An All-sharing Load-balancing Scheme on the
CSMA/CD Network and Its Analysis'

YiNnG Hao*, JYH-CHARN S. Liut AND JunGuk L. Kim{

*Global Finance Architecture and Emerging Technology, Citicorp, 4 Campus Circle,
Westlake, TX 76262, USA
tDepartment of Computer Science, Texas A&M University, College Station, TX 77843-3112, USA
1 Bellcore, 444 Hoes Lane, Piscataway, NJ 08854, USA

This paper analyzes a load-balancing scheme, called All-Sharing Load Balancing (ASLB), which evenly
distributes the load of the system among all nodes on a CSMA/CD local area network in a collision-free
manner for each load-balancing activity. A novel analytical model is presented to evaluate performance
of the ASLB scheme and its effect on the normal communication message transmissions and vice versa.
The evaluation also takes into account the tradeoff between system response time and message delay. Our
analysis shows that ASLB can achieve good performance in both system response time and message
transmission delay. Our analysis techniques are applicable to various distributed algorithms involved with

interprocess coordination.

Received October 15 1993, revised September 14 1994

1. INTRODUCTION

Load balancing is a useful technique to improve the
performance of a distributed system. The main objective
of load balancing is to distribute workload among
system nodes evenly to reduce the probability that
some nodes are idle while others are heavily loaded
(Livny and Melman, 1982; Zhou, 1988; Baumgarter and
Wah, 1989; Rommel, 1991). Simulation studies show
that a load balancing scheme can improve the response
time 30-60% under moderate load (Zhou, 1988). A
load-balancing scheme can be static or dynamic. In the
static approach, job migration decisions are made based
on a priori knowledge on the expected average workload
of each node (Tantawi and Towsley, 1985; Bonomi and
Kumar, 1988; Kurose and Simha, 1986) and hence it is
more suitable for systems with known, steady workload.
In the dynamic (state-dependent) approach, however,
job migration decisions are made based on the current
state of the system (Baumgarter and Wah, 1989; Eager
et al., 1986; Wang and Morris, 1985; Stankovic, 1985;
Casavant and Kuhl, 1986; Lin and Keller, 1986; Pulidas
et al., 1988). Since the dynamic load balancing approach
can capture the rapid system state changes, it is more
suitable for systems with dynamic workload. For its
effectiveness, we focus on dynamic load-balancing in this
paper.

A dynamic load balancing scheme generally consists
of several steps: state information collection, state/load
information exchange and workload distribution. Load
information of the system can be collected in a
centralized or distributed manner. In the centralized
approach, a designated node monitors the system
workload to make decisions on job distribution

! This work is done when the authors were with the Texas A&M
University.

(Bonomi and Kumar, 1988; Ni and Hwang, 1981;
Chow and Kohler, 1979; Chow, 1982). In the distributed
approach, each node collects the system load informa-
tion and decides independently with which node it shares
the workload (Baumgarter and Wah, 1989; Eager et al.,
1986a; Stankovic, 1985; Lin and Keller, 1986; Pulidas
et al., 1988). A load-balancing activity can be initiated by
a node which will receive jobs (a receiver) or by a node
which will send jobs (a sender) in the activity (Wang and
Morris, 1985). It has been observed that the sender-
initiated approach performs better when the system is
lightly loaded, but the receiver-initiated approach
performs better under heavily loaded situations (Eager
et al., 1986b; Hac, 1989). The load can be shared between
two nodes (the pair-sharing approach) or by all nodes in
a load-balancing activity. Most load sharing schemes in
the literature employ the pair-sharing approach, though
certain cooperations among nodes are utilized in some
schemes to improve the system performance (Shirarakri
and Krueger, 1990). A good methodological study on
load sharing schemes is given by Kremien and Kramer
(1992), who suggested that (1) node cooperation is
necessary for efficient job transfers and (2) remote job
execution should be restricted to a small proportion of
the system for pair-sharing schemes. Most of the above
discussions and their conclusions are for general
distributed systems. When the distributed system is
based on a CSMA/CD bus network, we need to pay
special attention to the impact of network contention.
Since a pair-sharing approach may need to send several
probing messages for one job migration, the contention
of message transmission could severely degrade the
system performance. System performance degradation
is further aggregated when load-balancing messages and
normal communication messages interfere with each
other.

Tue COMPUTER JOURNAL,

VoL. 37, No.9, 1994

$202 I4dy 0Z uo 1senb Aq 6//9€/6../6/.¢ /8191 e/|ulliod/woo dno-ojwepeoe//:sdiy woij papeojumoq

780 Y. Hao,J.-C.S. Liu anD J. L. KiM

CSMA/CD is one of the most simple, reliable and
efficient media access standards for local area networks.
Although its current transmission speed, i.e. 10 Mbps, is
relatively lower than fiber distributed data interface
(FDDI) and asynchronous transfer mode (ATM) net-
works, a new generation of CSMA/CD standards at the
speed of 100 Mbps are emerging (Roberts, 1993). The
CSMA/CD protocol is most efficient for message
broadcasting. By efficiently utilizing the broadcasting
capability of the CSMA/CD bus, we can minimize the
performance impact of communication delay on load-
balancing activities. Based on this observation, we
proposed the All-Sharing Load Balancing (ASLB)
scheme to effectively utilize the broadcast capacity of
the CSMA/CD bus network (Kim et al., 1992). In this
scheme, nodes compete to seize the communication
media to initiate load-balancing activity based on the
CSMA/CD protocol. Once an initiation message is
successfully broadcast, all nodes exchange their state
information and schedule job migration cooperatively.
Communication collision during state information
exchange and also during job migration is avoided by
restricting nodes to transmit their messages in accor-
dance with their assigned logical addresses. Logical
addresses of the nodes are assigned based on a logical
ring order at system initialization and they need to be
re-negotiated whenever a node joins or departs from the
system. We will only study job migration without
considering process migration in ASLB, because it
has been shown that the marginal performance gain of
process migration does not justify its implementation
cost (Eager et al., 1988).

In ASLB, the system workload is distributed nearly
evenly among all nodes after each load-balancing
activity. Moreover, since load-balancing messages are
transmitted in a contention-free manner, interference of
the network traffic during a load-balancing activity is
minimized. Since a portion of the network bandwidth is
used by load-balancing activities, the normal message
traffic may experience longer delay and hence it is
possible that such delay may overshadow the system
performance improvement brought about by load-
balancing. In this paper, we study the effect of ASLB
load balancing activities on the normal messages, and
vice versa, through analysis and simulation. Assuming
that the network is shared by both normal communi-
cation messages and load-balancing messages, the
performance of the ASLB is evaluated for both system
response time and message delay. Analytical and
simulation results show that the system response time
under ASLB is insensitive to network traffic loads, while
the system response time under pair-sharing schemes
increases sharply with the network utilization. We also
show that the average communication delay under
ASLB can be controlled without compromising the
system response time.

The rest of this paper is organized as follows. Section 2
describes the ASLB in detail. In Section 3, the analytical

model for the ASLB scheme is presented. We discuss the
results of our performance analysis and simulations in
Section 4, and Section 5 concludes this paper.

2. SYSTEM MODEL AND ASLB SCHEME
2.1. The system model

In our system model, m homogeneous nodes are
connected through a bus network whose access is
controlled by the CSMA/CD protocol. Jobs are
assumed to be independent of each other and they can
be executed either locally or migrated to other nodes for
execution. Normal message communication is assumed
to be asynchronous, i.e. job execution is not blocked
when a node sends or receives messages. At any time
instant, only one job can be executed in a node. For
simplicity, we define the load of a node as the number of
jobs being queued or executed, which is known to be a
good workload metric for design of load balancing
schemes (Ferrari and Zhou, 1986; Kunz, 1991).

We assume that failed components can be detected by
low level fault detection mechanisms, such as watchdog
timers, and the cyclic redundancy checking (CRC) codes
in communication protocols. When faults are detected,
any pending ASLB activities are aborted and failure
recovery routines will be invoked to reconfigure non-
fautly nodes, and normal activities will be resumed after
the system reconfiguration is completed. During the
system reconfiguration, a distributed diagnosis algo-
rithm such as the well-known PMC algorithm (Preperata
et al., 1967) can be invoked to send the reconfiguration
message to every fault-free node. During system
reconfiguration, new logical addresses may be assigned
to nodes so that their existing ordering relationship is
reserved, but faulty nodes are excluded. For example, if
the node with the logical address 5 becomes faulty, then
nodes with logical addresses 4, 6 and 7 will be re-ordered
as 4, 5 and 6, respectively. A faulty node cannot
participate any future load-balancing activity until it
recovers from the current fault. When the system is
reconfigured, a recovered node will be assigned the
largest logical address. On a CSMA/CD network,
the performance impact of failed components and the
associated recovery overheads can be reflected in our
analytical model by adjustment of communication
delays. Therefore, without loss of generality, we
assume that all components are fault-free and the bus
network is reliable in the subsequent discussion.

We assume that each node has one computing
processor and a communication co-processor, where
the computing processor is responsible for all the
computation and job scheduling, and the communi-
cation co-processor handles sending and receiving of
messages in response to the computing processor’s
commands. The computing and communication pro-
cessors communicate with each other through a
shared memory, which is used by the two processors to
exchange messages, state variables, and communication

THE COMPUTER JOURNAL,

Vor. 37, No.9, 1994

$202 I4dy 0Z uo 1senb Aq 6//9€/6../6/.¢ /8191 e/|ulliod/woo dno-ojwepeoe//:sdiy woij papeojumoq

ALL-SHARING LoAD BALANCING 781

commands. Pointers are passed between the processors
to indicate locations of the different types of informa-
tion. The communication commands are linked by the
pointers and thus the computing processor can arbi-
trarily alter the execution sequence of outstanding
commands by modifying the pointers (e.g. see Intel,
1990). The two processors can get each other’s
immediate attention through interrupt signals. For
example, the communication co-processor can interrupt
the computing processor when it receives a new message,
so that the inbound message can be processed immedi-
ately. In the mean time, the computing processor can
abort the current message transmission by altering points
of commands and by interrupting the communication
co-processor. With this system architecture, the comput-
ing processor need not be blocked from computation
while its communication co-processor is transmitting or
receiving messages.

2.2. The ASLB protocol

Each time a job is completed, the node executing the job
checks its job-waiting queue: if the queue is empty, the
node initiates load-balancing by broadcasting a load-
balancing initiation message. The load-balancing initi-
ation message may collide with other messages including
other load-balancing initiation messages. However, after
the first load-balancing initiation message goes through
the bus, the computing processors interact with their
communication processors to avoid any othzr message
collisions until the load-balancing is completed. If a new
job arrives at the initiator before the initiation message
has been sent out, the initiator attempts to cancel its
initiation message. If the message is cancelled, the node
resumes its job execution.

Upon receiving the load-balancing initiation message,
each node purges its active message (if any) which is the
message in either backoff or transmission state. A purged
active message will be placed back into the waiting queue,

which holds messages in waiting state. After purging its
active message, the node then waits for its turn to
broadcast its load information. The node which has a
logical address next to the initiator becomes the load
information exchange organizer, i.e. this node is the first
node to broadcast its load message. After the node with
logical address i broadcasts it load, node (i MOD m) + 1
will broadcast its load information. After receiving load
information of all nodes, a job migration plan is
calculated by each node using algorithm FP (shown
shortly) and migration is then done following the order
calculated by FP.

When a node begins to purge its active message, at
most one message may have been transmitted on the bus
in the worst case. We show that only one such message
can be transmitted in the worst case before all nodes can
successfully purge their active messages, if any. Hence,
collision-free load information exchange can begin after
at most one message transmission.

Referring to Figure 1, we denote the time instant at
which a load-balancing initiator finished transmission of
an initiation message by 7,, the time instant at which all
nodes receive the initiation message by f,, the time
instant at which a node N, purges its active message by 7,
and the propagation delay of the bus by 7. Let T, be the
time interval between ¢, and ¢, which is the time a node
spends on the purge operation. Let M; denote the
message which becomes active in N; between ¢, and ¢,,
and T, denote the time taken to transmit M;. The
worst case is that M, seizes the bus immediately after ;.
When T, < T,,,,, as shown in Figure 1(a), M; can be
successfully purged, and when T, > T, as shown in
Figure 1(b), M; cannot be purged.

All nodes can purge their active messages before
ty 4+ T+ Tpesg, 1.€. T, < Tppeqq, based on the following
reasoning. A typical 10 MHz local area network has the
shortest message length of 0.057ms (Schwartz, 1987);
this is equivalent to the time to execute 570 instructions
by a processor of 10M FLOPS. To recognize a load-

ts Time

ty to tp
T"mg

An arbitrary node
N has a message
M to transmit

(a)

M

T

tp : An initiation message is broadcast

is to be sent out to : All nodes receive the initiation mesg

tp : All nodes purge their out-mesg
queues

ts : The Organizer sends its load

1, to
T mosg

An arbitrary node Ngrabs the
N has a message channel
M to transmit

M | is sent out

(b)

e ts Time
T

M | is received by all nodes

FIGURE 1. The purging process of an active message when load-balancing is initiated, where (a) message M; can be purged and (b) M; cannot be
purged in time.

THE COMPUTER JOURNAL,

Vor. 37, No.9, 1994

$202 I4dy 0z uo 1senb Aq 6//9€/6../6/.E/191e/|ulliod/woo dno-olwepeoe//:sdiy woij papeojumoq

782 Y. Hao,J.-C.S. Liuanp J. L. Kim

balancing initiation message, a node needs to transfer
the message from its communication processor to main
memory, and then let the computing processor interpret
the message and purge an active message by altering the
pointer to the active message. Hence 7, can be several
micro-seconds long: T, < T, and we can guarantee
that all nodes can purge their active messages before
ty + T + Tyese- To cope with the worst situation that one
active message may get through, the load-information
exchange organizer needs thus to wait for 7, = 27 after it
purges its own active message, before it passes its load
message to its communication processor. The first 7
guarantees that all nodes in the system receive the load-
balancing message and the remaining 7 guarantees that
the unpurged message, if any, reaches its destination.
Then, it is up to the communication processor to
transmit the load message. The transmission sequence
is known to all nodes since they are listening to the
communication medium.

After the load information of the system is delivered to
all nodes, each node computes the global load-balancing
plan by using the FP algorithm given below. The
algorithm produces a sequence of source-destination
pairs and the number of jobs migrating between them.
The nodes then send out their jobs based on their order
to avoid communication collisions. To execute FP, each
node maintains a Load Table, TBL, and each entry of the
TBL has two entries representing the job number and the
logical address of the node, respectively. The table has m
entries, where m is the number of nodes. Let the number
of jobs in node N; be denoted as L, (i = 1,...,m) and let
AVG = [L;/m], where AVG is an integer value. If
N; has extra jobs, i.e. L; — AVG > 0, it will find N; with
load less than the average, i.e. L; — AVG < 0, and share
the jobs with N;. If L; + L; — 2+ AVG > 0, then N, looks
for another node for further sharing; that is, N, finds
multiple nodes to share its jobs until L; < AVG.
Therefore, after a load-balancing activity, the number
of jobs at each node is nearly the same as AV G. The FP
algorithm is formally described as follows:

Algorithm FP:

AVG = [(TBL(1).load + TBL(2).load + - - - + TBL(m).
load) /m]
Sort(TBL) in the decreased sequence of load
if (| TBL(1) — TBL(m)| < 1)
return; |* The system is balanced* |
if(AVG = 0) AVG =1 | * Avoid transmitting process
being executed */|
TBL(i).load = TBL(i).load — AVG, fori=1,...,m
i:=1
Ji=m
while(i < j) do begin
cond := TBL(i) + TBL(j);
if (cond=0) then begin
store migration (TBL(i).addr — TBL(j).addr,
TBL(i).load); | *TBL(i).load jobs to be migrated
from TBL(i).addr to TBL(j).addr */

i=i+1;
Jji=j—1

end

else if (cond > 0) then begin
store migration (TBL(i).addr — TBL(j).addr,
—TBL(j).load);
TBL(i).load = TBL(i).load + TBL(j).load,
ji=j—1

end

else if (cond < 0) then begin
store migration (TBL(i).addr — TBL(j).addr,
TBL(i).load);
TBL(j).load := cond,
i=i+1

end

end;

A pseudo-code of the ASLB scheme can be found in
Appendix B.

From the description of FP, it is evident that the load
difference between any two nodes is at most one after one
round of load-balancing activity. Since a load-balancing
message has to compete with other messages for the
communication bus, the traffic intensity on the bus
determines the delay of a load-balancing initiation
message and hence may affect the performance of
ASLB. Once a balancing initiation message gets
through, the network is dedicated to the load-balancing
activities and normal messages get blocked from
transmission until the load-balancing activities com-
plete. Hence, frequent load-balancing initiation may
cause increase in normal message delays, and it is thus
important to strike a balance between the system
response time and the normal message delay. As will be
shown in the Section 4, ASLB can achieve low system
response time at a reasonable message delay by proper
modification of load-balancing initiation conditions.

3. ANALYTICAL PERFORMANCE ANALYSIS

A commonly used performance criterion for evaluation
of load-balancing schemes is the average system response
time, which is the average time elapsed from the arrival
of a job to its completion either locally or at a remote
site. Since the load-balancing activities in a distributed
system may consume a non-negligible portion of net-
work bandwidth, the communication delay of normal
messages may increase. Therefore, the effect of load-
balancing activities on normal message communication
should also be taken into account in evaluation of a load-
balancing scheme. Therefore, we use the average normal
message delay as well as the system response time as the
performance criteria for evaluation of the ASLB scheme.

A common way to analyze the performance of a
dynamic load-balancing scheme is through a multi-
dimensional Markov chain. However, this approach is
very inefficient, if not impossible, in the analysis of the
ASLB scheme for the following reasons. First, since
nodes under ASLB scheme balance their workload in a

THE COMPUTER JOURNAL,

VoL. 37, No.9, 1994

$202 I4dy 0z uo 1senb Aq 6//9€/6../6/.E/191e/|ulliod/woo dno-olwepeoe//:sdiy woij papeojumoq

ALL-SHARING LoAD BALANCING 783

T
ab Toc Tey

ta ty o te t, Time
ab’ R
ts

FIGURE 2. The cyclic behavior of nodes under the ASLB scheme.

fully cooperative manner, it is virtually impossible to
enumerate all the possible system states to calculate
transition rates. Secondly, in a Markov-chain-based
model, job migration is approximated by state tran-
sitions, making it impossible to study the impact of
communication delay on the system performance. In our
approach, we first decompose the time domain into
different phases and then analyze the behavior of the
system in each of the phases. By proper integration of
boundary conditions between phases, we obtain the
overall system performance measurement. In our

S (Jx J:“ pal6] 1) d6 dFy (1) + Jox J,W

communication processors. The job-migration phase starts
at ¢, and finishes at ¢4, i.e. nodes begin to transmit their
jobs which need to be migrated, if any, and all the migrated
jobs will have reached their destinations at ¢4, after which
a new round of load-balancing activity begins.

By defining the state of a node as the number of jobs in
that node, and the system state as the total number of
jobs in the system, we derive the state probability
distribution of an arbitrary node at any time instant in
the three phases, from which we derive the average
system response time and the average message delay. Let
the probability distributions of the lengths of the three
phases be denoted as Fr,(f), Fr, () and Fr, (),
respectively. Also, the probability that »n jobs are in the
node within the three phases are denoted respectively as
pn(t) (t € [tavtb))v qn(t) (t € [tb’tc))’ UJ,,(Z) (t € [twtd’))a
respectively. The average number of jobs in the node can
thus be expressed as:

oC (t.+t
an(81 1) dS dFy, (1) + J J wa(6]1) d6 dFy., (z))
0 Jz,

E_n:O 0 b

o0

J:C tdFy, (1) + L

analysis, we assume that the interarrival time and the
execution time of jobs at each node follow exponential
distributions with job arrival rate A and mean execution
time 1/p, respectively, where A < p.

Under the ASLB scheme, the behavior of a node can
be modeled as a renewal process, where one of the
renewal cycles is shown in Figure 2. The cycle begins at
time instant #,, at which the previous load-balancing
activity has just completed, and ends at instant 74, at
which the load-balancing activity initiated at ¢, com-
pletes. It should hence be noted that ¢; is the beginning
instant of the next renewal cycle, i.e. the system state at z,
should be statistically equivalent to the system state at ¢,.
We denote the time instant immediately before #; as #,-,
meaning that the current load-balancing is about to
complete. Starting from ¢,, jobs are executed in each

a

E: n=0

tdFy, (1) + J tdFr, (1)
0

> Iy _ [_
Sl [pciTras [a1 T ar+ |
t 173

(1)

Once we get L, we can calculate the system response time
using the Little’s Law (Little, 1961): R = L/).

To derive L, we ought to find probability distribution
functions Fr, (1), Fr, (1), Fr, (t) and the mass distribu-
tion functions p,(#) (¢t € [t,, 1)), q.(f) (¢ € [ty,2.)) and
wy(2) (¢ € [t,14-)). However, it is difficult to derive Fr,
Fr, and Fr,_ directly for the following reasons. Firstly,
the distribution of message delay T}, on the CSMA/CD
bus is known to be very difficult to derive. Secondly, the
inter-dependency between T,,, T, and T,;- makes
derivation of their distributions mathematically intract-
able. For simplicity, we directly use mean values of T,
Ty, and T,,- instead of their distribution functions
for our analysis, where T, = [y tdFr (1), Tp =
Jo tdFy, (t) and T, = [tdFr, (t), respectively.
Equation (1) is thus simplified into

ty—

w1 T)

I

7_—‘ab + Tbc + Tcd“

node independently until a load-balancing initiation
message is received by all nodes at time instant ¢,. [¢,, ;)
is thus called the independent job-execution phase. More
specifically, one of the nodes becomes idle at time ¢,
ty € [t, 1), and broadcasts a load-balancing initiation
message, which reaches all nodes at ¢, after a network
transmission delay of Ty, = t, — ty. The load-balancing
decision phase starts at t, and ends at ¢,, during which
the nodes exchange the load information, pack jobs
which need to be migrated, and send packed jobs to

(2)

after replacing 6 by ¢, where t, = t, + Ty, t. =t + Tp,
and t; = 1, + T4

Since system states at ¢, and ¢, are statistically identical
at the steady-state, we solve the problem recursively in
the following manner. Assuming that the probability of
the system ¢, is P,, £ =0,1,--- (i.e. there are totally ¢
jobs in all the nodes), we derive T, (|¢) and p,(t|£)

? For typographical simplicity, p,(t| Ta), 4n(t| Tse) and wy(t| Toq-)
will be written as p,(t), ¢,(¢) and w,(t), respectively.

THE COMPUTER JOURNAL,

Vor. 37, No.9, 19%4

$202 I4dy 0z uo 1senb Aq 6//9€/6../6/.E/191e/|ulliod/woo dno-olwepeoe//:sdiy woij papeojumoq

784 Y. Hao,J.-C. S. Liuanp J. L. KiM

(¢, < t < 1) for the given system state £ at #,. Then, we
derive T,,c(|£) and ¢q,(t|€) (t, <t <t.) for the given
Da(ty2). T (|€)and wo(t|€) (1, <t < t;) are conse-
quently derlved using g,(t.|£). Once we obtain the state
probability distribution of each node at 1, , w,(t; |£), we
can derive the probability of the system state at i,
denoted as P, (n=0,1---,). The steady-state prob-
ability P, can thus be obtained by utilizing P, = P
V¢ = n. After obtaining P,, we can thus derive p,(¢)
(ta st< lb)v qn(t) (tb st< tc) and W,,(t) (Zc st< t,;),
and eventually the system response time.

In order to derive p,(t|¢), we need to derive first
the conditional probability distribution function of T,y
given that £ jobs are in the system at #,, Fr, (¢]£), and its
mean value T, (|£). Note that T, is the time elapse for
one of the nodes, which is initially in state k, to become
idle. Let T; denote the time elapse for node N;
(i=1,2,---,m) to become idle starting at f,, it is
evident that T,y = min{T,T,,---,T,}. Assume that
the system is in state £ at ¢,, and let r = {mod m and

= |£¢/m]. Since at t, the load difference between nodes
is at most one under ASLB, nodes can be divided into
two groups. One group consists of r nodes, each of which
has n; + 1 jobs and the other group consists of m —r
nodes, each of which has n; jobs. Since T;’s have the
identical probability distributions if they have the same
number of jobs at ¢,, we denote fr(¢|k) and Fr(t|k) as
the density function and probability distribution func-
tion of T}, given that N; has k jobs at ¢,, where k = n; or
k = n; + 1. Therefore,

Fr (t]€)=1—(1—Fr(t|n; + 1)) (1 = Fr(t|ny))"".
(3)

The mean value of the interval T, can thus be calculated
as

Toy(]0) = j:’ tdFy (t]2). (4)

We derive fr(¢| k) in two cases: k # 0 and k = 0. In the
first case, T is the time elapse for a node, which initially

Initial state
A A J A A
H M H H H

AN

Initial state

FIGURE 3. The node state transition diagram during T,: (a) k # 0
and (b) k = 0.

has k jobs, to become idle. In the second case, T is
the sum of two time intervals T, and Tjp, that is,
T =T, + Tg. T, is the time interval between ¢, and a
time instant at which a new job just arrives at the node,
and the node becomes idle again right after the interval
Tp. The state transition diagrams for calculating T;
corresponding to the two cases are plotted in Figure 3(a)
and (b), respectively. Note that no transition occurs from
Sy to S; because the independent job-execution phase
terminates when the node reaches state Sy. The dotted
line indicates that a new job arrives at the node which is
originally idle (k = 0), and the state is depicted by Sy in
the diagram.

When k #0, the differential-difference equations
governing the node state can be derived from Figure 3
as

po(t) = upi (1)

pi(t) = =(A+ p)pr (1) + ppa(1)

p,:(t) =)‘pn—l(t) - ()‘ + ,u)pn(t) + an+l(t) (n > 1)
(5)

Solving the above equations with the initial condition
p(0) =1 and p;(0) = 0 (j # k), we get:

k/2
€(5) neavrueter
fr(t|k) =po(t) = , (6)

t

where

00 n+2i

Z i y/2) n>0)

= (n+1)
is a modified Bessel function with the property of
I_,(y) = I,(y). Detailed derivation of equation (6) can
be found in Appendix C.

When k = 0, f(¢]|0) is equal to the convolution of
fr,(¢) and fr, () because T = T4 + Tp. Since the density
functions of T4 and T are fr,(1) = e~ Mand fr, (1) =
fr(t|1), respectively, we get fT(t 10) = Xe ™™ = fr (] 1),
where * denotes the convolution operator.

By plugging fr(¢|n;) and f(T | n; + 1) into equations
(3) and (4), we get T,y (|¢). Now, we derive the state
probability distribution of the node p,(t|k), where
n=0,1,---,00 and k =n; or k =n; + 1, at any time
instant ¢ in the independent job-execution phase [t4, ;).
We need to use a transient analysis approach to derive
pn(t), Vt € [t,, 1), Which cannot be obtained through the
steady state solution of M/M/1 queueing system. Since
no job migration occurs during the independent-job-
execution phase, each node can thus be modeled as a
Markovian process which initially has & jobs at ¢,. Note
that since p,(¢ | k) is defined only for the interval [z,, 1,),
we are concerned with the probability of n jobs in the
node at a time instant ¢ € [¢,, 7,) which initially has k jobs
at t,. The differential-difference equations governing the
state of a node during independent job execution phase

THE COMPUTER JOURNAL,

VoL. 37, No.9, 1994

$202 I4dy 0z uo 1senb Aq 6//9€/6../6/.E/191e/|ulliod/woo dno-olwepeoe//:sdiy woij papeojumoq

ALL-SHARING LoAD BALANCING 785

are:
Po(t1k) = ~Apo(t] k) + upi (1K)
Palt1K) = —(A+ @) pa(t 1K) + Apy i (1K) (7)
+upui (LK) (n > 0).

From the solution in Gross and Harris (1985), with
boundary conditions that p,(t,| k) = 1 and p;(t,| k) =0,
Vj # k, and the unification condition that

S al=1,
=0

we obtain:

k—n)/2
plt[K) = & 00w [(5)(P VAR - 1)

(k—n+1)/2
+(5) T b @V - 1)

IO

I=n+k+2
x 12/ A pa(t — ta)):l7 (8)

where 7, <t < 1,. Details on derivation of the above
equations are given in Appendix C. For simplicity, we
have assumed that all the nodes, including the load-
balancing initiator, have identical behavior as described
in equation (7). Although this is not an accurate
description of the system, the incurred error by this
approximation is quite reasonable, as found in our
simulation.

We now derive the mean value of 7,. and the
probability that » jobs are in the node at any instant ¢,
g,(t) when ¢ € [t;,1.). The time interval T}, consists of
three sub-intervals. In the first sub-interval, nodes except
the initiator exchange load information in a collision-free
manner, which takes (m — 1)T),,; time, where T},
denotes the transmission time of a load information
message. In the second sub-interval, a node executes FP
to find the load-sharing partners, and it takes Tgp time.
The node then packs its jobs which need to be migrated
to other nodes in the third sub-interval. Let M denote the
average number of jobs in a node that need to be
migrated to other nodes and 7T, denote the processing
time for a node to pack one job, we get the duration of
the third sub-interval as M Tpack- Therefore,

7_—'bc(I [) = (m - l) Tipaa + MTpack + Tkp. (9)

We now calculate M, which is determined by the job
distribution at ¢, p,(#;). The average number of jobs at ¢,
in each node can be calculated as

& m— 1
Lb:_znpn([b|n1+1)+“ann(tb|n+1)
mn:O m n=0

since r nodes in the system initially have n; + 1 jobs at ¢,

and the other m — r nodes have n; jobs. Since the node
migrates its jobs only when it has more than L, jobs, the
average number of jobs migrated by the node is thus

M = Z (n— Ly) pa(t| k),

when L, > 1. However, when the node has only one
job, it cannot migrate this job since it is already being
executed. Therefore, when L,(,) <1, the average
number of jobs migrated by a node is

M: Z (n_ib)pn(Tb|k)7

n>Lyn#l

where k = n; or k = n; + 1. Combining these two cases,
we get

M=L 5" (n—Ly)paltsln +1)

mn>1:b,n7él
m—r _
+ Z (n = Ly) pa(ty| nr). (10)
n>Ly,n#l

The derived M can be plugged into equation (9) to get
Tbc.

In the time period Tj,., the node is dedicated to the
load-balancing activity and thus only job arrivals can
occur. Therefore, the number of jobs at instant ¢
(t € [ty,1.)), denoted as N(1), is equal to the sum of the
number of jobs f,, N(t;), and any new arrivals during
[t5, 1), A(2), i.e. N(t) = N(tp) + A(z). The probability
that n jobs arrive during [t,, ¢], where ¢ € [t,, t.), is simply
a,(1) = A(t — t,) e *"%) /n! based on the assumption of
the Poisson arrivals. Hence, the probability that » jobs
are in the node at z € [t,, 1] is g,(¢ | k) = p,(tp| k) * o, (1),
where * denotes the convolution operator on the domain
of n.

When the job-migration phase begins, the node
resumes its job execution, however, no load-balancing
can be triggered until after ;. We now derive the average
time elapse of this phase. Since each node has an average
of M jobs to be migrated, the total job migration time
is mM (T, + 7) in a collision-free environment, where
Tj,p denotes the transmission time of a job. That is,
T.q-(|¢) = mM(Tj,, + 7). Since jobs are migrated one
by one along the network in a collision-free manner, it is
difficult to model the exact behavior of the node in this
phase. For simplicity, we approximately model this
phase as follows: nodes which have jobs to be migrated
hold the jobs until the time instant z;- and then job
migration is done instantaneously at ;. This approxi-
mation is conservative in the sense that delaying the
migration will actually increase the system response time.
Errors caused by this approximation are expected to be
fairly small in our analysis since T, is relatively shorter
than T,,. Based on this approximation, behavior of
the node in [¢.,7,-) can be modeled in a similar way as
in time interval [¢,,7,). Hence, given j jobs at f,, the
probability distribution on the number of jobs n at time
t € [te,t4-), Ba(t] i), is derived in the same way as in the

THE COMPUTER JOURNAL,

VoL. 37, No.9, 1994

$202 I4dy 0z uo 1senb Aq 6//9€/6../6/.E/191e/|ulliod/woo dno-olwepeoe//:sdiy woij papeojumoq

786 Y. Hao, J.-C. S.

Liu anp J. L. KiM

derivation of p,(¢| k). That is,

By(t]i) = e~ w1 l()‘)(l "/ In_i(zy/)\u(t— 1))
(n—i+1) /2
+ (g) n+t+l 2\/ t_ t

(-0 2,00
x H2y/Alt - m)} (1)

and
o0

walt1 k) = Bi(t|i)pilty | k),
i=0
where ¢t € [t.,t;-) and k =n;ork =n; + 1.

Let the number of jobs at z; in the nodes which
initially have n; and n; + 1 jobs at 2z, be N(t;|ny)
and N(t; |n; + 1), respectively, the number of total
jobs in the whole system at z; is thus N(z;|¢) =
rN(ty |n;+ 1)+ (m—r)N(t; |n;). Let P, denote the
probability that n jobs are in the system at #;, we get:

m-—r
9]
S Pow,(tq-|np) *
=0

—

ek wy(tg- | ny)

r
A

xwa(tg-|np+ 1) (12)

«onlta g + 1) *

Utilizing P, = P,, V£ = n, we can obtain the steady-state
probability Py, £ =0,1,---.

Once we get the steady-state probability distribution
of system states at #,, we can calculate the distribution

pn(t) (t € [tm tb))v qn(t) (l € [tbv tc)) and wn(t) (t € [tcv td))

as:
= r m-—r
Pal0) = 3 Paopa(t s+ 1) + (el m)), (13)
= r m—r
anlt) = 3 Pe(n(t I+)+ =t). (14)
and
)= Y Pttt + 1)+ 7 e). (19

where ¢t = ¢mod m, n; = |£/m] and

T= PiTu(l0), (16)
=0
Tbc:iplfbc(u)a (17)
=0
and
Tcd:ZPchd(u)' (18)
=0

By plugging equations (16), (17) and (18) into equation
(2), we can derive the average system response time.

We now calculate Ty, through analyzing the message
delay on the CSMA/CD bus in the presence of load-
balancing activities. Ty, consists of two sub-intervals,
one of which is the time spent on bus contention and the
other is the transmission time of initiation message,
denoted as T,,. It can be seen from Figure 2 that the
network is fully dedicated to load-balancing activity once
a load-balancing initiation message (broadcast at fy)
grasps the bus.

During [t — Tin, t4), the network is dedicated to load
balancing activities and no normal message can be
transmitted. Hence, the network can be modeled as
having two classes of messages, one of which contains
normal communication messages and the other, load-
balancing messages which simulate the total trans-
mission activities in [t, — Ty, 2,). It is evident that the
load-balancing messages have an average interarrival
time T,, and average message length Tpy + Tiyy. Let Ay
denote the normal message generation rate from all
nodes and T,,,, denote the average message length, the
offered load to the network from normal messages is thus
Pmesg =)‘mexg Tmesg' Let Moy = 1/Taay, Tpar = Toa + T,
the offered load from the load-balancing activity to the
network is thus Pbal = ’\bal Tbal'

For simplicity, we assume that generation of load-
balancing messages still follows a Poisson process and
the length of each message follows an exponential
distribution. Since it is very difficult to model the
CSMA/CD behavior with multiple classes of messages,
we extend the well-known result in Lam (1980) to
approximate the average message delay with two classes
of messages, based on an approach similar to the one in
Schaar et al. (1991). Knowing that the total network
utilization iS p = pmesg + Pbal = /\1 Tmesg + /\2 Tbalv we
have the average message length as T = (ppesg + Ppar)/
(Amesg + Apar), and the average message delay becomes
(Lam, 1980):

(2+ (4e +2)a+ 5a° +4e(2e — 1)a?

b= 21— p(1 + (2e + 1) a))

+ 1+ 2ea

_ ,—2ap -1 _
(1—e)2_/pj2€a _?a L@ T, (19)
2(1/(1 + p)e Pt — 14 e%2) 2

where a =7/T. Thus, the normal message delay is
Dypesg = D — T + T\nes and the contention time for the
load-balancing initiation message D — T and Ty, =
D—T+ Ty,

We solve P, and Ty, by a numerical, iterative method.
First, we calculate P, for a given Ty,. Then, based on the
derived distribution, we recalculate Ty, through calcu-
lating bandwidth utilized by load-balancing activities.
The above process iterates until stable results for both P,
and Ty, are obtained.

4. DISCUSSION

In this section, we present both analytical and simulation

THE COMPUTER JOURNAL,

Vor. 37, No.9, 1994

$202 I4dy 0z uo 1senb Aq 6//9€/6../6/.E/191e/|ulliod/woo dno-olwepeoe//:sdiy woij papeojumoq

ALL-SHARING LoAD BALANCING 787

results to evaluate performance of the ASLB scheme. We
compare performance of the ASLB scheme with a well-
known pair-sharing approach, called the Threshold
scheme, through the Ribyl implementation suggested in
Schaar et al. (1991). The Threshold scheme is a simple
yet efficient load balancing algorithm proposed for a
general distributed system (Eager et al., 1986a). Thresh-
old scheme in the CSMA/CD environment. The Ribyl
algorithm proposed in Schaar et al. (1991) is essentially a
server initiated Threshold scheme on CSMA/CD bus. It
has been shown in Schaar et al. (1991) that Ribyl per-
formed better in all conditions than the direct imple-
mentation of the Threshold algorithm (Eager et al.,
1986a). In the Ribyl, a node broadcasts the load-
balancing initiation message once it becomes idle, and
all other nodes with load greater than a threshold
value T contend to send a job to the initiator following

—&— T, =0.1, simulation —8— T paak

the CSMA/CD protocol. Once a node wins the
contention, it migrates its job(s) to the initiator, and all
other nodes withdraw from the contention once they
recognize that a successful job migration has been
completed.

In both analytical model and simulation, m = 20
nodes are connected through a CSMA/CD bus, which
has the bandwidth of B = 10 Mbps and the propagation
delay 7 = 0.0225 ms. The normal message size is assumed
to be exponentially distributed with mean T, =
0.8 ms. The length of a load message Tj,,s and load-
balancing initiation message T}, are assumed to be fixed
to the shortest allowable message length in a CSMA/CD
network: Tjppg = Tine = 0.057 ms. The sizes of jobs are
assumed to follow an exponential distribution with a
mean of 10000 bits, or the mean transmission time

T, = 1 ms, equivalently. Jobs arriving at each node

=0.01, simulation

—— T, =0.1, analytical —@— T .4 =0.01, analytical

Response Time
4

0.0 0.2 04 0.6 0.8 1.0

Message Delay
0.07

0.06
0.05 A
0.04 -

0.03 A

0.02

0.01 4

-

0.00 +——+———t—r—-T————1—
0.0 0.2 0.4 0.6 0.8 1.0

(b) pmosg =0'1

Response Time

0.0 0.2 0.4 06 08 1.0
(c) pmaﬁg =0.4 N
Message Delay
03
0.2
0.1
0.0 v T T T —T — v
0.0 0.2 0.4 06 0.8 1.0

() Prosg =0-4

FIGURE 4. Analytical and simulation results on average system response time and average normal message delay for different packing costs, system
loads and network loads.

Tue CoMPUTER JOURNAL, Vor.37, No.9, 1994

$202 I4dy 0Z uo 1senb Aq 6//9€/6../6/.¢ /8191 e/|ulliod/woo dno-ojwepeoe//:sdiy woij papeojumoq

788 Y. Hao,J.-C.S. Liuanp J. L. Kim

—— Tw=05/%
—4— Tw=0.7/%

—8— Tw=0.0/2x
—p—— Tw=0.1/A
—&8— Tw=03/%

Response Time

5
4
3-
2-.
14
0]] T Ll
0.0 0.2 0.4 0.6 0.8 1.0
(@) Tpack =0.01 A
Message Delay
0.04
0.03 4
0.02
0.01 1 ==
No Load-Balancing /
0.00 M T v T v T v T
0.0 0.2 0.4 0.6 0.8 1.0
(b) Tpa =0.01 A

—O— Tw=0.9/x

Response Time

5

44

34

2

1

0 T T T T T

0.0 0.2 0.4 0.6 0.8 1.0

(€) Tpas =0.1 %
Message Delay
0.06

0.05 1

0.04

0.0341

0.02 1

0.01 4

No Load-Balancing /

0.00 ———— —
0.0 0.2 0.4 0.6 0.8 1.0

(d) Ty =0.1 %

FIGURE S. The system performance under different initiation-waiting time T, and packing cost when the offered network load is 0.1.

follow a Poisson process with arrival rate A. Service times
of jobs are assumed to be exponentially distributed with
mean 1/ = 100ms. Execution of the FP algorithm in
ASLB is set at Tpp = 0.1 ms. We further normalize all
parameters with respect to job service time 1/, i.e.
7 =0.000225, T, =0.008, T,y =0.00057; T;, =
0.00057, Tjpp = 0.01 and Tgp = 0.001. Performance of
both ASLB and Ribyl schemes is evaluated for different
values of two system parameters: the network load
offered by normal communication messages, denoted as
Pmesg, and the processing time of packing a job before the
job is migrated, denoted as T,,,. The confidential
interval of the simulation is 95%.

The average system response time and the normal
message delay of ASLB obtained through both analy-
tical model and simulation are presented in Figure 4 with
respect to Varying Ppmesg, A and Tpue. The system response
time and average normal message delay obtained from

our model and from simulation closely match each other
under most conditions. It should be noted that the reason
for the ‘convex’ shape of the message delay curve is that
when the system load gets high enough, load-balancing
activities decline since the chance that nodes become idle
decreases and, therefore, the bandwidth used by load-
balancing activities reduces.

Comparing Figure 4(b) and 4(d), it should be noticed
that p,,, has a significant impact on the normal message
delay of ASLB, especially when the system load (\/p) is
in the range of 0.7-0.9, for which load-balancing activity
is frequent. To reduce the normal message delay, ASLB
can be slightly modified as follows. When a node
becomes idle, it will broadcast the load-balancing
initiation message after delaying a time period T, if no
new job nor load-balancing initiation message arrive in
the waiting period. By adjusting T, we can reduce the
frequency of load balancing activities. An analytical

THE COMPUTER JOURNAL,

Vor. 37, No.9, 1994

$202 I4dy 0Z uo 1senb Aq 6//9€/6../6/.¢ /8191 e/|ulliod/woo dno-ojwepeoe//:sdiy woij papeojumoq

ALL-SHARING LOAD BALANCING 789

—08— Tw=0.0/A
—— Tw=0.1/2
—8— Tw=03/A
Response Time
5

(@) Tpa =001 A

Message Delay
0.06

0.05

0.04 1

No Load-Balancing /
0.01 v T v T v T v T d
0.0 0.2 0.4 0.6 0.8 1.0

(b) Tpae =0.01 A

—— Tw=05/2
—b— Tw=0.7/%
-0 Tw=09/2

Response Time
5

Message Delay
0.2

0.14

. —
0.0 0.2 0.4 0.6 0.8 1.0
(@) Tpae =0.1 A

FIGURE 6. System performance on under different initiation-waiting time 7,, and packing cost when network offered load is 0.4.

model, which takes T, into account to derive the time
elapse of the independent job-execution phase is given in
Appendix D. The analytical results under different
waiting time T, are plotted in Figures 5 and 6, when
the offered network loads are pe;, = 0.1 and ppeee = 0.4,
respectively. The system response times of the M /M/1
and M /M /20 queueing systems are upper and lower
bounds for any load-balancing scheme. It can be seen
that the system response time of ASLB is close to that of
the M/M /20 queueing system when the system is not
extremely heavily loaded. When T,, < 1/2A, it has little
impact on the system response time; however, the normal
message delay decreases significantly. The normal
message delay improves little with further increase of
T,, and the system response time begins to deteriorate.
When T, = 1/2), a good trade-off between system
response time and the normal message delay can be
found in which the normal message delay is nearly as low

as the case with no load-balancing and the system
response time deteriorate only slightly.

The above observation can be explained as follows. As
it has been explained in Section 3, the average bandwidth
consumed by the load-balancing activities is
Tinl + (m - 1) Tloaa' + TFP + MTpack + Tcd

Top + Tha
When T, increases, T, increases and thus p,, may
reduce. Since M is determined by the load distribution at
the beginning of load-balancing decision phase, increas-
ing T, will inevitably increase the load difference
between nodes at the end of T, and thus will likely
increase M. Hence, when T, increases beyond a certain
value, further increase in T, will not reduce ps,; and the
normal message delay. It is also interesting to observe
from Figure 6 that when the system load is extremely
high (p is around 0.95) and the packing cost for job

Pbal =

THE COMPUTER JOURNAL,

Vor. 37, No.9, 1994

$202 I4dy 0Z uo 1senb Aq 6//9€/6../6/.¢ /8191 e/|ulliod/woo dno-ojwepeoe//:sdiy woij papeojumoq

790 Y. Hao,J.-C.S. Liuanp J. L. Kim

Response Time

4

—e—— ASLB, p__ =0
——— ASLB,
—&— ASLB, p,,_=0.4
——— Ribyl,

ASLB
1 T T T T
0.5 0.6 0.7 0.8 0.9 1.0
(a) Trask = 0.01 A
Response Time
4
3
Ribyl
2
h ASLB
L
1 v — — — —
0.5 0.6 0.7 0.8 0.9 1.0
A
(b) Toaex = 0.1

FIGURE 7. Performance comparison of the ASLB scheme and the
Ribyl scheme under different packing costs and network utilization.

migration is also high (T, = 0.1), the system response
time decreases with load-balancing frequency (i.e.
increase of T,). This indicates that when both the
system load and job migration cost are high, frequent
load-balancing does not necessarily improve the system
performance.

We now analyze the impact of the network load on the
system response time. In Figure 7, we compare the
simulated average system response time of both ASLB
and Ribyl schemes with varying Pmesg- It is shown that
the network load has little impact on the system response
time of ASLB scheme, given that the network is not
overloaded. The main reasons that the network load has
little effect on the system response time of ASLB are (1)
the job migration and load information collection are
done in a collision-free manner and (2) only the initiation
message needs to contend for the bus. The network load,
however, has larger impact on the system response
time of the Ribyl scheme since both job migration and

load-balancing initiation messages need to compete for
the bus.

The average system response time of the ASLB is
much shorter than that of the Ribyl scheme in most
cases. We believe that ASLB performs better than Ribyl
mainly because (1) the system load under ASLB is nearly
equally distributed after each load-balancing activity,
and (2) the chance that jobs are migrated more than once
is quite low in ASLB, as shown in Figure 8. A significant
number of jobs (around 70%) are executed locally, and
when jobs are migrated, most of them are migrated only
once.

Finally, we compare the performance of ASLB with
that of the Ribyl scheme when nodes have four different
job arrival rates:

1. Five nodes have low job arrival rate (A = 0.1) and the
remaining nodes have a high arrival rate (A = 0.9).

2. Reverse of case 1.

3. Ten nodes have job arrival rate A = 0.1 and the other
10 have A = 0.9.

4. Five nodes have job arrival rate A = 0.1, five nodes
have A = 0.4, five nodes have A = 0.7 and the other
five have A = 0.9.

Results on these four cases given in Figure 9 show that
the performance of ASLB is very stable and is much
better than that of Ribyl.

5. CONCLUSIONS

In this paper, we analyzed a dynamic load-balancing
scheme, ASLB, for a distributed system on the CSMA/
CD bus network. In ASLB, the workload is evenly
distributed throughout the system in a collision-free
manner in each load-balancing activity. The system
performance is significantly improved by the ASLB
under different computation and communication work-
loads. We can make a tradeoff between the system
response time and message delay through simple
adjustment of the load-balancing initiation condition.
A comprehensive transient analysis technique to capture
dynamic behaviors of the system under ASLB load-
balancing activities is presented. Our technique can also
be applied to other distributed algorithms, provided that
the initiating phase of the algorithm is not excessively
long, because we did not single out the behavior of the
initiator in the analysis. In ASLB, any node can trigger
the load balancing activity once it becomes idle. Note
that, however, we do not assume that the load balancing
initiator remains idle in the load balancing phase, since
jobs may arrive at any node during a load balancing
activity and jobs are migrated between all nodes.
Therefore, the initiator is not treated differently from
any other nodes, in terms of job arrivals, job distribution,
and job execution. The only possible difference in the
behavior of nodes is when the initiator is trying to initiate
a load balancing activity. At this period, a potential
initiator can only accept new jobs, but cannot have any

THE COMPUTER JOURNAL,

VoL. 37, No.9, 1994

$202 I4dy 0Z uo 1senb Aq 6//9€/6../6/.¢ /8191 e/|ulliod/woo dno-ojwepeoe//:sdiy woij papeojumoq

ALL-SHARING LOAD BALANCING 791

O =01

Fl x=0.4

0.8+

0.6

Probability

0.4

0.24

0.0 T Y | p— 1 d T T T
0 1 2 3 4
Job migration times

(@)

Bl A=0.7
2=0.9
1.0
0.8
RSN
= 0.6 4]
2
S T4
i 0.4+ 1)
g§% .
1| FEE -
41 V¥ <}
02 14
1 ¢
x':»:.;:, ':’
0.0 Al
0 1 2 3 4
Job migration times
(b)

FIGURE 8. The probability distribution of job migration frequency under ASLB for difference job packing costs when network utilization
Prmesg = 0.1: (8)Tpaer = 0.01 and (b) T, = 0.1.

jobs for execution (because it is idle). Since the relative
duration of (t;,1,) is much shorter than that of other
relevant events, the analysis error introduced by the
approximation that all nodes are identical is negligible,
as evidenced by our simulation results. For distributed
algorithms which have a long initiation time, it may be
important to consider the different behavior of an
initiator.

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers
for their constructive comments which led to substantial
improvement of this paper.

Response Time

K

O AsLB scheme
m Ribyl scheme

2+

14

NNV

NONNNNNNNNNY
ANNNNNNNNN

AONONONNNNNNN

._.
~
w
-

case

case 1:Job arrival rates in five nodes are 0.1; the others 0.9,
case 2: Job arrival rates in five nodes are 0.9; the others 0.1,
case 3: Job arnval rates in ten nodes are 0.1; the others 0.9,
case 4: Job arnval rates in five nodes are 0.1; five 0.4 five 0.7 five 0.9.

FIGURE 9. Performance comparison of ASLB and Ribyl schemes
when the job arrival rates are non-uniform in different nodes, and
Pmesg = 0.1, Tpger = 0.01.

REFERENCES

Baumgarter, K. M. and Wah, B. W. (1989) GAMMON: a
load balancing strategy for local computer systems with
multiaccess networks. IEEE Trans. Comput., C-38, 1098—
1109.

Bonomi, F. and Kumar, A. (1988) Adaptive optimal load
balancing in a heterogeneous multiserver system with a
central job scheduler. In Proc. 1988 IEEE Int. Conf. on
Distributed Computing Systems, pp. 500—508.

Casavant, T. J. and Kuhl, J. G. (1986) A formal model of
distributed decision making and its application to distributed
load balancing. In Proc. 1986 IEEE Int. Conf. on Parallel
Processing, pp. 232-239.

Chow, Y. C. (1982) Load balancing in distributed systems.
IEEE Trans. Software Eng., 8, 401-412.

Chow, Y. C. and Kohler, W. (1979) Models for dynamic load
balancing in a heterogeneous multiple processor system.
IEEE Trans. Comput., C-28, 334-361.

Cox, D. R. and Smith, W. L. (1961) Queues. Chapman & Hall,
London.

Eager, D. L., Lazowska, E. D. and Zahorjan, J. (1986a)
Adaptive load sharing in homogeneous distributed systems.
IEEE Trans. Software Eng., 12, 662-675.

Eager, D. L., Lazowska, E. D. and Zahorjan, J. (1986b) A
comparison of receiver-initiated and sender-initiated adap-
tive load sharing. Performance Evaluation, 6, 53—68.

Eager, D. L., Lazowska, E. D. and Zahorjan, J. (1988) The
limited performance benefits of migrating processes for load
sharing. Performance Evaluation Rev., 16(1), 63—72.

Ferrari, D. and Zhou, S. (1986) A load index for dynamic load
balancing. In Proc. ACM—IEEE Fall Joint Computer Conf.,
pp. 684-690.

Gross, D. and Harris, C. M. (1985) Fundamentals of Queueing
Theory, 2nd edn. John Wiley, New York.

Hac, A. (1989) Load balancing in distributed systems: a
summary. Performance Evaluation Rev., 6(2-4), 17-19.

Intel (1990) Microcommunications. Intel Corporation, Santa
Clara, USA.

Kim, J. L., Liu, J. C. and Hao, Y. (1992) An all sharing load
balancing protocol in distributed systems based on CSMA/
CD networks. In Proc. 12th IEEE Int. Conf. on Distributed
Computing Systems, pp. 82—89.

Kremien, O. and Kramer, J. (1992) Methodological analysis of

Tue CoMpUuTER JQURNAL,

Vau. 37, Nao.9, 1994

$202 I4dy 0z uo 1senb Aq 6//9€/6../6/.E/191e/|ulliod/woo dno-olwepeoe//:sdiy woij papeojumoq

792 Y. Hao,J.-C.S. Liuanp J. L. KiM

adaptive load sharing algorithms. JEEE Trans. Parallel and
Distributed Systems, 3, 747-760.

Kunz, K. (1991) The influence of different work load
descriptions on a heuristic load balancing scheme. IEEE
Trans. Software Eng., 17, 725-730.

Kurose, J. F. and Simha, R. (1988) A distributed algorithm for
optimal static load balancing in distributed computer
systems. In Proc. INFOCOM'86.

Lam, S. S. (1980) A carrier sense multiple access protocols for
local networks. Comp. Networks, 21, 21-32.

Lin, F. C. H. and Keller, R. M. (1986) Gradient method: a
demand-driven load balancing scheme. In Proc. 1986 IEEE
Int. Conf. on Distributed Computing Systems, pp. 329-336.

Little, J. D. C. (1961) A proof for the queueing formula / = Aw.
Operations Res., 9, 383-387.

Livny, M. and Melman, M. (1982) Load balancing in
homogeneous broadcast distributed systems. In Proc. 1982
ACM Computer Network Performance Symp., pp. 47-55,
Publisher?

Ni, L. M. Hwang, K. (1981) Optimal load balancing strategies
for a multiple processor systems. In Proc. IEEE 10th Int.
Conf. Parallel Processing, pp. 352-357.

Preparata, F. P., Metze, G. and Chien, R. T. (1967) On the
connection assignment problem of diagnosable systems.
IEEE Trans. Electron. Comput., 16, 848—854.

Pulidas, S., Towsley, D. and Stankovic, J. A. (1988) Imbedding
gradient estimators in load balancing algorithms. In Proc.
1988 IEEE Int. Conf. on Distributed Computing Systems, pp.
482-490.

Robert, E. (1993) Fast results from the fast ethernet alliance.
LAN Times, 10, no. 25.

Rommel, C. G. (1991) The probability of load balancing
success in a homogeneous network. IEEE Trans. Software
Eng., 17, 922-933.

Schaar, M., Efe, K., Delcambre, L. and Bhuyan, L. N. (1991)
Load balancing with network cooperation. Proc. Int. Conf.
on Distributed Computing Systems, pp. 000—000, Publisher.

Schwartz, M. (1987) Telecommunication Networks: Protocols,
Modeling and Analysis. Addison-Wesley, Reading, MA.

Shivaratri, N. G. and Krueger, P. (1990) Two adaptive policies
for global scheduling algorithms. In Proc. 10th Int. IEEE
Conf. on Distributed Computing Systems, pp. 502-509.

Stankovic, J. A. (1985) An application of Bayesian decision
theory to decentralized control of job scheduling. /EEE
Trans. Comput., C-34, 117-130.

Tantawi, A. N. and Towsley, D. (1985) Optimal static load
balancing in distributed computer systems. J. ACM, 32, 445-
465.

Wang, Y. T. and Morris, R. J. T. (1985) Load sharing in
distributed systems. IEEE Trans. Comput., C-34, 204-217.
Zhou, S. (1988) A trace-driven simulation study of dynamic
load balancing. IEEE Trans. Software Eng., 14, 1327-1341.

APPENDIX A. LIST OF SYMBOLS

t, The time instant at which a load-balancing
activity just completes. It is the beginning
of a job execution phase.

ty The time instant at which one of the node
in the system becomes idle. It is the begin-
ning of the load-balancing decision phase.

t, The time instant at which job migration
begins.
ty Job migration completes and another cycle

of load-balancing activity begins. It is
equivalent to time instant ¢,.

Tw The time elapse of independent job exe-
cution phase.

Ty The time elapse of load-balancing decision
phase.

T, The time elapse of job migration phase.
Ty The transmission time of the load-
balancing initiation message.

T, The time elapse between the instant at

which a node becomes idle and the time it
begins to broadcast the load-balancing
initiation message.

pa(2) The probability that » jobs are in a node at
a time instant within the independent job
execution phase.

q,(1) The probability that n jobs are in a node at
a time instant within load-balancing deci-
sion phase.

wy(?) The probability that »n jobs are in a node
within the job migration phase.

P, The steady state probability that £ jobs are

in the system.

Fr(1),fr,, The probability distribution and density
function of the time elapse from the
beginning of a cycle to the time instant at
which one of the node becomes idle.

Tioad The length of the message carrying load
message (in time unit).

Toesg The length of normal communication
message (in time unit).

Trp The time for executing algorithm FP.

Tiop The length of message carrying a migrating
job.

Tpack The processing time of a node for packing
a job.

Tt The length of load-balancing initiation

message (in time unit).

T The propagation delay of the bus.

A The interarrival rate of jobs.

n The service rate of a node.

Amesg The generation rate of normal communi-
cation messages.

Prmesg The offered load of the normal communi-
cation message to the network.

L Average number of jobs in a node.

R Average system response time.

D Average delay of normal messages.

APPENDIX B. PSEUDO-CODE OF THE ASLB
PROTOCOL

BEGIN
if(JOB_COMPLETION = TRUE)
Dequeue(Job_queue, job); |* Get the another job in the
job queue*/
if((job=NULL) and (NODE_STATE=
NORMAL)) [* No job in job queue*/
Set(NODE _STATE, INITIATION),
message.id= LB_INITIATION,

THE COMPUTER JOURNAL,

Vor. 37, No.9, 1994

$202 I4dy 0z uo 1senb Aq 6//9€/6../6/.E/191e/|ulliod/woo dno-olwepeoe//:sdiy woij papeojumoq

ALL-SHARING LoAD BALANCING 793

message.source =my_address;

message.destination = all nodes,

Send(message), [* Initiate load-balancing by sending
the initiation message to its communication
processor*|

else
Execute(job);
if(JOB_ARRIVE = TRUE)
Queue(job, Job_queue);
if((NODE_STATE=INITIATION) and
(Abort(message) = SUCCESS))
Set(NODE_STATE, NORMAL);
if(Receive(message) = TRUE)
case message.id=LB_INITIATION:

if(NODE STATE=NORMAL)
Set(NODE_STATE, INITIATION),
if(my_address = (message.source +1) mod N)

[*This node is the organizer*|/
Set_Timer(2r + T r),
Abort(message),
Backup (message, out_message_queue);
[*Purge the out-message queue*|
TBL (message.source) =0,
break;
case message.id= LOAD:

TBL (message.source) = message.load;

if(Status(TBL)=FULL) |*All node broadcast
their loads*/

FP; |* Find load balancing partner*/
Pop(partner(partner.source, partner.destination,
job.number));
if(partner.source =my_address)
message.id=JOB;
message.source = partner.source,
message.destination = partner.destination,
Dequeue(Job_queue, job, job.number);
message.content = job;
Send(message), [* Send the job to
communication processor for migration*/
else
if(my_address = (message.source + 1) mod N)
message.id= LOAD;
message.source = my_address,
message.destination = all_nodes,
message.content =my_load;
Send(message);
break,
case message.id=JOB:
if(message.destination=my_address)

Jjob=message.content;

Enqueue(job);

if(Pop(partner(partner.source, partner.destination,
job.number))=NULL)

/* No job to be migrated*|
Set(NODE _STATE, NORMAL);

else
if(partner.source =my_address)

message.id=JOB;

message.source = partner.source;
message.destination = partner.destination,
Dequeue(Job_queue, job, partner.number);
message.content = job;
Send(message);
end case;
if(EXPIRE(Timer))
message.id= LOAD;,
message.content =my_load;
message.destination = all_nodes;
Send(message),
END

APPENDIX C. DERIVATION OF f,(1) AND
Pa(t1k)

Derivation of /(T = t|k),k #0

The derivation of f(T = t|k) is briefly described here.
More comprehensive discussion can be found in Cox and
Smith (1961).

By applying z-transform to both sides of equations (5),
we have

— z 22
ap((;,z):u A+ w2227 b, iy~ pot), (20)

z

where P(z,t) is the z-transform of p,(¢). Then we apply
the Laplace transform to both sides of equation (20),
noting that P(z,t)/0t = sP(z,s) — P(z,0) and P(z,0) =
z* initially, and we get

_ 22— (1=2)(p=22)(21/s)
P(z,5) = Mz —z))(z3 — 2) ’

(21)

where P(z,s) is the Laplace transform of P(z,¢) and

/\+,U+S-\/(/\+M+S)2—4)\p,

2]
2\ (22)
A p+s+ \/)\+,u+S)2—4/\,u
2= 22
Thus,
2
pols) = P(0,5) = 2
sA+p+s+ \/(A+u+s)2 —4Xp)
(23)

Since £{pg(1)} = spo(s) — po(0) = spo(s), after applying
the reverse Laplace transform, we get,

(&Y e 2/

t

po(t) = (24)

That is, we get f7(¢| k), which is the same as p(z).

Derivation of p,(t| k), t € [1,,13)

In this analysis, we use p,(f) t € [0,¢, — t,) to represent
pa(t|k), t € [t,,1,) for notational convenience. Since a
node in the independent job-execution phase can be
modeled as an M /M /1 queuing system, the differential-

THeE COMPUTER JOURNAL,

Vor. 37, No.9, 1994

$202 I4dy 0z uo 1senb Aq 6//9€/6../6/.E/191e/|ulliod/woo dno-olwepeoe//:sdiy woij papeojumoq

794 Y. Hao,J.-C.S. Liuanp J. L. Kim

difference equations governing system states are

{pé(t) = —Apo(t) + upi (1)
Pa(t) = =X+) pu(t) + APni () + 1Ppii (1) (n>0)
(25)
By applying the z-transform to both sides of equations
(25), we get
OP(z,t) 11—z

a1 — (1= 22) P(z,0) = ppo(1)], (26)

where P(z,t) is the z transform of p,(¢). By applying the
Laplace transform to equation (26), we get

21— (1 = 2)pols) (27)

P(z,s5) = ,
(2,5) A+ p+5)z—p— Az?

where P(z,s) is the Laplace transform of P(z,t).
Since the denominator has two zeros in equation (22),
the equation can thus be rewritten as

2 — u(1 = 2) po(s)
ANz=z)(z2—2) 28)

From Rouché’s theorem (Gross and Harris, 1985), it is
known that z; must also be a zero of the nominators, that
is zf*' — u(1 — z)po(s) =0, or equivalently, py(s) =
2 /u(1 — z,). Using the properties z; +z; = A+ u+
s/, and z,z, = p/)\, we can rewrite equation (28) as:

P(z,s) =

k-1 k

P(z,s) = (zF+ 228+ 4 2

A\z;
o0 z i z{‘“ 00 z i
* Z(Zz)+/\22(1 - 21)2<22)- (29)
Since
2{P(0} = pals) 2",
n=0

so the coefficient of z" is p,(s), i.e.

1 { 1 /A (/N

Pals) = 5 | ot + T T
by Zzn k+1 Zzn k+1 22n k+1

RO S

Since
s+ /st —A ut - _(A)i/z o
SEVSTZRRY @ li(2) oo Y,
we get
~ (k—n)/2
palt] k) = " Omt [(ﬁ) L 4 (2/2u8)
(k=n+1)/2
';) Lyki1(24/Apt)
AN Y S w2
+<1__> (_) e)\ut)},
K) \H 1=n+Zk+z(>‘>

(31)

where 0 < 1 < t,. Recall that we use p, (1) (0 <t < ¢,) to
substitute for p,(z| k) (¢, < t < t,), we get equation (8) in
Section 3.

APPENDIX D. DERIVATION OF f7(1)
CONSIDERING WAITING
TIME T,

Since a node will not initiate load-balancing immediately
after it becomes idle, we need to modify derivation of
fr(t|k), where k = n; or n; + 1 following the notation in
Section 3. Note that when a node becomes idle, it has to
wait for a period of T, before it can broadcast a load-
balancing initiation message. The probability that no
new job arrives during the time period T, is 1 — e,
Thus, the density function of T is modified as

fr(tlk) = f8(t[k)(1 = Ae™T), (32)

where f7"8(¢| k) is the density function of T derived in
Section 3. Therefore, we can derive f(z|k) by first
deriving f7 % (| k) using the method in Section 3 and then
simply plugging it into equation (32).

THE COMPUTER JOURNAL,

Vor. 37, No.9, 1994

$202 I4dy 0z uo 1senb Aq 6//9€/6../6/.E/191e/|ulliod/woo dno-olwepeoe//:sdiy woij papeojumoq

