824 Book REVIEWS

examples. The base of the formalism is a composition of
data models with timed and coloured Petri nets, which
are well known as modelling tools today. So, one should
not be afraid of the subtitle. The author states: ‘The
chosen combination of formalisms is useful’. I personally
share his opinion. Moreover there is not any better
reference for such a statement, than to use an operational
tool based on this formalism. Unfortunately, this tool is
not described and a demonstration version is not
attached, so it cannot be a subject of this review.

We find in this book models of transport systems,
models of assembling processes and many others. A
coherent and compact presentation makes this book a
good academic manual. Its value is due to the many
exercises attached to the end of each part. A glossary,
enclosed at the end of this book, helps with the first
reading and self-study. This glossary includes interpreta-
tion of new concepts.

The educational advantages make the proposed
formalism accessible not only for students, but also
for engineers who want to intensify their knowledge
about information systems engineering and understand
the theoretical background of new system modelling
methods. Although it is a difficult book, I recommend
it to this sort of reader.

R. SoBczak
TU, Gdansk, Poland

KATHY SPURR, PAUL LAYZELL, LESLIE JENNISON AND NEIL
RICHARDS (eds)

Business Objects: Software Solutions. John Wiley. 1994.
ISBN 0-471-95187-0. £29.95. 233 pp. hardbound.

Object-oriented (OO) programming is characterized by
(1) multi-function routines that retain state data between
invocations; (ii) all data being the state data of such
routines, so that an ‘object’ is effectively a (perhaps
complex) variable, along with such a routine, often
globally accessible; and (iii) asymmetry of CALLs, which
are sent, as ‘messages’, to one of their parameter objects.
Other parameters are passed as parameters proper and
may themselves then be ‘sent a message’ by the invoked
‘method’, i.e. the function named in the original message
and being ‘the responsibility of* the receiving object. The
origins of the approach lie in simulation and it serves
very well for the simulation of (actual or conceivable)
hardware devices, e.g. to implement the virtual printers
used in spooling systems, or windows and other
graphical interface components. For general purpose
programming, however, it presents serious problems:
processing two complex objects together is peculiarly
difficult; automatic optimisation is almost impossible
because the CALL has to be implemented ‘in’ the object
to which the message is sent (no matter where it might
be on a distributed network—in effect, OO systems are

data access dependent); and, as we would expect of a
simulation or of any system with a lot of global data and
processing, verification after any change is an exceed-
ingly complex task.

While the programmers struggle with these (probably
insuperable) problems of their latest fad, its principles
are being applied at earlier stages in the software
development lifecycle: witness this latest (fifth) publica-
tion in the series of BCS CASE group seminar
proceedings, whose price, incidentally, seems to be
inflating at about 10% per annum. If you are looking
for a much-needed, hard, critical—indeed radical—
appraisal of OO analysis: look elsewhere.

The selling point of OO systems is reuse, although we
still spot, here and there, the shadows of dubious claims
of improved quality and productivity. In an interesting
paper on Hewlett Packard’s ‘Fusion’ method, Howard
Ricketts recommends ‘defer[ring] the assignment of
responsibilities’, i.e. enforcing asymmetry on CALLs,
‘as late as possible’. (Perhaps sine die would be best.)
Fusion also delays ‘establishing inheritance’, i.e. copying
methods from one sort of object to another, ‘until well
into design’. This is excellent: let us always postpone
complexity. But it is hardly OO.

Ricketts’ paper is one of four discussing methods
and tools: all informative, but—sorry to be so
sceptical—do we want OO analysis at all? In the sec-
tion on Architectures for Reuse, Stuart Frost tells us
that ‘[a] rapid convergence on object technology is
occurring . . . We will not be able to take advantage of
the latest computing technology . . . unless our soft-
ware uses an [OO] architecture’. It may not be that
bad: Tim Boreham’s paper, ‘Re-use in OO Analysis’,
is quite an elegant exercise in data analysis; but it
could be rephrased entirely in terms of old-fashioned
entity analysis. Perhaps we could get by if we treated
‘OO0’ merely as the latest general adjective of appro-
bation. Only such a semantic shift could justify the
wild optimism of the two papers on ‘Managing
the Transition’.

The editors have, wisely, decided to include some
explanatory front matter. Unfortunately, the tutorial
on OO analysis is error-ridden (even ignoring the
macabre J Smith of 10 Downing Street); and the preface
and introduction are ill-considered. Is it true that the
‘approaches [that] separated data from procedure
suffered from an inability to deal with . . . change”?
What then of data independence? Is ‘one order
processing system . . . much like another’? Even if the
one is for pre-invoicing and the other for post-invoicing?
Is analysis merely ‘the process of obtaining and clarifying
our understanding of the problem’? Whither the
functional specification of our solution? Is ‘[t]he concept
of an Object . . . intuitive’? If so, why did we not intuit
it long ago? (Actually it is very like Chen’s concept of
an entity, and almost as limpid.)

Amazingly, the editors compare the OO approach
with the old ‘craft culture’, which they say is ‘reaching

THE COMPUTER JOURNAL,

VoL. 37, No.9, 1994

$20z I4dy 01 uo 1senb Aq +26/9€/428/6///e191e/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Book REVIEWS 825

the end of its days’. But presumably it is still a good
enough beast to be beaten with the very latest stick. The
dear old craft culture surely now works only in
reviewing. We just pick up the books on the latest
fashion, shake our hoary heads and utter the words
our nannies taught us: you’re getting over-excited,
there’ll be tears before the day’s out.

ADRIAN LARNER
de Montfort University

WILHELM SCHAFER, RUBEN PRIETO-DiAz AND MaAsao
MATSUMOTO

Software Reusability. Ellis Horwood. 1994. ISBN 0-13-
063918-4. £29.95. 160 pp. hardbound.

This is the book, but not exactly the proceedings, of the
st International Workshop on Software Reusability, held
in Dortmund in 1991. ‘Instead of just publishing the
accepted . . . papers, the editors decided to try to
produce a more coherent result . . . [to] present the major
stream[s] of discussions and . . . [to] cover particular
aspect[s] . . . in more technical depth or give clarifying
examples . . . [T]his . . . produced a[n] . . . exhaustive
coverage of . . . research in software reusability’.

There are six chapters (numbers of references in
parentheses): An historical overview, with a convenient
research framework (39); domain analysis methods,
of which eight are described, compared, contrasted,
and evaluated (36); managerial and organizational
issues, with a brief survey of international practice and
less brief consideration of many issues (66); formal
methods, with three formalisms described (62); tools
and environments, with three specific environments
described (41); and empirical studies—a brief frame-
work proposal (11).

Most welcome, perhaps because unexpected, is the
chapter on formal methods. What, after all, are more
reused than the standard solutions and methods of logic
and mathematics? ‘[R]Jeuse provides the economic
foundation for the use of formal methods; the iterated
use of knowledge amortizes the higher development costs
raised by its formal description’.

‘This book’, says the blurb, ‘will be appropriate for
researchers, postgraduates . . .” And so it will. If you
are researching in software reuse, this is the place to start.
‘... final year undergraduates in software engineering
and computer science’. Well, perhaps just a teeny bit
turgid for some of them. But add to that list of readers:
the purveyors of facile arguments that the latest silver
bullet will deliver reuse (I name no names). Reusability is
not merely, not even principally, ‘of components in
composite structures’: it is ‘of resources in performing a
task’; indeed ‘of everything associated with a software
project including knowledge’. And the ‘managerial,
economic, social, cultural, and legal . . . problems are

as important [as], and more difficult to solve than, the
technical problems’.

Expensive for a slim volume? But iterated reference to
it will amortize the acquisition cost.

ADRIAN LARNER
de Montfort University

ALAN SOUTHERTON AND EDpWIN C. PERKINS, JR

The UNIX and X Command Compendium: A Dictionary
for High-Level Computing. John Wiley. 1994; ISBN 0-471-
30982-5. £17.95, 640 pp. softbound.

The format of this book is very simple. It contains a list
of over 2000 UNIX commands. Each entry displays
the command, a short paragraph describing what it
does, relevant keywords (which are cross-referenced in
the index at the end of the book), a list of files which
the command uses and a ‘see also’ list of related
commands. For each command, indications are given
as to which UNIX shells it can be used with (ksh, csh,
sh, etc.), which versions of UNIX support it (BSD,
SVR4, SCO, AIX, SunOS, etc.) and which type of
user would typically need it (system administrator, end
user, shell script writer, or experienced UNIX user). The
sorts of commands listed are not just ‘simple’ commands
(such as date), but also moderately complex pipes and
other commands understood by a shell. These are
presented as examples of those commands, such as

nroff -Tepson book.nr

where actual options and arguments are included,
instead of the perhaps more common

nroff -T printer filename

I found many useful commands in the book with which I
was unfamiliar; for instance the use of dirs, pushd and
popd for manipulating a stack of directories. This is a
neat feature of several shells which makes it easy to
memorise directories you have visited and need to cd
to again later. Unfortunately there are omissions and
(a very few) errors. I found no mention of my favourite
newsreaders (nn and trn)—the one which is discussed
is news, a relatively primitive newsreader. The entry
for mesg, though correct for most systems was wrong
for mine.

At the end of the book are appendices serving as quick
reference for the Vi and Emacs editors and shell special
characters, plus the keyword index.

A most unusual book. I found it difficult to use as a
reference work, but I thoroughly enjoyed browsing
through it. The most useful sections of the book were
the appendices. Although you normally use your
favourite editor and shell, sometimes you need to use
others (when presented with a script written for another

THE COMPUTER JOURNAL,

Vor. 37, No.9, 1994

$20z I4dy 01 uo 1senb Aq +26/9€/428/6///e191e/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

