Especially, the relationships between structure and
functionality are very critical to corrective maintenance
because such relationships form the mapping of software
structure and functionality. Figure 7 illustrates the
relationships between these information models.

Execution paths play an important role in linking
software structure and software functionality. Execution
paths are derived from structure model automatically.
Functionality objects are associated with execution
paths. Testcases are associated with functionality
objects which can be used for blackbox testing.

In the following we describe the information content
of structure, functionality, execution path, bug, and
testcase models respectively. The information content of
each model is described in form of a table. The table has
three columns: a column for the field name, a column for
describing the field and a column for relating the
information associated with the field to the step(s) of
the process of Figure 5. We use an example later in
Section 2.4 to illustrate the need for the information that
is contained within each model.

2.3.1. Structure model

Structure model of a software system consists of the
components or building blocks that make up that system
together with the part-of (composition) relationships.
These building blocks are referred to as structural
components. Table 1 lists the information in the
structure model of a software system.

The structure model has two components. The
language independent component which is fixed and
defined once for all supported languages, and the
language specific component which differs from

THE COMPUTER JOURNAL,

VoL. 37, No.9, 1994

$202 I4dy 0 uo1senb Aq £///9€/¥92/6//E/e191e/|ulliod/woo dno-olwepeoe//:sdiy woij papeojumoq

768 K. JAMBOR-SADEGHI et al.

21
123 Change the status of the bug
Query the bug base : in the bug database
Identify and select the bug Bug Close this activity
Browse the bug description | nformation
\ 4 19,20
ipti ! Modify the actual function-
Bug description i ality to reflect the changes

exist?

4
Browse the functionality
%1 hierarchy
Identify the functionality
object matching the bug
e
2 - The matched Function-
g' ality object
b
©
;:: Does any sub-
o functionality
e
<
)
-4

Identify all subfunctional- /
ity associated with this bug d
Rank the candidate sub- /
functionality ;
Project test data to subfunc-
tionality

"y

xecution
Path info.

‘%/ and Update other info.

n

\ / ltChanged components * 17,18

Test to make sure the bug is
A—-—--—---—-—-— fixed and all other function-
ality is working properly

7\anged components * 11.16
Modify the related struc-

/i—’—_— tural components
i

1
i 1 13,1415
1

Build the local regression
test suite

éomponenls to be changed f 10.1
Identify all the affected

\ functionalities;

Build a history file

[(&)

-

Components to be changed T
89

Identify the execution

Refine bug description

Define the minimum test -

case

Ve paths that realize the mal-
' —p| functionality and further
e The matched malfunc- localize the bug to the struc-
tionality ObjeCl tural level

FIGURE 6. Information flow in the corrective maintenance process.

language to language. The specification of the program-
ming languages can be used to derive the language
specific component in the model. The specification can be
in BNF extended with semantics or in attributed
grammar (Aho et al., 1986). (Ketabchi, 1993b) describes
the generation of object models from formal language
specification in detail. The structure model contains the

Execution
Paths EP-func.

Software @

Structure

Software
Functionality

Bug Testcase

FIGURE 7. The relationships between information models in
corrective maintenance.

part-of (component) relationship. The schema is object-
oriented and consists of class hierarchy. All data
declarations, definitions, and references are available as
attributes of the associated components in the structure
model. This information is used to generate control and
data flow information.

The structure model is the largest of the models. To
support operations such as reformatting a function,
detailed information at the token level needs to be stored.
For a large software system the amount of information
generated could be up to 40 times the size of the original
code. To manage the volume and complexity of the data
a database management system must be used.

2.3.2. Functionality model

The functionality model consists of functionality objects
organized into a functionality/subfunctionality hier-
archy. A functionality has component subfunctionality
that together realize the functionality. A functionality
object in addition to subfunctionalities has a name, a
description and is associated with an execution path
model, an execution path may have sub-execution paths

THE COMPUTER JOURNAL,

Vor. 37, No.9, 1994

$20Z I4dy 0 uo 1senb Aq £///9€/¥9.2/6/.¢/e19Me/|ulliod/woo dno-ojwepeoe//:sdiy woij papeojumoqd

CORRECTIVE MAINTENANCE 769

TABLE 1. Structure information

Field name Description Step
Id a unique identifier for the structural components 10,16
Type type of the structural component. e.g. function definition 10,16
Container parent object in the structure hierarchy 10,16
Components children objects in the structure hierarchy 10,16
Functionality set of related functionality objects 10,16
Annotation additional comments associated with the structural component 10,16

which at the lowest level are composed of structure units.
The subfunctionalities of a functionality are associated
with the sub-execution paths of its associated execution
path. The functionality hierarchy of a software system,
therefore can be viewed as a higher-level abstraction of
the execution paths of that software. This abstraction
can easily be understood by the software users and
engineers and can easily be mapped to the code.

In addition to execution path, bug reports and test
case objects can also be associated with the functionality
objects. These associations can easily be established by
the users of the software and can be utilized by
maintainers to localize bugs and to select the appro-
priate test cases when needed. Table 2 shows the
attributes of the functionality objects.

The functionality hierarchy also plays an important
role in data flow analysis. Since a functionality is
associated with an execution path which in turn is
composed of structure units, the variables referenced or
modified in a functionality can easily be found by
accessing the structure units from functionality object
through execution paths.

2.2.3. Execution path model

The building blocks of execution paths are constructs
that are supported by the implementation language of
the software. Some constructs are simple building blocks
because they do not change the flow of execution. An
example of this type of construct is assignment of a value
to a variable. Since these constructs do not have
interesting properties with respect to execution path,
the consecutive sequences of these constructs are
logically treated as a single component in the execution
path model. Non-branching constructs become signifi-
cant when the data flow is analyzed along execution

paths. Some constructs fork branches in the execution
paths. An example of this type of construct is if
statement. It is not difficult to identify this second type
of constructs, which we will refer to as branching, from
the first type of constructs, which we will refer to as non-
branching. Branching constructs are of interest in
computing the execution paths because they are sources
of new paths.

The branching constructs can be identified by
examining the implementation language of the soft-
ware. For instance, the list of branching constructs in C
language is shown in Figure 8.

Execution path model is derived from the structure
model. The structure model is automatically derived
from the specifications of the programming language. An
execution path can be generated for a single statement, a
function or the entire program. The model of the
programming language is consulted to decide how the
execution path should be generated for each structural
component. A structural component for which execution
paths are described, has a begin point which represents
the source of all the paths and has one or more end points
which represent the destinations of all the paths through
the structural sub-components. The paths are then
generated based on the type of the component object.
For each branching construct (those shown in Figure 8),
the model contains a ‘template’ which enumerates the
paths that are generated by that construct. Figure 9
represents the template for the if-then-else construct.
This template produces two major paths namely ‘Begin-
1-2-End’, and ‘Begin-1-3-End’.

Function calls are treated as special constructs and
have representations at two levels. For these constructs
the representation at the high level is non-branching (a
single statement representing the function call), while the
representation at the detailed (or expanded) level maybe

TABLE 2. Functionality information

Attribute Description Step

Name name assigned to functionality 48,12

Description textual description of the functionality object 4,8,12

Bug list the associated bug(s) if the functionality is not properly implemented 6

Container parent of the functionality object in the functionality hierarchy 48,12

Components children of the functionality object in the functionality hierarchy 4,8,12

Execution paths set of structural components that achieve the functionality. This set 4,8,12
consists of statements which form execution paths.

Testcases the set of testcases that exercise all execution paths related to the 9,13,15

functionality

THE COMPUTER JOURNAL,

Vor.37, No.9, 1994

$202 I4dy 0 uo1senb Aq £///9€/¥92/6//E/e191e/|ulliod/woo dno-olwepeoe//:sdiy woij papeojumoq

770 K. JAMBOR-SADEGHI et al.

conditional statement:

if (expression) statement

if (expression) statement else statement
switch-statement:

switch (expression) statement
iterative-statement:

for (expression; expression; expression)

statement

while (expression) statement

do statement while (expression)
goto-statement:

goto identifier:
continue-statement:

continue;
break-statement:

break;
return-statement:

return expression;

FIGURE 8. Branching constructs in C language.

branching. (System-defined functions are always non-
branching and cannot be expanded.)

Figure 10 shows an example execution path. Paths are
labeled as f1, £2,... and the structural components
within paths are labeled as Su1, su2,.... Paths that have
common begin and end points are grouped together in a
rectangle. The paths confined to a rectangle correspond
to subfunctionalities that have the same parent function-
ality and are at the same level. Each rectangle is
considered a node in the containing path at a higher
level. To develop a functionality hierarchy software
maintainer is presented by the execution path of the
software similar to the one shown in Figure 10.

The maintainer can expand or collapse the paths and
groups of parallel paths as he/she desires. The maintainer
selects the paths in any desired order and assigns a name
and a description to it. These names and descriptions are
the properties of functionality objects that are created
and organized by the system into a hierarchy that
parallels the execution path hierarchy. Figure 11 shows
an example of functionality hierarchy developed using
the execution path shown in Figure 10.

Table 3 lists the attributes of the execution path
objects.

2.3.4. Bug model

A bug describes a system malfunction. Information
contained in a bug description includes the bug
identification attributes which are used to form queries

if-else-statement: if (expression) statement else statement

Begin 1

2
O— cxpmssig \ o
L statement

End

3

FIGURE 9. if-then-else template for execution path generation.

M-
0 Sl (4 []&1
dl -
fS

FIGURE 10. Abstract execution path representation.

to search the bug base and the malfunction description
which is used to identify the functionality object that is
related to the bug. Table 4 lists the attributes of the bug
objects.

2.3.5. Testcase model

A bug that is fixed needs to be tested to verify correct
behavior of the software system after the bug fix.
Information contained in the testcase model includes
the testcase identification attributes which are used to
select testcases for execution. Table 5 lists the attributes
of the testcase model.

2.4. Supporting tools for the corrective maintenance
process

An integrated and complete set of tools that support the
steps in the process of Figure 5 is necessary. The various
tools required for the corrective maintenance process are
derived from the operations that are performed in the
various steps of the process. Table 6 summarizes the
required tools that are identified following a careful
analysis of the process of Figure 5. Column 1 in Table 6
identifies the main purpose of the tools, columns 2 and 3
together identify the elements of information that are
used by tools, and column 4 identifies the output of
applying the tools. Column 5 identifies the steps of the
process that utilize the tools.

The bug browser allows for addition, deletion and
query of bug information in the bug base. The testcase
browser allows for addition, deletion and query of
testcases associated with structural components and
functionality objects. The functionality browser allows
for addition, deletion and modification and browsing of
the functionality objects. The process of creating
functionality objects is semi automated. The system
allows the software maintainer to examine candidate
execution paths. Upon selection of a path, the user is
prompted for the description and the labeling of the
functionality that the path performs. A new functionality
object is then created. Testcases could also be associated
with functionality objects. A functionality object could

f1 <description of f1>
f2 <description of £2>
f3 <description of £3>
f4 <description of f4>
£5 <description of £f5>

FIGURE 11. Functionality hierarchy derived from execution path of
Figure 10.

THE COMPUTER JOURNAL,

VoL. 37, No.9, 1994

$20Z I4dy 0 uo 1senb Aq £///9€/¥9.2/6/.¢/e19Me/|ulliod/woo dno-ojwepeoe//:sdiy woij papeojumoqd

CORRECTIVE MAINTENANCE 771

TABLE 3. Execution path information.

Attribute Description Step

Id a unique identifier which is used for selecting and locating 8,9,12
an execution path

name a unique name for the execution path 89,12

Container the containing object which includes this execution path 89,12

Components the structural units that makeup this execution path 89,12

description a description of what the execution path achieves when executed 89,12

be removed if the execution paths associated with it are
altered or removed. The addition, deletion and mod-
ification of structural components can be achieved
automatically through the use of incremental compi-
lers. The structure browser can be used to query various
information on software structure such as complexity of
a function or a statement, data references, data
modifications, etc. As a browsing tool, the execution
path browser can be used to show the execution paths
that can be statically generated through structural
analysis of the software system.

Additional tools (which are indirectly related to the
steps of the process in Figure 5) are needed to support
software understanding as well as help in fixing bugs.
These tools are listed in Table 7. The call graph and data
flow information is produced from the data model. The
data model, which is derived from the structure model,
captures information such as where data is used,
modified or referenced. Since the data model is not
directly related to the process of corrective maintenance
presented in this paper, the details of its construction will
not be presented here. The interested reader is referred to
Sadeghi (1994).

2.5. An example

To illustrate the ideas described in this paper, a simple
example program (about a 1000 lines of code, organized
into four C files) is presented. The ideas could be applied
with equal effectiveness to larger, more complex
programs. The entire user interface code of SAMS, for
example, which consists of about 80000 lines of C code,
has been loaded, and successfully maintained by SAMS.

A typical university registration application consists of
finance, course, student and professor entities. A
corrective maintenance activity is initiated as a request

to fix a bug that has been discovered related to adding
new students to the student list. The first step in the
process is to construct a query to locate the bug that is
assumed to have been submitted to the bug base. An
effective way of constructing such a query is by filling a
form similar to that shown in Figure 12. The key
attributes for bug selection are presented as buttons. The
users must provide a value for all the key attributes by
selecting among one of the values presented as the button
is activated. If more than a single bug matches the
specified criteria, the users can page through the matched
bugs using the retrieve button in succession. By reading
the description of the bug (which is displayed at the
bottom of the window of Figure 12) the maintainers
acquire important clues necessary for successful identi-
fication of the offending functionality. In this example we
assume that the bug has simply been put in the bug base
and has not yet been associated to a functionality.

The next step is identification of the functionality that
is related to the bug by browsing the functionality
hierarchy. To identify the offending functionality the
description of the bug is analyzed and keywords are
identified. In our example, the related keywords are
student, list and add. A search for functionality with
names similar to these keywords, results in identification
of the Students functionality. As shown in Figure 13, the
Students functionality consists of three subfunctional-
ities, Reports, to generate a listing of the students in
various forms, Add, to add new students, and Delete to
delete existing students. These are four subfunctionalities
associated with the Add functionality, openDB, to open
the students database, Check Vld, to check validity of the
students to be added (whether they are registered or not),
AddToList, to add the new students to the list, and
CloseDB to close the students database.

A further refinement of the bug description is

TABLE 4. Bug information.

Attribute Description Step
Bug Id a unique identifier for the bug 1,3
Creation date date of bug submission 1,3
Reported by customer name who reported the bug 1,3
Assign Date date bug is assigned to the person in charge of its fix 1,3
Assign to user id of the person in charge of bug fix 1,3
Purpose a short paragraph describing bug symptoms 1,3
Status current status of the bug (investigating, open, close) 1,3
Severity severity of the bug (high, medium, low) 1,3
Type type of problem (code bug, document, feature, performance) 1,3

THE COMPUTER JOURNAL,

Vor. 37, No.9, 1994

$202 I4dy 0 uo1senb Aq £///9€/¥92/6//E/e191e/|ulliod/woo dno-olwepeoe//:sdiy woij papeojumoq

772 K. JAMBOR-SADEGHI et al.

TABLE 5. Testcase model.

Attribute Description Step
Author author of the testcase 17,18
CreateDate date the testcase was created 17,18
ModifiedBy person who modified the testcase 17,18
ModifiedDate date testcase was modified 17,18
Purpose a brief description of the testcase 17,18
HostOS host operating system 17,18
HostProgram host programming language 17,18
Product software product name 17,18
SU structure units object id 17,18
Functionality functionality object associated with the testcase 17,18
Class (correctness, regression, performance, conformance, error handling, quality) 17,18

necessary at this point to locate the exact structural
components responsible for the incorrect functionality.
The user is prompted for whether the bug is related to
invalid entries in the list or missing entries. Note that if
such verification is not possible, all four subfunctional-
ities need to be examined based on the code complexity
of the functionality and its testcase coverage. Function-
ality objects of high complexity and low test coverage are
usually selected first. In our example, further testing to
reproduce the bug reveals that bug is actually related to
existence of invalid students. Following the modification
of the original bug to reflect the refinement of the bug
description, the user is presented with the implementa-
tion details of the check Vid functionality.

Upon identification of the faulty paths, associated
testcases can be analyzed and executed against the faulty
paths to verify correct bug identification. Additional
testcases may need to be developed if the original set of
testcases fail to test the faulty paths. The next step is
making necessary modifications to the software structure

to correct the faulty paths, and executing the related
testcases to ensure correct operation. If correcting the
fault results in addition of new paths or removal of
existing paths, new functionality objects may have to be
created or old ones may have be deleted. It is generally
assumed that the corrective maintenance does not alter
the functionality hierarchy. If the software functionality
is in any way affected during the corrective maintenance
process, the process is considered to be an enhancement.
A separate set of steps (which will not be discussed in this
paper) need to be followed for software enhancement.
The processes for such maintenance activities have been
developed and are described in Sadeghi (1994).

3. SAMS — A SOFTWARE ANALYSIS AND
MAINTENANCE PLATFORM TO SUPPORT
CORRECTIVE MAINTENANCE PROCESS

SAMS (Ketabchi, 1989, 1990; Ghiassi et al., 1992) is a
multi-user, integrated software analysis and maintenance
system developed based on the realization that the most

TABLE 6. Tools to support the corrective maintenance process

path

Functional description Information used Operates on Information produced Step
Query bug information database bug selection criteria bug base list of matching bugs 1
Browse bug information list of bugs bug objects bug description 3
Define/modify bug bug information bug object bug object 21
Browse functionality information functionality objects functionality hierarchy functionality object 4,5
Associate bug with functionality bug object functionality object functionality object 6
Add/delete/modify bug bug description bug base altered bug base 7
Browse execution path information execution path information execution path objects analysis results 8
Complexity/test coverage analysis test objects structure object analysis results 9
Version management version object structure object version object 11,19
Add/delete/modify functionality functionality description functionality hierarchy altered functionality hierarchy 20
Add/delete/modify structure structure component structure hierarch altered structure hierarchy 16
Associate functionality with structure functionality object structure object altered functionality to 12
components that form an executive structure mapping
Associate execution paths with structure object functionality object altered functionality to 8
functionality structure mapping
Associate test case with the structure test object structure object mapping between test 14,15
case and software
Associate test case with functionality test object functionality object mapping between 13,15
test case and software
Test structural components to verify expected results structure object actual results 17,18

correct behavior

THE COMPUTER JOURNAL,

VoL. 37, No.9,

1994

$202 I4dy 0 uo1senb Aq £///9€/¥92/6//E/e191e/|ulliod/woo dno-olwepeoe//:sdiy woij papeojumoq

CORRECTIVE MAINTENANCE 773

TABLE 7. Additional tools to facilitate software understanding

Functional description Information used Operates on Information produced
Generate call graph structure components data objects call graph
Generate data flow structure components data objects data flow

structure components
textual description

Generate control flow
Annotate structural component

control flow
annotated structure object

data objects
structure object

difficult part of creating an effective software analysis
and maintenance system is not the creation of main-
tenance tools but rather the development of a platform
that allows for effective integration of the necessary
information, and the tools that operate on the informa-
tion to support various software maintenance processes.
One objective of SAMS project was implementing such a
platform by developing an object-oriented model of
software. Our model represents software as an inter-
connected assemblies of objects that form a hierarchy.
Software analysis and maintenance tools are implemen-
ted as methods of the different classes of the objects in the
hierarchy. Attributes associated with the different classes
allow for derivation of all the different aspects of soft-
ware at various levels of detail. SAMS’ user interface
allows for a uniform, and intuitive interaction between
the user and the information. Upon selection of an object
(through the various SAMS’ browsers) the user is
presented with a set of available operations on the
selected object. The set of operations is presented in the
form of a menu whose entries depend on the type of the
selected object. A brief description of SAMS platform is

Date: FrifFeb 12 16:05:03 PST 1993

provided in the next sub-sections. This platform provides
the backbone for implementation of the software
maintenance models described in Figure 7 of Section 2.3.

3.1. Architecture of SAMS

The SAMS prototype consists of three major subsys-
tems: Graphical user-interface, Software database gen-
erator and Software database, as shown in Figure 14.

The primary goal in the design of SAMS’ interface has
been to provide a uniform object-oriented user interface.
This uniformity of the user interface minimizes users’
interactions with the system and thus reduces the amount
of new information that a user needs to know in order to
utilize the system effectively. Users interact with objects
which have well defined interfaces; everything appearing
on the screen is an object; any object can be selected by
double-clicking on the mouse button; once an object is
selected, the menu associated with the object shows all
valid operations associated with that object. Multiple
tools can be active at the same time and multiple objects
can be browsed and analyzed simultaneously.

8ug ID: 152827 |

puthor: kjambor

Date: 02/12/83

pssigned To: Ling

Date: 02/17/33

Purpose: ‘Probles vith adding students

Product: SAMS

Version: 1.0

FNVIRONMENT INFORMATION

Host 0S: SunOS

Host Program: startSAMS

Version: 4.1.1

Version: 4.21

CHANCE NOTICE:

Fixed By:

Test Case:

Send Notice To: kjambor,

list which {s generated.

Having added a student to the list, the name doesn’t appear in the

FIGURE 12. Bug query and selection process.

THE COMPUTER JOURNAL,

Vor. 37, No.9, 1994

$20Z I4dy 0 uo 1senb Aq £///9€/¥9.2/6/.¢/e19Me/|ulliod/woo dno-ojwepeoe//:sdiy woij papeojumoqd

774 K. JAMBOR-SADEGHI et al.

G 14 |

rofessors

Functionality Description:

Add a student to the students
database if student is a valid stu-

dent
OpenDB
complexity 4
test coverage 15%
AddToList
complexity 3
test coverage 50%

CheckVid

complexity
test coverage 50%

CloseDB

complexity
test coverage

Intermediate
Schema
Generator

Intermediaté
Schema

/
anguage™ / |

Schema Generator

Anguage
Behayigr

Software
Database

e[

Source I"“(’)"t?ed'a‘e ntermediaf? Object
File - Gen é,reactlor Database Generator

Object Generator

Software database generator

FIGURE 14. SAMS’ architecture.

THe CoMPUTER JoURNAL, Vor.37, No.9, 1994

$20Z I4dy 0 uo 1senb Aq £///9€/¥9.2/6/.¢/e19Me/|ulliod/woo dno-ojwepeoe//:sdiy woij papeojumoqd

CORRECTIVE MAINTENANCE 775

The SAMS’ software database generator consists of a
schema generator and an object generator. The schema
generator is responsible for creating the SAMS database
schema. The schema consists of a language-independent
component and a language specific component. The
language-independent component captures elements
common to all software systems regardless of the
implementation language. These elements include con-
figuration, version control, functionality, bug and
testcase. The language-specific component describes the
elements of the implementation languages of software
systems (such as functions, statements, variables, etc.)
and the inter-relationships among these elements. The
Schema of SAMS consists of approximately 400 classes.
Of the 400 classes about 320 describe the C and Make
language constructs. The remaining 80 classes support
the language-independent features of software. The
separation of language specific and language indepen-
dent components of the schema simplifies support for
multiple languages. The object generator is responsible
for building object-oriented representation of the code.
Understanding the syntax and semantics of the
programming languages, SAMS is able to automatically
populate the schema given the source of a program.

The layered architecture of SAMS reflects our attempt
to achieve DBMS independence. The intermediate
schema generator and the intermediate object generator
are responsible for creating a DBMS independent
schema and data referred to as intermediate schema
and intermediate database respectively. The intermediate
schema description language is an object-oriented
language which supports class definition. It provides
facilities to define class and instance attributes and
operations. Because the part-of relationship is impor-
tant, some attributes are marked as components. The
intermediate database language provides facilities to
represent the class instances and their relationships. A
detailed description of the syntax of the intermediate
schema and intermediate database languages is provided
in Ketabchi and Sadeghi (1994). The intermediate
schema and intermediate database are processed to
generate Schema and data for a specific object-oriented
DBMS [in the current prototype, GemStone (Bretl et al.,
1989) OODBMS is used]. To successfully generate
methods that implement messages of objects, we need
to provide functions that, upon invocation by the
schema generator, generate the instance and class
methods for the classes in the schema. These functions
are provided by language behavior description and
software behavior description. The software class descrip-
tion describes the language-independent elements of the
schema.

The software database is a central repository shared by
all tools. It stores not only the information derived from
the source of the programs such as its structure, data flow
and control flow, but also the information derived during
the process of software analysis. SAMS tools are
implemented by operations (messages and methods

that implement them) associated with the different
classes in the software database.

The process of building the software database starts by
preparing the language description, software class
description, language behavior description and software
behavior description. The language description is used to
generate intermediate schema. It is also used as the input
to parser generator tools to generate the intermediate
object generator. The intermediate schema is translated
to the data definition of the target OODBMS. Having
successfully loaded the schema, the software database
can be populated via the object generator. The object
generator produces an object-oriented representation of
the source files from an abstract (DBMS independent)
representation referred to as intermediate database. This
representation is generated by the intermediate database
generator. Once the objects representing the code in the
source file are loaded into the software database, analysis
tools can be applied to produce the various aspects of
software at different levels of granularity.

3.2. SAMS facilities for supporting corrective
maintenance process

Corrective maintenance process is one of the several
maintenance processes supported by SAMS. As shown
in Figure 6, the information needed for corrective
maintenance are structure, functionality, execution path,
bug and testcase. SAMS provides facilities for acquisi-
tion, representation, manipulation and browsing of such
information.

The majority of the classes in the structure model
describes the programming language objects such as
statement, expression, function, declaration and their
legal compositions according to the syntax and semantics
of the language. These objects together with other
objects such as File and Program in the software
domain are the structural building blocks of software
systems. The schema for programming language objects
are derived from the specification of the languages
automatically. The specification can be in BNF extended
with semantics or in attributed grammar (Aho et al.,
1986). The schema for the structure model is populated
automatically with the objects generated from the source
code and Make files of the software system. Ketabchi
(1993a) describes the generation of object models from
formal language specification in detail.

Currently, SAMS provides two levels of structural
abstraction to help manage the complex structure of
software systems. We refer to these levels of abstractions
as large granularity and small granularity structure. The
structural components at large granularity structure are
applications, programs and various kinds of source files.
An application is defined to be a collection of programs.
A program is in turn defined to be a collection of source
files. The facilities of the large granularity structure
browser provide a convenient way for browsing and
understanding the configuration of software systems of

THE COMPUTER JOURNAL,

Vor. 37, No.9, 1994

$202 I4dy 0 uo1senb Aq £///9€/¥92/6//E/e191e/|ulliod/woo dno-olwepeoe//:sdiy woij papeojumoq

776 K. JAMBOR-SADEGHI et al.

Structure Browser

(Menu) (Zoom In) (Zoom Out) (Quit)

Object Type: Program

Version: 3.1

opel.c
N '

®elloc. h
stdio. h

string. h

:y_l‘/lwtypem fstdio. he

opslUtil.c

D

sys. h
globsl. h
stdio. he

string. he

LS
l ctype.h

FIGURE 15. Large granularity structure browser.

varying degrees of complexity. Figure 15 illustrates the
large granularity structure representation of a C
program.

The structural components at the small granularity
level are the language specific constructs that make up
the source files. Identification of the syntactical entities of
the system (such as functions, statements, variables, etc.)
and understanding of the relationships among
these entities are provided at this level. Currently SAMS
supports application programs written in the C
programming language, and the make facilities.

Understanding the syntax and semantics of the C
language, SAMS is able to automatically build the
structure given the source of a C file. Figure 16 illustrates
the small granularity structural representation of a C file
(left window), annotation related to a selected compo-
nent (right window) and the text of the selected
component (lower window). Annotation refers to
textual description of a software component. These
descriptions are different from in-line comments in that
they are not part of the source but are associated with the
specific components by the analyzer of the software.

Stucture Unit Brewser

D ICED I

Object Type: selection_statement_2

Annstatien Display: () full

Deterstne vhether the & file 15 to be generated for a

L H
< file or & sakefile.

423:
Tywe of file 1s 1 for @ C file, 2 for o eehafile and 3
for an include tile.

a:

L:;d 1ntersediate schesa for C prograss nto sesory.
433:

Load internedioste schesa for sake into sesory.

Reference Display: () Codes

1t ((!strcac (type_cf_tile, "17)) 11
Ctstreoc (type_of_file, °3°)3)
1n1t_cata_structures (cis):
olse
init_data_structures (sakeis):

FIGURE 16. Small granularity structure browser.

THE COMPUTER JOURNAL,

Vor. 37, No.9, 1994

$20Z I4dy 0 uo 1senb Aq £///9€/¥9.2/6/.¢/e19Me/|ulliod/woo dno-ojwepeoe//:sdiy woij papeojumoqd

CORRECTIVE MAINTENANCE 777

SAMS provides a set of analysis facilities such as text
browser, structure browser, execution path browser, call
graph browser and cross reference browser to aid
software maintainers to better understand the software
system. SAMS integrates the results of the analysis using
these facilities, annotates software components based on
external requirements and functional specifications and
captures the maintainers’ understanding of the soft-
ware’s functionality as a functionality hierarchy. The
functionality model, therefore, provides a mapping
between requirements, functionality and structural
components. Unlike the structure model which is built
automatically, the functionality model is built by the
software maintainers in interactive analysis sessions.
Users of SAMS can select a functionality and ask for
software components which achieve that functionality,
or they can select a software component and ask for the
functionalities in which that component participates.

SAMS stores all the execution paths that can be
statically generated. Functionality and testcase objects
can be associated with execution paths. Users can select
an execution path and identify all functionality in which
the path participates. All data which is referenced or
modified within a path can be identified. And testcase
associated with an execution path can be executed.

Bugs and testcases are represented as objects in SAMS
which are created from the external information
provided in bug reports and testcases submitted by the
users of the software system. A set of tools related to the
bug and testcase models are supported by SAMS which
can provide the facilities such as bug and testcase objects
creation, modification, retrieval, browsing, and bug and
testcase association to functionality objects.

4. CONCLUSION

An effective way to handle the complexity of corrective
maintenance is to formalize the corrective maintenance
process. This has been the focus of this paper. We believe
this approach applies equally well to other software
maintenance processes (Chu et al., 1993). We have
prototyped a system called SAMS based on this
approach. Our goal is to extend our approach and the
prototype to develop a comprehensive software analysis
and maintenance system which supports adaptive,
preventive, perfective and extensive maintenance pro-
cesses as well.

An important improvement to the corrective main-
tenance process we have presented in this paper is the
association of bugs with the functionality of the software
system and a rigorous maintenance process based on this
association. The significance of this association is that it
fills the gap between the functional description of the
software and the code. This association allows main-
tainers to quickly identify the segments in software that
are responsible for the defect. In addition to bugs,
testcases can also be associated with functionality (black
box testing) and structural components (white box

testing) which can be used to not only verify correctness
of changes, but also to aid software maintainers in
localizing bugs.

ACKNOWLEDGEMENTS

The work on SAMS project has been funded by US West
Advanced Technologies and Santa Clara University.

REFERENCES

Aho, A. V., Sethi, R. and Ullman, J. D., (1986) Compilers
Principles, Techniques and Tools. Addison-Wesley, Reading,
MA.

Adam, A. and Laurent, J. P. (1980) Laura, a system to debug
student programs. Artificial Intelligence, November, 75—122.

Biggerstaff, T. J. (1989) Design recovery for maintenance and
reuse. I[EEE Computer, July, 36—49.

Bretl, R. et al. (1989) The GemStone data management system.
In Kim, W. and Lochovsky, F. H. (eds.), Object-Oriented
Concepts, Database, and Applications, pp. 283-308. Addison
Wesley, Reading, MA.

Chen, Y., Nishimoto, M. Y. and Ramanmoorthy, C. V. (1991)
The C information abstraction system. IEEE Trans. Software
Eng. 16,

Chu, J., Jambor-Sadeghi, K., Ghiassi, M. and Ketabchi, M. A.
(1993) A systematic approach to adaptive maintenance. In
Proc. SURF ’93 Orlando, FL.

Cousin, L. and Collofello, J. S. (1992) A task-based approach
to improving the software maintenance process. In /EEE
Conf. Maintenance, pp. 118—126.

Ghiassi, M., Ketabchi, M. A. and Sadeghi, K. J. (1992) An
integrated software testing system based on an object-
oriented DBMS. In 25th Proc. Hawaii Int. Conf. Software
Sciences Vol. 2, Hawaii.

Gupta, N. K. and Seviora, R. E. (1984) An expert system
approach to real-time system debugging. In Proc. First Conf.
on Artificial Intelligence Applications, pp. 336—343. CS Press,
Los Alamitos, CA.

Harjani, D. and Queille, J. (1992) A process model for the
maintenance of large space systems software In. IEEE Conf.
Software Maintenance, pp. 127-136,

Johnson, W. L. and Soloway, E. (1985) Proust: knowledge-
based program understanding. IEEE Trans. Software Eng.,
267-275.

Ketabchi, M. A. (1990) An object-oriented integrated software
analysis and maintenance. In Proc. Conf. on Software
Maintenance,

Ketabchi, M. A., Lewis, D., Dasananda, S., Lim, T., Roudsari,
R., Shih, K., and Tan, J. (1989) Object-oriented database
management support for software maintenance and reverse
engineering. In IJEEE COMPCON,

Ketabchi, M. A. (1993a) Object Generation from Formal
Language Description. Technical Report, Santa Clara
University, Santa Clara, CA.

Ketabchi, M. A. (1993b) Object Generation from Formal
Language Description. Technical Report, Santa Clara
University, Santa Clara, CA.

Ketabchi, M. A. and Sadeghi, K. (1994) Applying Object
Technology to Software Analysis and Maintenance. Technical
Report, Santa Clara University, Santa Clara, CA.

Lukey, F. J. (1989) Understanding and debugging programs.
Int. J. Man—Machine Studies, 189-202.

Murray, W. R. (1989) Heuristic and formal methods in
automatic program debugging In. Proc. Ninth Int. Joint
Conf. on Artificial Intelligence, pp. 15-19. Morgan Kauf-
mann Publishing, Palo Alto, CA.

THE COMPUTER JOURNAL,

VoL. 37, No.9, 1994

$202 I4dy 0 uo1senb Aq £///9€/¥92/6//E/e191e/|ulliod/woo dno-olwepeoe//:sdiy woij papeojumoq

778 K. JAMBOR-SADEGHI et al.

Reasoning Systems (1985) REFINE™ User’s Guide. Reason-
ing Systems Inc.

Sadeghi, K. (1994) A Comprehensive Solution for Software
Analysis, Maintenance and Reverse Engineering. PhD Thesis,
Santa Clara University, Santa Clara, CA.

Sedlmeyer, R. L. et al. (1983) Knowledge-based fault
localization in debugging. In Proc. ACM SIGSoft/SIG Plan

Software Engineering Symp. High-Level Debugging, ACM,
pp. 25-31.

Seviora, R. E. (1987) Knowledge-based program debugging
systems. IEEE Software, May, 20-32.

Shahmehri, N., Kamkar, M. and Fritzson, P. (1990) Semi-
automatic bug localization in software maintenance In. /EEFE
Conf. on Software Maintenance, pp. 30-36.

THE COMPUTER JOURNAL,

Vor. 37, No.9, 1994

$202 I4dy 0 uo1senb Aq £///9€/¥92/6//E/e191e/|ulliod/woo dno-olwepeoe//:sdiy woij papeojumoq

