
Combining Static and Dynamic Modelling
Methods: A Comparison of Four Methods

R. J. WlERINGA

Faculty of Mathematics and Computer Science, Free University, De Boelelaan 1081a, 1081HV
Amsterdam, The Netherlands

A conceptual model of a system is an explicit description of the behaviour required of the system.
Methods for conceptual modelling include entity-relationship (ER) modelling, data flow modelling,
Jackson System Development (JSD) and several object-oriented analysis methods. Given the current
diversity of modelling methods, it is important for teaching as well as using these methods to know what
the relationships between them is and to be able to indicate what the (im)possibilities of integrating
different methods are. This paper compares three classical modelling methods (ER, data flow, JSD) on
their possibilities for integration and combination. It is shown that there is a common core of these
methods, which centres around the concept of system transaction and that unifies the static view of a
system taken by ER modelling, with the dynamic view taken by JSD and the functional view taken by
data flow modelling. Several object-oriented analysis methods integrate these three views. This paper
illustrates how this is done in the analysis stage of Object Modelling Technique. Finally, it is shown that
the transaction decomposition table can be used as a pivot around which to combine different methods.
The results of this paper can be used in teaching to explain the relationships and differences between the
methods analysed here, and in system development practice to ease the transition from structured to
object-oriented methods.

Received October 15, 1994, accepted November 16, 1994

1. INTRODUCTION
In recent years, there has been a rising interest in the
possibility to combine different conceptual modelling
methods. Historically, the first combination is that of
entity-relationship (ER) modelling and data flow (DF)
modelling in structured analysis (Yourdon, 1989).
Recently, object-oriented analysis methods such as
Object Modelling Technique (OMT) (Rumbaugh et al.,
1991), the method of Shlaer and Mellor (1992) and
Fusion (Coleman et al., 1994) have arisen, that all adopt
extensions of the ER modelling method and combine it
with DF models, state machine models or with pre-
postcondition style specifications. In addition, there has
been a lot of interest in the possibility to integrate object-
oriented modelling with Structured Analysis (Seidewitz
and Stark, 1987; Alabiso, 1988;Bailin, 1989; Ward; 1989,
Wieringa, 1991b). The possibility to combine Jackson
System Development (JSD) with an object-oriented
approach has also roused interest (Birchenough and
Cameron, 1989) The possibility to combine JSD
modelling with ER modelling is briefly discussed by
Sutcliffe (1988), but is not studied there in detail.

These attempts at integration can be taken one step
further by showing that there is an underlying idea of
these different methods, that can be used as a guideline,
for combining different methods. It is the aim of this
paper to show that there is such an underlying idea, that
can be represented by something called the transaction
decomposition table. This table allows us to represent the
connection between the static and dynamic system
structure in a simple way and provides a useful entry

point to the analysis of different methods to see whether
and where they can be combined.

In addition to allowing us to see how different methods
can be integrated, showing what the underlying idea of
the different methods is has at least three other
advantages. As Hsia et al. (1993) remark in their recent
status report on requirements engineering, complex
system development probably requires several require-
ments engineering methods, and we therefore need a
precise understanding of the relations between different
methods and notations, so that it will be easier to do
consistency checking across and translations among
them. This paper presents a step along the road to such
an understanding.

Second, an improved understanding of the underlying
idea of different methods can help analysts to make the
transition from current structured analysis methods to
object-oriented methods. If we see what the common
core of structured and object-oriented methods is, we can
also see what the (real) differences are and therefore
which steps to take to move to object-oriented modelling.
A third advantage of isolating a common core of
conceptual modelling methods is that it allows teachers
to give a more principled exposition of these methods,
that goes beyond a dull enumeration in the style of
'method A does this, method B does that, and method C
does it differently again'. In fact, this is what motivated
the research reported in this paper (Wieringa, 1994b).

The paper focuses on the duality between static and
dynamic modelling of a system. The prime example of a
static modelling approach is ER modelling. The other

THE COMPUTER JOURNAL, V O L . 3 8 , No. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/17/353839 by guest on 11 April 2024

18 R. J. WlERINGA

three methods discussed here, DF modelling, JSD and
OMT, all include the dynamic aspects of the system in
one way or another. It is convenient to take JSD as our
starting point, because, as shown below, it contains the
common core of the different methods—the transaction
decomposition table—in its purest form. Section 2
therefore contains a very brief introduction to the
essentials of JSD and explains the meaning of the
transaction decomposition table. Section 3 shows how
to combine ER with JSD. This ER extension of JSD
allows us to show in Section 4 what the relationship
between JSD and DFD modelling is. In Section 5, it is
shown that OMT is a sophisticated version of a
combined JSD-ER-DF method. Throughout the argu-
ment, the transaction decomposition table plays a
pivotal role. Section 6 discusses how the transaction
decomposition table allows us to combine function
decomposition and object-oriented decomposition in a
simple way. Section 7 concludes the paper.

2. JSD

The major ideas behind JSD are the following (Jackson,
1983; Cameron, 1986; Michael Jackson Limited, 1986;
Sutcliffe, 1988):

• A system model must be partitioned into a model of
the universe of discourse (UoD) of the system and a
model of the functions of the system. In a database
system, the UoD is that part of the world about which
the system registers data. In a control system, the
UoD is that part of its environment whose behaviour
it registers and controls.

• The UoD is modelled as a network of communicating
entities. Each entity in the UoD has a life cycle.
Entities communicate through shared actions in their
life cycles.

• The system is modelled by a network of communicat-
ing processes too. The nodes in this network
correspond to UoD entities or to system functions.
Communication in the system network is more
complex than communication in the UoD network
and may be synchronous or asynchronous.

Jackson (1983) argues that the separation of a UoD
model from a function model gives a better system

- _ — — — •

register,
as.student

—'

enroll

— '

STUDENT

• •

LIFE

DO. *
SOMETHING

_ —

register

— •

— - _

•

sign-off

—~

mark

create,
course

•

allocate

COURSE

-~

SEMESTER.
ITER

SEMESTER

ENROLL.
ITER

*
enroll

— -_

— — • —

- — —

destroy,
course

--——-
create,

test

FIGURE 1. PSD for a simple STUDENT life cycle.

FIGURE 2. PSD for a simple COURSE life cycle.

structure than a design that would start from required
system functions, because the UoD model is more stable
than the list of required system functions. The modular
structure of the UoD model allows for an easier change
to system functions than a functionally designed system
does.

The idea to build a UoD model before building a
model of system functions comes from Jackson Struc-
tured Programming (JSP) (Jackson, 1975), where a
program structure is designed starting from a represen-
tation of the structure of its input and output files. In
JSD, a system structure is similarly designed by starting
from the structure of the system environment. The
environment in this case does not consist of files but of
the UoD of objects to be registered or controlled by the
system. In the next two subsections, the structure of the
UoD model and of the the model of system functions are
discussed. For brevity, in what follows, 'system model'
stands for 'system function model'.

2.1. The UoD model

For illustration, a very simple model of the UoD of a
student administration is given. In the UoD registered by
this administration, there are students who may enroll
for courses, register for tests, do a test they registered for
and receive a mark for their performance on a test. In
this UoD, we distinguish three entity types, STUDENT,
COURSE and TEST. Typical life cycles for instances of
these entities are shown in Figures 1-3. Life cycles are
represented by process structure diagrams (PSDs), which
are trees of which the root is labelled by the name of an
entity type. The leaves are labelled by the names of
actions in the life of entities of this type. Intermediary
nodes are labelled by a name for a part of the life of the
entity, plus possibly an asterisk (*) to represent iteration
or small circle (o) to represent choice. Unmarked boxes
represent left-to-right occurrence of processes or actions.

An important step in the JSD method is the allocation
of actions to entities. The result of this step can be
represented by an action allocation table such as shown in

THE COMPUTER JOURNAL, VOL.38, No. 1, 1995

turn

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/17/353839 by guest on 11 April 2024

C O M B I N I N G S T A T I C AND D Y N A M I C M O D E L L I N G M E T H O D S 19

__—-—-
create.

teat

TEST

• — — • ,

REGISTER.
ITERATION

*
register

— — — - .

— — — _ _

MARK.
ITERATION

*
mark

FIGURE 3. PSD for a simple TESTMe cycle.

Figure 4. The table is convenient to discover common
actions between different entities. A similar table is used
in SSADM as a heuristic to find life cycle diagrams
(called entity life histories there) (Eva, 1992, p. 187). The
action allocation can be refined by replacing each entry
by a C, U or D according to whether the entity is created,
updated or deleted by the action; this will be done at the
end of the next subsection for the student administration
example. Note that the resulting table would be very
similar to the entity-function matrix used in Information
Engineering and can be used to verify that each entity is
created and deleted (Martin, 1982). The action allocation
table is a rudimentary version of the transaction
decomposition table, discussed at the end of the next
subsection.

2.2. The system model

The UoD is represented in JSD as a network of
communicating entities. To get a system (function)
model, we imagine each JSD entity in the UoD to be
duplicated by a surrogate in the system. Each surrogate
has a life cycle that mirrors the life cycle of the UoD
entity that it represents. The UoD network is accordingly
reinterpreted as an initial version of the system network.
JSD does not represent the shared actions in the system
network, so the system network initially consists of a set
of disconnected nodes that represent surrogate types.
The instances of these types are surrogates, that
represent UoD entities.

JSD then proceeds by adding nodes to this system
network that represent function processes. These are
connected to nodes already in the network by special
communication links. Figure 5 shows a simple system
network containing two surrogate processes from our

|| COURSE
create.course
allocate
enroll
destroy.course
create.test
register
mark
register .as.student
sign.off

X
X
X
X
X

STUDENT

X

X
X
X
X

TEST

X
X
X

FIGURE 4. Action allocation table of the student administration
system.

example (STUDENT and TEST) and two function
processes. LIST-PARTICIPANTS should, upon
request, list all participants of test and
LIST-RESULTS should, upon request, produce a
report about the aggregate results of a student. This
network is explained in the following paragraphs.

JSD distinguishes three kinds of functions, input,
output and interactive functions. An input function
accepts data about the UoD and updates the appro-
priate system processes, an output function reports about
the state of the system and an interactive function is a
trigger that, when a certain state of the system occurs,
immediately updates the system. The two functions in
Figure 5 are output functions. Functions are processes,
just like entities in the UoD, and surrogates in the system
are processes, and their structure can be represented by
PSDs.

Function processes are represented by nodes in the
system network and can be connected to other nodes by
three types of connections. A data stream connection is
an unbounded first-in first-out buffer between two
processes, and can be used to realize asynchronous
communication. Data stream connections are repre-
sented by circles. For example, in Figure 5, the
LIST .PARTICIPANTS function removes data from a
data stream D that is filled by a TEST instance. To make
this work, we should extend the PSD for TEST with a
write statement that writes the relevant data to D every
time a student registers for a test. The input data stream
request J is filled by the environment of the system, and
the output data stream list.of Jest participants is emptied
by the environment. These external connections are not
shown. Note that there is one LIST -PARTICIPANTS
instance for each TEST.

A state vector connection is a 'window' that one
process may have on another, by which the observer can
see what the current state of the observed process is,
without disturbing the observed process. Communica-
tion through state vector connections is synchronous.
State vector connections are represented by diamonds in
the system network. For example, LIST-RESULTS and
LIST-PARTICIPANTS read student state vectors
through SV\ and SV2, respectively. The cardinalities
indicate that each of these functions can read the state
vectors of many students. In addition, one student state
vector can be read by many LIST -PARTICIPANTS
instances.

A controlled data stream connection is a communica-
tion in which one process, the observer, checks the state
of another, the observed process, and if the state satisfies
a certain condition, sends a message to the observed
process. All of this occurs as one, atomic communica-
tion. Controlled data streams are often used to connect
interactive functions to surrogate processes. For exam-
ple, an interactive function that monitors a stock level
could check the level each time stock is withdrawn and
send a message that stock must be reordered when this
condition occurs.

THE COMPUTER JOURNAL, V O L . 3 8 , No. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/17/353839 by guest on 11 April 2024

20 R. J. WlERINGA

FIGURE 5. A simple system network.

It is remarkable that the network of shared actions in
the surrogate processes of the system is not shown. After
all, it is important for the integrity of the system that
surrogates which suffer a common action are updated
together, so that there is no system state visible in which
one surrogate is updated and the other is not. For
example, we would not want the system to represent a
state in which a student has registered for a test but in
which the test does not have this student as a participant.
In other words, the common actions must be system
transactions that either occur entirely or do not occur at
all. We can make this visible by the transaction
decomposition table shown in Figure 6. The part of the
table that decomposes input transactions is a reinterpre-
tation of the action allocation table. As noted before, the
C, U and D entries can already be put in the action
allocation table. What makes this a transaction decom-
position table is that we interpret the rows as input
transactions, which correspond to UoD actions. The
table shows that input transactions may affect several
surrogates in the system simultaneously. The output
transactions never change the system state but read the
state of surrogates in the system.

The transaction decomposition table is the core of a
conceptual model of the system, because it shows
external system behaviour and relates it to our

1 || COURSE

Input

transactions

Output
transactions

create .courje
allocate
enroll
destroy.course
create.test
register
mark
register.as.student
sign.off
list participants
list-results

C
U
u
D
U

STUDENT

U

U
U
C
D
R

TEST \

C
U
U

R
R

conceptual model of the UoD. In Section 4, it is shown
that it also allows us to indicate the connection with
functional decomposition and DF modelling.

3. COMBINING JSD MODELS WITH ER
MODELS

In order to facilitate comparison of JSD with DF
modelling and with OMT in the next two sections, JSD
is extended with ER modelling in this section. The
intention is to extend the UoD model with an ER
diagram and to indicate consistency requirements on the
life cycle model of JSD and the ER model.

3.1. Entities

In JSD, an entity is an individual in the UoD that is
capable of performing or suffering actions and which can
be given a unique name (Jackson, 1983, page 66). There
is no such clear-cut definition of what an ER entity is. A
search of the literature reveals four different definitions
of what an ER entity is:

• An individual in the UoD (Chen, 1976, p. 10; Elmasri
and Navathe, 1989, p. 40).

• A class of individuals in the UoD (Batini et al., 1992,
p. 31).

• An individual in the system, i.e. a surrogate (Elmasri
and Navathe, 1989, p. 42).

• A class of individuals in the system (Storey and
Goldstein, 1988).

It is convenient to use the first entity concept in a
combined JSD-ER approach. This mentions the
essential characteristic that the entity must exist in the

MEMBER LOAN)
0. 1

FIGURE 6. Transaction decomposition table of the student
administration system.

DOCUMENT

FIGURE 7. A relationship that corresponds to a JSD entity type.

THE COMPUTER JOURNAL, VOL.38, No. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/17/353839 by guest on 11 April 2024

COMBINING STATIC AND DYNAMIC MODELLING METHODS 21

regiater(s, t)

FIGURE 8. UoD network showing the common actions between
STUDENT, COURSE and TEST instances. For clarity, the action

parameters are shown in the diagram.

UoD (not in the system) but drops the characteristic that
the entity must have something to do. This is a minor
extension that makes life easier and does not affect the
JSD part of the combined approach. It merely means
that in the action allocation table, we allow some
columns to be empty. (We do not worry how instances
of those entity types are created or deleted.)

3.2. Relationships

There are two ways a relationship type can appear in a
JSD model of the UoD—as a JSD entity type or as a
common action. Consider first the appearance of an ER
relationship type as a JSD entity type. In a model of a
library, we may have a relationship type LOAN between
MEMBER and DOCUMENT, whose instances repre-
sent the fact that a member borrowed a document
(Figure 7). The cardinality constraint 0, 1 written next to
LOAN means that for each existing document, there is at
most one existing LOAN instance. (Other conventions
can be used, but that is not the point here.) This
relationship type may appear in a JSD model of the same
UoD as a JSD entity type, for it has a life cycle with such
actions as borrow, extend, lose and return.

Next, consider the appearance of a relationship type
as a common action in the JSD model. Figure 8 shows
the UoD network of the JSD model of the student
administration UoD. The nodes in this network
represent typical instances of an entity type and the
edges in the diagram represent common actions. Each
of these common actions happens to be an action whose
occurrences we want to remember, and hence each of
them corresponds to a relationship type in the ER
model of the same UoD (Figure 9). The enroll action
becomes the ENROLLMENT relationship type, register
becomes TEST .REGISTRATION, mark becomes
TEST .RESULT and create.test becomes the many-
one relationship type course. We can make the following
observations about the correspondence between the
communication diagram and the ER diagram.

• The action parameters end up as relationship compo-
nents and attributes. For example, mark(s, t, m)
corresponds to an instance {s, t) of TESTJIESULT
with attribute mark, that has value m.

• If we would make an ER model without looking for
common actions to be modelled as relationship types,
we would probably have found a relationship type

TESTJIEGISTRATION with attribute result. This
attribute would have had to be initialized to null and
would receive a value only if the student receives a
mark for the test. Figure 9 splits this relationship into
two and so avoids the need for null values of the type
'will get a value, but has not received one yet.'

• The arrow labeled course is a many-one relationship
that assigns to each existing test t the course to which /
belongs. It corresponds to the create Jest(c, t) action
in Figure 8. This is an interesting observation, for
TEST is an entity type with dependent existence, i.e.
one whose instances are created by another entity in
the model (Jackson, 1983, page 168). We may
generalize this to the observation that an entity type
with a dependent existence will have an entity-valued
attribute that points to its creator in the model.
Entity-valued attributes are an extension of the
classical ER approach that is common in object-
oriented modelling. They are modelled as many-one
relationship types in the classical ER approach.

• The ER diagram adds cardinality constraints to the
model. For example, by translating the
createJest(c, t) action into a many—one relationship
(represented by the course arrow), we made explicit
the information that create Jest(c, i) can only be
performed once per test but can be performed many
times per course. This information was already
implicit in the PSDs. However, the TESTJIESULT
relationship adds cardinality information. We saw
earlier that in the PSDs one student can receive several
marks for one test. In the ER diagram, by contrast,
each TESTJIESULT instance is a relationship
between a student .s and a test t, and for each pair
{s, t) there is at most one such relationship in
TESTJIESULT.

In general, not all relationship types will correspond to
common actions. Relationships can stand for part-of
relations, element-of relations, contractual obligations,
permissions, authorizations, etc. These are not normally
viewed as common actions. Conversely, not all common
actions in the JSD model will correspond to relationship
types in the ER model. For example, if an elevator and
an elevator motor share the actions start and stop, this
need not give rise to two relationship types between the
ELEVATOR and the MOTOR entity types. If an action
occurrence need not be remembered, it will not
correspond to a relationship type in the ER model.

3.3. Modelling guidelines

The crucial part of JSD is the allocation of actions to
entities. In a combined JSD-ER approach, we can use
the following guidelines for this task:

• Allocate an action to an entity if it needs to change the
local state of that entity.

For example, the a change of address of a library
member should be allocated to the MEMBER entity

THE COMPUTER JOURNAL, V O L . 3 8 , No. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/17/353839 by guest on 11 April 2024

22 R. J. WlERINGA

type. If an action needs to change the state of several
entities, JSD recommends allocating it to all those entity
types. For example, if borrow would change the state of a
DOCUMENT, we should allocate it to DOCUMENT as
well as to LOAN.

This violates the object-oriented principle of encapsu-
lation in which an action must ajways be localised to one
entity. If we want to turn the combined JSD-ER method
into an object-oriented method, we should therefore
refine this principle. A simple way to do this is to replace
any action that must update the state of more than one
entity by a set of local actions, each of which is local to a
participating entities, together with the constraint that
these actions must occur synchronously:

• If an action needs to change the local state of more
than one entity, split it into as many local actions as
there are types of entities of which it needs to change
the state and add the constraint that these local
actions must occur synchronously.

For example, borrow should be split into, say,
docJborrow and membJborrow, local to DOCUMENT
and MEMBER, respectively, and the constraint should
be added that docJborrow and membJborrow always
occur synchronously. The two local actions only update
the local state of two entities but the synchronous
occurrence results in a simultaneous update of the state
of several objects. This solution is followed in several
algebraic and logical specification formalisms (Costa et
al, 1989; Ryan et al, 1991; Wieringa 1991a, 1993;
Wieringa and Feenstra, 1993; Hartmann et al., 1994). It
resembles specification of object interaction at the
programming language level by means of contracts
(Helm et al., 1990).

Another guideline of the JSD-ER approach is the
following:

• Allocate an action to an entity to enforce a sequencing
of actions in the life of this entity. Allocate it to several
entities to enforce sequencing by means of common
actions (or by means of a synchronisation constraint,
as outlined above).

An example of this is that a sequencing constraint on
register and mark in the life of a STUDENT is enforced
by means of sharing the actions register and mark with a
TEST life cycle.

Another useful heuristic for action allocation is the
following:

• Allocate an action to an entity in such a way that
queries about whether, or how often, the action
occurred in the life of an entity, can be answered.

The discussion of relationship types and common actions
in the previous section gives us the following heuristic:

• If a common action must be remembered, we model it
as a relationship type in the ER diagram. Action
parameters become relationship components or
attributes.

FIGURE 9. The ER version of the UoD network of Figure 8.

However, we can go further than this and use relation-
ship types to reduce the number of common actions in a
JSD model of the UoD. Consider the LOAN relationship
type again. All actions in the life of instances of this type
can be viewed as common actions between members and
documents, just as all attributes of LOAN can be viewed
as common attributes of members and documents. By
modelling LOAN as a relationship type in the ER model,
and hence as a JSD entity type in the JSD model of the
UoD, we are able to allocate these actions and attributes
to LOAN only. Doing this, we do not violate the JSD
rule that an action can only change the state vector of the
entity in whose life it occurs, because the LOAN actions
need not change the state vectors of members or
documents.

Moreover, the structure of the model is simplified by
doing this. The communication structure of a UoD
model can be quite dense, which leads to the so-called
ravioli problem noted in object-oriented modelling
(Taylor, 1990): each class specification is easily under-
standable in isolation, but the interaction between classes
is a dense bundle of communications that is hard to keep
track of. The modelling guideline we can extract from
this is the following:

• If this is possible without violating the rule that action
effects must be local, represent relationships as JSD
entity types in the JSD model of the UoD and allocate
common actions to this relationship type.

Following these guidelines should lead to a more
informative and simpler UoD model than JSD and ER
can provide separately. It tells us how to avoid null
values of the type 'will get a value in the future' and
allows us to simplify the communication structure of the
UoD network.

4. JSD MODELS AND DATA FLOW MODELS

Data flow modelling is part of structured analysis and
has the same general pedigree as JSD, i.e. structured
programming. However, JSD follows JSP by general-
ising JSP's data-orientation to what we may call UoD-
orientation, i.e. model a system after its environment. By

THE COMPUTER JOURNAL, VOL.38, No. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/17/353839 by guest on 11 April 2024

COMBINING STATIC AND DYNAMIC MODELLING METHODS 23

contrast, DF modelling follows ideas from general
systems theory such as that of close cohesion and loose
coupling and does not have JSD's UoD-orientation. The
major ideas behind DF modelling are the following
(DeMarco, 1978, Page-Jones, 1988; Yourdon, 1989):

• There is no separate UoD model. A DF model is
always a model of system behaviour, not of UoD
behaviour.

• The system is modelled as a hierarchy of subsystems,
which are either data transformations or data stores.
Each event is received by a data transformation and
may side-effect the system's data stores, and each
response is produced by a data transformation,
possibly using the contents of the system's data stores.

This means that a DF model should be compared to the
system network of JSD—both are networks that
represent the system—and not to the UoD model.
Nevertheless, there is a relationship between DF models
and the UoD model of JSD, and it is useful for an
understanding of the differences between the two
methods to compare these models. In the next subsec-
tion, this is done by transforming our combined JSD-
ER model of the student administration UoD into a DF
model of the administration itself.

4.1. Transforming a UoD model into a data flow model

A DF model represents a system as consisting of data
transformations and data stores. A data store is a passive
entity that remembers data written to it until the data is
destroyed. A data transformation is an active entity that
accepts input data and produces output data. The
interfaces between transformations and stores are data
flows, which can transport data items. A complex data
transformation can be specified by giving a DF model of
its internal processing. This results in a hierarchical
structure of which the top level represents the entire
system as a single data transformation and the leaves
represent primitive data transformations.

The basic idea of transforming a JSD-ER model into
a DF model is to transform all entity and relationship
types into data stores, and all actions into primitive data
transformations that update these stores. In more detail,
the guidelines for transformation are as follows.

1. Transform all ER entity types and relationship types
into data stores, changing their names into the plural.

2. Transform each action into a primitive data transfor-
mation, giving the transformation the same name as
the action.

3. Connect a transformation by an input data flow to the
external entity that generates the input. This external
entity may have to be added to the DF diagram. This
may very well be an entity already represented by a
data store (e.g. a STUDENT external entity corre-
sponds to the STUDENTS data store). Finding an
external entity that is the source of an input flow is an

addition to JSD. The data sent along the data flow
consists of the parameters of the action.

4. Connect the transformation by read/write data flows
to the data stores corresponding to each entity and
relationship in whose life it occurs. (There is more
than one such entity if the action is shared.) The read
is necessary to check whether the entities exist and to
fetch their current state in their life cycle. If it is
necessary to create or delete the entity or relationship,
or to update the state and possibly other attributes,
then the write access to the data store is utilized.

Figure 10 shows the result of applying these rules to the
student administration model. This transformation
procedure is the reverse of a procedure to transform a
DF model into an object-oriented model given elsewhere
(Wieringa, 1991b). In the next subsection, this DF
diagram is compared with the JSD-ER model of the
UoD.

4.2. The UoD network and DF models

4.2.1. UoD orientation versus system orientation

The JSD model represents the UoD, whereas the DF
model represents the system. This is visible by the fact
that the DF diagram contains data stores and by the fact
that some JSD entity types are duplicated as data stores
and external entities. Conversely, the DF model also
includes external entities, such as USER, that are not
JSD entity types because they do not exist in the UoD.
They are present in the DF model because they provide
the system with input or are the destination of output.

4.2.2. Behaviour representation

JSD is a method that is well-suited to model the behaviour
of reactive systems. These are systems whose response to
an input may depend upon (part of) their history of past
inputs. This is contrasted with functional systems, whose
response to an input only depends upon that input.
Reactive systems are more difficult to understand than
functional systems. A functional system can be repre-
sented by a mathematical function, a reactive system must
be represented by a more complex technique like finite
state diagrams. The concept of reactive system was
proposed by Manna and Pnueli (1992).

The PSDs used in JSD are perhaps not the best way to
represent the behaviour of reactive systems; other
techniques, such as state transition diagrams or state
charts (Harel, 1987; Harel, 1988) may be more well-
suited. However, DF models are certainly not well-suited
to model the behaviour of reactive systems. All
sequencing information is (intentionally) lost in the DF
model. The DF model only shows which actions occur
and how these interface with data stores and external
entities. McMenamin and Palmer recommend modelling
a system by a set of data transformations, one for each
system transaction, that have no direct interfaces with

THE COMPUTER JOURNAL, VOL.38 , No. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/17/353839 by guest on 11 April 2024

24 R. J. WlERINGA

COURSES TESTS STUDENTS

FIGURE 10. Transformation of the JSD model of the test registration UoD into a DF diagram. The input data flows carry the parameters of the
action to which they are connected. This should be documented in the data dictionary, but this is not shown here.

each other and only have interfaces with data stores and
external entities. This may be well-suited for systems that
are data-intensive and have a simple control structure,
but it is not sufficient for reactive systems.

The JSD model, by contrast, shows system behaviour
in its PSDs. Interfaces between PSDs are also repre-
sented, i.e. by common actions. Interfaces between PSDs
can be represented by a UoD network (e.g. Figure 8). In
Subsection 4.3, we briefly look at DF models extended
with control processes and compare those with JSD
models of the UoD.

4.2.3. Object-oriented versus data-oriented
modularization.

The JSD model and the DF diagram both represent
systems, and are concerned with finding modular system
boundaries. However, the kind of systems in both models
are very different and, consequently, the resulting
modularisations of the system are very different. The
DF diagram contains two kinds of subsystems: func-
tional primitives, which do computations but have no
memory that survives a single execution, and data stores,
which have a memory but do not do computation. This is
the state of the art in manual administrations, where
people do the processing but rely for their memory on
paper. It is also the state of the art in traditional file-
based administrative applications. Let us call this data-
oriented modularization.

This contrasts with the JSD approach, in which each
module (which is a PSD) in a UoD model corresponds
with a real-world object and has local state as well as
behaviour. Let us call this object-oriented modularization.

A consequence of this difference in modularization
criteria is that in a DF model whose data stores
correspond to objects, the state of an object is separated
from its actions. The state ends up as a record in a data
store and an action ends up as a software component
that accesses the data store.

Another consequence is that the state of an object, in
the words of Booch (1986), is globally accessible in the
DF diagram. Any data transformation that accesses a
data store, has access to all records in the data store. This
contrasts with the encapsulation of state and behaviour
in JSD. In a JSD model of the UoD, an action can only
access the local state of the object in whose life it occurs.
This also holds for common actions, which can only
access the states of the objects sharing them. Note
however that in the JSD implementation stage, state
vector separation is practiced and the state vectors of an
entity type may all end up in a single file.

4.2.4. Reactive systems and objects

A complex data transformation can be specified by a DF
diagram, which may itself contain data stores. These
data stores remember (part of) the past history of the
complex transformation, and may determine the

THE COMPUTER JOURNAL, VOL.38, No. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/17/353839 by guest on 11 April 2024

COMBINING STATIC AND DYNAMIC MODELLING METHODS 25

FIGURE 11. A simple PSD.

response of the transformation to input. Such a complex
transformation is therefore a reactive system. DF
modelling offers no guidelines for the specification of
such reactive complex transformations other than the
usual one of loose coupling with other transformations.
The modeler can therefore specify reactive transforma-
tions whose behaviour depends in an arbitrary complex
way on its past. This makes DF models unnecessarily
hard to understand.

By contrast, in JSD models of the UoD, all reactive
systems are either JSD entities or function processes, and
it is perfectly clear what these stand for. All subsystems
of the initial system network are reactive subsystems that
are surrogates for real-world objects. These are easy to
understand, or at least as hard or easy to understand, as
the UoD counterparts of the reactive systems are.

The only other kind of reactive system in a JSD model
is a function process and this too has a clear intuitive
semantics in terms of required system functions. In terms
of structured design guidelines, reactive systems that
represent real world entities or that are function
processes have the maximal degree of cohesion, i.e.
functional cohesion (Stephens et al., 1974; Page-Jones,
1988). According to these guidelines, JSD models thus
have the best kind of modularity.

receive c
trigger c

IDLE

receive a
trigger a

LOOPING receive 6
trigger 6

receive d
trigger d

FINISH

4.3. The UoD network and control-extended DF models

When DF models are used for the specification of
reactive systems, then they can be extended with control
processes (Ward and Mellor, 1985; Hatley and Pirbhai,
1987). In the method of Ward and Mellor, a control
process is specified by a Mealy-style state transition
diagram whose transitions are triggered by the occur-
rence of an input and can produce output. The input and
output of a control process are called event flows. A
control process can be connected through input or
output event flows with data transformations, other
control processes, and external entities.

It is possible to transform a PSD into a Ward-Mellor
DF model. We show how this can be done under the
assumption that all actions in the PSD are initiated by
the environment. It is easy to see how the DF diagram
should be adjusted if some actions are commands to an
external entity. Take the simple PSD of Figure 11.
According to the transformation guidelines give earlier,
we define a data store that holds the state of all instances
of E and define a primitive transformation for each
action of E that accesses the data store. We now extend
this with a control process whose state transition
diagram corresponds with the PSD of E (Figure 12).
By assumption, each JSD action is received by the
control process from the environment and in the DF
model it triggers the appropriate data transformation,
that updates the state vector in the data store. Common
actions of different PSDs can be represented in a DF
model by means of an action sent from one state
transition diagram to another, where each of the state
transition diagrams corresponds to a PSD.

This example illustrates that the extension DF models
with control processes improves the behaviour repre-
sentation of the DF model. However, whereas the
behaviour representation of control-extended DF
models is more comparable to the behaviour representa-
tion of JSD models, the other differences between the

ESTATE

[E.CON-\
\ TOOL j

FIGURE 12. DF diagram corresponding to the PSD of Figure 11.

THE COMPUTER JOURNAL, VOL.38, No. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/17/353839 by guest on 11 April 2024

26 R. J. WlERINGA

two kinds of models remain. For example, there is no
need at all to define a control process for each type of
UoD entity. There are no guidelines in DF modeling for
the modularization of the system in control processes
other than that interfaces should be minimal. Control-
extended DF models are still system-oriented and use a
data-oriented modularization. Moreover, control-
extended DF models can contain complex reactive
subsystems that do not correspond to UoD objects or
function processes.

4.4. The system network and DF models

We now turn to the comparison of the JSD system
network with a DF model of the system. There is a more
than superficial resemblance between the two kinds of
models. Both represent the system as a network of
communicating processes, that react to incoming events
by producing responses. There are some differences
between the models, but these are not as deep as the
differences between the UoD network and a DF model:

• Process connections in the system network are
specified in more detail, but not in a way incompa-
tible with DF models. For example, data streams
correspond to data stores (if they hold their data for
some time) or to data flows (if they pass their data
immediately).

• The nodes in a system network are types (whose
instances are surrogates or function processes), the
nodes in a DF diagram are individual transformations
or data stores. Consequently, a system network must
show the cardinality of process connections, a DF
model does not.

• A system network is not leveled, as a DF model is. All
processes in a system network are therefore 'primi-
tive'. However, they are not functional primitives but
reactive systems, because they have a local state.
Furthermore, they are specified by PSDs, whereas the
functional primitives of a DF model can be specified
by pseudocode, decision tables or by other techniques.

Underlying these syntactic differences between represen-
tation techniques, there is a commonality between the
two kinds of models, that can be brought out by using
the transaction decomposition table. Each row in this
table represents a system transaction. In DF modelling,
each transaction is viewed as consisting of an event which
occurs in the environment of the system, and of a
response of the system to this event. The event may be
generated by an external entity or by the passage of time
(a temporal event). In the method of event partitioning, a
DF model of a system is built by listing all possible events
to which the system must respond and then defining a
data transformation for each response that the system
must produce (McMenamin and Palmer, 1984; Your-
don, 1989; Goldsmith, 1993). In terms of the transaction
decomposition table, the event list is the list of
transactions in the second leftmost column, and the

response to an event is the processing done along a row
of the table.

For example, the createJest transaction shows a U
and a C in the transaction decomposition table of the
student administration (Figure 6) for COURSE and
TEST, respectively. Correspondingly, the DF model
shows that the createJest transformation accesses the
data stores COURSES and TESTS. This is the way the
DF model was constructed in the first place.

If we want to build a DF model using the method of
event partitioning, we would do well to build an event list
and an ER model of the system first. Using this, we can
fill in the transaction decomposition table by asking, for
each event, which entity or relationships are created,
updated or deleted. This gives a first hint at the
processing done by the system in response to the event
and hence at the DF model of the system. The
transaction decomposition model is thus a core element
in DF modelling.

On the other hand, it is also a core element in JSD,
because it shows the allocation of actions to entities. The
table therefore allows us to see what the underlying
connection between these two kinds of methods is. The
underlying connection is simply that in both kinds of
models, the system is represented as engaging in
transactions with its environment. In JSD, each transac-
tion is modelled as a set of one or more local events in the
life of system surrogates. In DF models, each transaction
is modelled as an event and a response, that may update
the data stores of the system. In both cases, this internal
processing can be represented in rough form by the
transaction decomposition table.

The transaction decomposition table also draws
attention to the underlying differences. The system
must respond to events that occur in its environment.
It is therefore natural to make a model of this
environment first, as done in JSD, and to model in
particular the objects in the environment to whose events
the system must respond, i.e. whose actions it must
register or control. This approach gives a more modular
structure to the system than the classical DF modelling
approach.

The transaction decomposition table draws attention
to yet another characteristic of DF modelling, that has
hot yet been pointed out. DF models represent interfaces
at a level of abstraction that is too low. They represent
dataflow interfaces, whereas the behaviour of the system
consists of transactions. A data flow between the system
and its environment is a set of input parameters or a set
of output parameters of an event or of a response. Data
flows therefore only make sense in the context of an event
or a response. These in turn only make sense in the
context of a system transaction. For example, the input
data flow document-fir cannot be interpreted if we do not
know if it occurs as parameter of a borrow, extend, return
or lose transaction. These transactions all have the same
data flow interface. To be meaningful, the system model
should show the transactions, not the data flows. The

THE COMPUTER JOURNAL, VOL.38, No. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/17/353839 by guest on 11 April 2024

COMBINING STATIC AND DYNAMIC MODELLING METHODS 27

data-orientation of DF models contrasts here with the
transaction-orientation of the transaction decomposition
table.

We can conclude from this discussion that DF models
add little clarity to a combined JSD-ER approach.
Nevertheless, current object-oriented modelling ap-
proaches like OMT and the method of Shlaer and
Mellor use DF models to represent system processing. In
the next subsection, it is analysed how this is done in
OMT.

5. OMT

In this section, only a brief analysis of OMT is given. A
more detailed analysis of OMT is given in a separate
paper (Wieringa et al, 1993). OMT represents a system
by using three models (Rumbaugh et al., 1991).

• The object model represents the class structure of the
system. The object model of OMT is an extension of
the classical ER model with taxonomic structures and
aggregation. It also shows object operations in
addition to object attributes.

• The dynamic model describes the behaviour and
interaction of objects. This is represented by using
state charts (Harel, 1987, 1988), which are an
extension of finite state machines with, among
others, the ability to represent substates, parallelism
and interaction between machines. For each class
whose instances have interesting behaviour, a state
chart is made.

• The functional model shows the meaning of the
operations of the objects by showing how values are
transformed. It is represented by a DF diagram. For
each operation of each object, there should be a DF
model that specifies what the operation does.

In the first two models, we can recognize an advanced
version of the combined JSD-ER approach. The PSDs
of JSD can be represented equivalently by finite state
automatons, which are simple versions of state charts.
The major addition of OMT to the JSD-ER approach is
the notion of inheritance in the object model. This
creates a complication for the dynamic model, because it
is not yet fully understood how life cycles are inherited.
Rumbaugh et al. (1991, p. I l l) suggest that a specialized
life cycle should be such that the generalized life cycle
from which it inherits, should be retrievable from it by
projection. They do however not state what the
projection of a state chart is. Recently, some approaches
to life cycle specialization have been proposed that make
the concept of life cycle projection more precise (Lopes
and Costa 1993; McGregor and Dyer, 1993; Saake et al.,
1994).

A methodological difference between OMT and the
combined JSD-ER approach is that OMT does not
distinguish a UoD model from a system model.
Following Jackson's argument, this makes the system
structure less modular and less maintainable. The

distinction between UoD objects and function processes
has been recognized elsewhere in the object-oriented
literature as that between semantic classes and applica-
tion classes (Monarchi and Puhr, 1992). It resembles the
distinction between entity objects and control objects
(Jacobson et al., 1992).

The functional model roughly corresponds to a DF
model that is made using the method of event
partitioning. If we assume that each transaction leads
to a number of system actions that are summarized in the
transaction decomposition table, the functional model
defines the meaning of the system actions shown in each
row of the table. However, the situation is more complex
here, because the columns now correspond to classes that
are not orthogonal. One class may be a subclass of
another. If a transaction has an entry under C in the
table, it will have entries under all subclasses of C
because these inherit the operation. (More optimal
representations of the table can be found, but this is
not the point here.) This complexity does not invalidate
the use of the transaction decomposition table as a
common core of different methods.

The presence of subclasses not only adds complexity to
the transaction decomposition table, but also to the
functional model. We can now find several data
transformations that deal, at different levels of the
inheritance structure, with the same transaction. The
situation is even more complex in OMT, because the
correspondence between the functional model and the
other two models allows considerable freedom. Just as in
the JSD-ER approach, external entities ('actors' in
OMT) correspond one-one to object classes. However,
in addition we have the following, more liberal corre-
spondence rules Rumbaugh et al. (1991, pp. 137-139):

• Data stores correspond many-one to object classes.
One object class may correspond to several data
stores, each of which holds certain attributes defined
for (instances) of the class.

• Data transformations correspond many-many to
actions. One data transformation may specify the
effect of several actions, and the effect of one action
may be specified by several data transformations.

If we replace 'object class' with 'JSD entity type', then the
transformation from Figure 11 into Figure 12 illustrates
a simplified version of the above correspondence rules, in
which all correspondences are one-one.

In terms of the transaction decomposition table, the
functional model specifies the effect of transactions on
the objects in the system. It does this using a data-
oriented modularization and this does not cohere well
with the object-oriented modularization of the rest of the
model. In fact, it is this difference in modularization
principles that makes it possible to allow the many-one
correspondences listed above. Moreover, DF models
specify the effect of transactions in an operational way,
by specifying the processing done in response to a
transaction. As remarked by Coleman et al. (1994), it is

THE COMPUTER JOURNAL, VOL.38, No. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/17/353839 by guest on 11 April 2024

28 R. J. WlERlNGA

preferable to use a declarative way of specifying the effect
of transactions, because this leads to a higher level of
implementation-independence. This approach is taken in
Fusion and in a number of formal methods that are
currently under development, such as Troll (Saake, 1993;
Hartmann et al., 1994) and MCM (Wieringa and
Feenstra, 1993; Wieringa, 1993, 1994a).

6. DISCUSSION: FUNCTION
DECOMPOSITION

The transaction decomposition table allows us to
pinpoint a common core of superficially very different
methods, such as JSD, ER modelling, DF modelling and
OMT. It is easy to show that other object-oriented
methods, such as the method of Shlaer and Mellor (1992)
and Fusion (Coleman et al., 1994) can also be analysed
by means of it. The table is simple to understand and is
well-known from such methods as Information Engi-
neering and SSADM. An advantage of the table not yet
pointed out is the following: it shows two orthogonal
ways to modularize the system. In an object-oriented
approach, the classes and their inheritance hierarchy
show an object-oriented modularization of the system in
which objects communicate with each other only
through communications as shown in the table. The
transactions, on the other hand, can be organized in a
function decomposition tree as is well-known from
Information Engineering (Figure 13). The root of this
tree gives the overall function of the system, which is
decomposed into lower-level functions until we reach
atomic system transactions. Grouping the transactions
into functions is a modularization that is highly
significant for the system user. It turns out to be useful
to divide the transaction decomposition table into
chunks that correspond to nodes in the function
decomposition tree. This gives another way to deal
with the ravioli problem, because the communication
structure in each chunk is relatively simple.

It may seem surprising that we can combine a function
decomposition tree with an object-oriented modulariza-
tion. The reason why this can be done is that the two
ways of modularization are orthogonal to each other—

Student Administration

Course administration

I
Student administration

— Create course

- Allocate

Enroll

- Create test

— Destroy course

-Register as student

Sign off

Register

Mark

FIGURE 13. A possible function decomposition tree of the student
registration system.

which is literally shown by the form of the transaction
decomposition table. The transactions in the second
leftmost column of a transaction decomposition table are
the leaves of a function decomposition tree and this is
orthogonal to the class list in the top row of the table.
This makes the function decomposition tree different
from modularization constructs like subjects in the
method of Coad and Yourdon (1990), subsystems in
the method of Wirfs-Brock et al. (1990) and the
ensembles denned by de Champeaux (1991). These
different concepts share the idea that gather a number
of objects classes that 'belong' to each other into a
higher-level module. By contrast, the functions in a
function decomposition tree gather a number of
transactions that belong to each other into a higher-
level construct.

Secondly, a function (non-leaf node) is in a function
decomposition tree only if it contributes to the overall
function (the root node of the tree) of the system. They
show why the transactions should be performed by the
system. Function decomposition is a decomposition of
the system function into transactions, object-oriented
decomposition is a decomposition of a system into classes.

Thirdly, the function decomposition tree decomposes
the overall system function down to the level of atomic
system transactions. As was pointed out earlier, this is
above the level at which functional decomposition
approaches like DF modelling decompose a system
into modules. We can now add that subjects, subsystems
and ensembles may be denned at any level of aggregation
where they are useful, and this may be above or below
the level of transactions.

It is possible to use functions as a modularisation
construct, i.e. by drawing class diagrams, communica-
tion diagrams, etc., per function. However, because the
decomposition of the overall system function into
subfunctions is orthogonal to the decomposition of the
system into classes, one class may appear in different
functions. The transaction decomposition table can thus
be used to define two orthogonal modularizations of the
behaviour of a system. It is the basis of a method for
conceptual modelling (MCM) currently under develop-
ment, and which combines the UoD-orientation of JSD
with object-orientation, transaction-orientation and
formal specification (Wieringa and Feenstra, 1993;
Wieringa, 1993).

7. CONCLUSIONS

We can draw two conclusions from this paper. First, we
saw that the JSD and ER methods can be combined to
form a conceptual modelling method that allows us to
simplify the communication structure and at the same
time is more expressive than either method apart. The
combined method is a simple form of object-oriented
modelling. The major simplification with respect to such
methods such as OMT, the Shlaer-Mellor method and
Fusion is the absence of inheritance.

THE COMPUTER JOURNAL, VOL.38, NO. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/17/353839 by guest on 11 April 2024

COMBINING STATIC AND DYNAMIC MODELLING METHODS 29

Second, the transaction decomposition table is a
common core of different methods, that allows us to
understand and compare those methods. It is at the heart
of JSD (as the action allocation table). It can also be used
to show what is actually being achieved by the functional
model of OMT (and of the Shlaer-Mellor method): the
specification of the effect of transactions. It therefore
gives us room to search for other means to achieve the
same thing, such as specification by pre- and postcondi-
tions, formal specification, etc. The increased under-
standing provided by the transaction decomposition
table can be used in teaching conceptual modelling
methods and in easing the transition from older, data-
oriented methods to object-oriented methods. In addi-
tion, it can be used to develop new methods that
(hopefully) improve upon the current state of the art
without throwing away what is good in the older
methods.

ACKNOWLEDGEMENT

This paper benefited from comments made by Remco
Feenstra on a draft of this paper. Thanks are due to the
anonymous referees, who gave many useful comments
on an earlier version of this paper.

REFERENCES

Alabiso, B. (1988) Transformation of data flow analysis models
to object oriented design. In Meyrowitz, N. (ed.), Object-
Oriented Programming Systems, Languages and Applications,
Conference Proceedings, pp. 335-353. ACM Press, New
York. SIGPLAN Notices, 23.

Bailin S. C. (1989) An object-oriented requirements specifica-
tion method. Commun. ACM, 32, 608-623, 1989.

Batini, C, Ceri, S. and Navathe, S. B. (1992) Conceptual
Database Design: An Entity-Relationship Approach. Benja-
min/Cummings, New York.

Birchenough, A. and Cameron, J.R. (1989) JSD and object-
oriented design. In Cameron, J. (ed.), JSP & JSD—The
Jackson Approach to Software Development, pp. 292-304.
IEEE Computer Science Press, New York.

Booch, G. (1986) Object-oriented development. IEEE Trans.
Software Eng., SE-12, 211-221.

Cameron, J. R. (1986) An overview of JSD. IEEE Trans.
Software Eng., SE-12, 222-240.

Champeaux, D. de (1991) Object-oriented analysis and top-
down software development. In America, P. (ed.), Proc,
European Conference on Object-Oriented Programming.
Springer, Berlin.

Champeaux, D. de and Faure, P. (1992) A comparative study
of object-oriented analysis methods. / . of Object-Oriented
Programming, March/April, 21-33.

Chen, P.P.-S. (1976) The entity-relationship model - Toward a
unified view of data. ACM Trans. Database Syst., 1, 9-36.

Coad, P. and Yourdon, E. (1990) Object-Oriented Analysis.
Yourdon Press/Prentice-Hall, Englewood Cliffs, NJ.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C, Gilchrist, H.,
Hayes, F. and Jeremaes, P. (1994) Object-Oriented Develop-
ment: The FUSION Method. Prentice-Hall, Englewood
Cliffs, NJ.

Costa, J. F., Sernadas, A. and Sernadas, C. (1989) OBL-89 User's
Manual, version 2.3. Instituto Superior Tecnico, Lisbon.

DeMarco, T. (1978) Structured Analysis and System Specifica-
tion. Yourdon Press/Prentice-Hall, Englewood Cliffs, NJ.

Elmasri, R. and Navathe, S. B. (1989) Fundamentals of
Database Systems. Benjamin Cummings, New York.

Eva, M. (1992) SSADM Version 4: A User's Guide. McGraw-
Hill, New York.

Goldsmith, S. (1993) Real-Time Systems Development. Pre-
ntice-Hall, Englewood Cliffs, NJ.

Harel, D. (1987) Statecharts: a visual formalism for complex
systems. Sci. Comp. Program., 8, 231-274.

Harel, D. (1988) On visual formalisms. Commun. ACM, 31,
514-530, 1988.

Hartmann, T., Saake, G., Hartel, P. and Kusch, J. (1994)
Revised version of the modelling language TROLL (TROLL
version 2.0). Technical Report 94-03, Datenbanken, Uni-
versitat Braunschweig, Braunschweig, Germany.

Hatley, D. and Pirbhai, I. (1987) Strategies for Real-Time
System Specification. Dorset House, New York.

Helm, R., Holland, I. M. and D. Gangopadhyay (1990)
Contracts: specifying behavioral compositions in object-
oriented systems. In Proc. Conf. on Object-Oriented
Programming: Systems, Languages and Applications/Eur-
opean Conf. on Object-Oriented Programming (ECOOP/
OOPSLA '90), pp. 169-180, Ottawa, October 21-15 1990.
Sigplan Notices 15.

Hsia, P., Davis, A. and Kung, D. (1993) Status report:
requirements engineering. IEEE Software, 10, 75-79,
November.

Jackson, M. (1975) Principles of Program Design. Academic
Press, New York.

Jackson, M. (1983) System Development. Prentice-Hall, Engle-
wood Cliffs, NJ.

Jacobson, I., Christerson, M., Johnsson, P. and Overgaard, G.
(1992) Object-Oriented Software Engineering: A Use Case
Driven Approach. Prentice-Hall, Englewood Cliffs, NJ.

Lopes, A. and Costa, F. (1993) Rewriting for reuse. In Proc.
ERCIM Workshop, pp. 43-55. Nancy, France.

Manna, Z. and Pnueli, A. (1992). The Temporal Logic of Reactive
and Concurrent System Specification. Springer, Berlin.

Martin, J. (1982) Strategic Data-Planning Methodologies.
Prentice-Hall, Englewood Cliffs, NJ.

McGregor, J. D. and Dyer, D. M. (1993) Inheritance and state
machines. Software Eng. Notes, 18, 61-69.

McMenamin, S. M. and Palmer, J. F. (1984) Essential Systems
Analysis. Yourdon Press/Prentice Hall, Englewood Cliffs, NJ.

Michael Jackson Limited (1986) JSD Course Notes.
Monarchi, D. E. and Puhr G. I. (1992) A research typology for

object-oriented analysis and design. Commun. ACM, 35, 35-
47.

Page-Jones, M. (1988) The Practical Guide to Structured
Systems Design. Prentice-Hall, Englewood Cliffs, NJ.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and
Lorensen, W. (1991) Object-oriented modeling and design.
Prentice-Hall, Englewood Cliffs, NJ.

Ryan, M., Fiadeiro, J. and Maibaum, T. (1991) Sharing actions
and attributes in modal action logic. In Ito, T. and Meyer, A.
R. (ed), Theoretical Aspects of Computer Software, pp. 569-
593. Springer, Berlin.

Saake, G. (1993) Objektorientierte Spezifikation von Informa-
tionsystemen. Teubner.

Saake, G., Hartel, P., Jungclaus, R., Wieringa, R. J. and
Feenstra, R. B. (1994) Inheritance conditions for object life
cycle diagrams. In Lipeck, U. W. and Vossen, G. (eds),
Formale Grundlagen fur den Entwurf von Informationsyste-
men, pp. 79-88. Institut fur Informatik, Universitat Hann-
over, Hannover. Informatik-Berichte 03/94.

Seidewitz, E. and Stark, M. (1987) Toward a general object-
oriented software development methodology. ADA Letters,
7, 54-67, July/August.

Shlaer, S. and Mellor, S. J. (1992) Object Lifecycles: Modeling
the World in States. Prentice-Hall, Englewood Cliffs, NJ.

THE COMPUTER JOURNAL, V O L . 3 8 , No. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/17/353839 by guest on 11 April 2024

30 R. J. WlERINGA

Stevens, W., Myers, G. and Constantine, L. (1974) Structured
design. IBM Syst. J., 13, 115-139.

Storey, V. C. and Goldstein, R. C. (1988) A methodology for
creating user views in database designs. ACM Trans.
Database Syst., 13, 305-338.

Sutcliffe, A. (1988) Jackson System Development. Prentice-Hall,
Englewood Cliffs, NJ.

Taylor, D. A. (1990) Object-Oriented Technology: A Manager's
Guide. Servio Corp., Alameda, CA.

Ward, P. T. (1989) How to integrate object orientation with
structured analysis and design. IEEE Computer, pages 74-82,
March.

Ward, P. T. and Mellor, S. J. (1985) Structured Development for
Real-Time Systems. Prentice-Hall/Yourdon Press, Engle-
wood Cliffs, NJ.

Wieringa, R. J. (1991a) A formalization of objects using
equational dynamic logic. In Delobel, C. Kifer, M. and
Masunaga, Y. (eds), Proc. 2nd Int. Conf. on Deductive and
Object-Oriented Databases (DOOD'91), pp. 431-452.
Springer, Berlin.

Wieringa, R. J. (1991b) Object-oriented analysis, structured
analysis, and Jackson System Development. In van Assche,
F., Moulin, B. and Rolland, C. (eds), Object Oriented
Approach in Information Systems, pp. 1—21. North-Hol-
land, Amsterdam.

Wieringa, R. J. (1993) A method for building and evaluating

formal specifications of object-oriented conceptual models of
database systems (MCM). Technical Report IR-340, Faculty
of Mathematics and Computer Science, Vrije Universiteit,
Amsterdam.

Wieringa, R. J. (1994a) LCM 3.0: Specification of a control
system using dynamic logic and process algebra. In
Lewerentz, C. and Lindner, T. (eds), Case Study Production
Cell—A Comparative Study in Formal Software Development.
Springer, Berlin.

Wieringa, R. J. (1994b) Structured Requirements Determination
and System Modeling: A Framework for Understanding.
Wiley, New York.

Wieringa, R. J. and Feenstra, R. B. (1993) The university library
document circulation system specified in LCM 3.0. Technical
Report IR-343, Faculty of Mathematics and Computer
Science, Vrije Universiteit, Amsterdam.

Wieringa, R. J., Jungclaus, R., Hartel, P., Saake, G. and
Hartmann, T. (1993) OMTROLL—Object Modeling in
Troll. In Lipeck, W. and Koschorrek (eds), Proc. Int.
Worskshop on Information Systems—Correctness and Reusa-
bility (ISCORE'93), pp. 267-283. Institut fur Informatik,
Universitat Hannover, Hannover.

Wirfs-Brock, R., Wilkerson, B. and Wiener, L. (1990)
Designing Object-Oriented Software. Prentice-Hall, Engle-
wood Cliffs, NJ.

Yourdon, E. (1989) Modem Structured Analysis. Prentice-Hall,
Englewood Cliffs, NJ.

THE COMPUTER JOURNAL, VOL.38, No. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/17/353839 by guest on 11 April 2024

