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A query algebra is presented that expresses searches on structured text. In addition to traditional full-
text boolean queries that search a pre-defined collection of documents, the algebra permits queries that
harness document structure. The algebra manipulates arbitrary intervals of text, which are recognized in
the text from implicit or explicit markup. The algebra has seven operators, which combined intervals to
yield new ones: containing, not containing, contained in, not contained in, one of, both of, followed by.
The ultimate result of a query is the set of intervals that satisfy it. An implementation framework is given
based on four primitive access functions. Each access function finds the solution to a query nearest to a
given position in the database. Recursive definitions for the seven operators are given in terms of these
access functions. Search time is at worst proportional to the time required to evaluate the access functions

for occurrences of the elementary terms in a query.
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1. INTRODUCTION

A text database organizes a collection of documents
to facilitate searching. A simple text database might
represent each document as a sequence of words. Each
word in each document would be indexed, with the
exception of a stoplist of a few common words such as
‘the’ and ‘of ’. Queries would be expressed using boolean
operators to select documents on the basis of the words
that they do or do not contain; a concatenation operator
would permit searching for phrases.

A simple text database of this form is suitable for small
applications. Large, extensible text databases require
more sophisticated indexing and search capabilities. A
text database should capture document structure; its
query language should permit efficient searches to be
expressed in terms of this structure. We address three
issues concerning databases for structured text:

1. Capturing document structure. It should be possible to
refer to the structural elements of a document when
formulating queries. This requirement necessitates
some form of indexing of the structural elements of
the documents in the database. We present a
simple scheme for indexing the structural elements
of documents. The scheme does not depend on a
specific format for marking structural elements,
permitting documents in a variety of formats to be
stored in the same text database and to be searched as
a group. Despite its simplicity the scheme is at least as
powerful as existing schemes.

2. A query algebra for structured text search. We present
a query algebra that allows the expression of a wide
variety of searches on structured text. The algebra
is based on a single data type, the generalized
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concordance list or GC-list. The operators in the
algebra use GC-lists for both their operands and
results; each word or other term indexed by the
database is a GC-list.

3. A framework for efficient implementation of structured
text search. We present a stream implementation
based on four access functions defined on GC-lists.
For each operator in our algebra we show how the
four access functions for its result are implemented
in terms of the access functions for its operands. The
access functions for index terms may be implemented
using standard data structures for inverted lists.
Structural elements are indexed exactly as words; a
rich structure imposes no special overhead in the
implementation.

1.1. Background and related work

Most commercial text database systems provide an
extended boolean algebra for formulating queries.
Salton and McGill [28, chapter 2] review a number
of such systems. These systems provide boolean
operators—AND, OR and NOT—that operate over
sets of documents. The AND operator intersects two
document sets; the OR operator combines two document
sets. The NOT operator usually implements set differ-
ence, taking the complement of a document set with
respect to a second set. Words act as elementary terms,
each representing the set of documents containing that
word. For example, the query

‘Birnam’ AND ‘Dunsinane’

would evaluate to the set of documents that contain
both the words ‘Birnam’ and ‘Dunsinane’. Various
extensions are incorporated into the basic algebra:
Word truncation operators select documents containing
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a word beginning with a specified prefix. Proximity
operators select documents on the basis of word
adjacency, word concatenation or similar criteria.

Such systems provide limited support for document
structure. Generally, a document is divided into several
predefined fields, typically title, author, date, abstract
and body. Queries may then refer to these fields. For
example, a query might specify that the body of a
selected document should contain the word ‘Birnam’
and that the author field should contain ‘Shakespeare’.
Large blocks of text are often divided into sentences,
paragraphs or other predefined units. Documents may
then be selected on the basis of words appearing in
the same sentence or paragraph. Unfortunately, these
techniques for dealing with document structure are
excessively rigid. Document structure that cannot be
mapped into predefined fields or textual units is lost and
cannot be referenced in a query.

Many proposals for dealing with document structure
have been made [22]. Generally, these proposals view
document structure as hierarchical. Documents are
assumed to be structured according to a fixed document
description or schema, and queries are formulated in
terms of this schema. Often, the schema is assumed to
take the form of an SGML document type definition
(DTD) or equivalent [5, 18]. The result of a query is a set
of documents or document components that satisfy a
specified search predicate. Bertino et al. [2], Chritophides
et al. [8], Macleod [23], and Sacks-Davis et al. [26]
all follow this approach. Following similar ideas,
Giiting et al. [14], the draft Structured Fulltext Query
Language (SFQL) standard [1], and Blake et al. [3]
extend the relational model in various ways to support
hierarchically structured documents.

Gonnet and Tompa [13] describe an algebra of
operations for manipulating a text database that has
been parsed according to a context-free grammar. Colby
and Van Gucht [10] build on the grammar-based model
of Gonnet and Tompa, providing grammar templates for
a number of traditional data models and extending the
grammar-based model to support hypertext. Gyssens et
al. [15] take a similar approach, presenting two languages
for transforming parsed text and showing the languages
to be equivalent. The grammar-based model has been
proven in practice for restructuring a large body of
highly-structured text [4], but has limited use for general
searching.

Burkowski [7] proposes a general query algebra that
exploits containment relationships between levels in a
pre-defined document structure hierarchy. The algebra
operates over a uniform data type, called a concordance
list, which is a sorted set of non-overlapping substrings of
a text database.

PAT is a system for free search of structured text
developed at the University of Waterloo for use with the
New Oxford English Dictionary [11,12,27]. In the PAT
system, text is not assumed to be structured according to
a particular schema. Instead, tags delimiting document

structure are indexed as if they are words. A variety of
search operators are provided. The result of query is
either a set of match points—a set of character positions
in the text—or a set of regions—a set of non-overlapping
substrings of the text. The PAT algebra is unique in not
requiring text in the database to adhere to a hierarchical
schema.

The work described in the present paper improves
substantially on both Burkowski’s containment algebra
and on the PAT algebra. Our algebra is more expressive
than either. Our text model provides more flexibility in
indexing document structure. The seven operators of
our algebra operate uniformly over GC-lists, avoiding
semantic inconsistencies present in both. Our algebra is
given a formal declarative semantics using standard set
notation. A set of equations provide an operational
definition of the algebra equivalent to the declarative
definition. Applying the equations directly, the algebra
may be implemented using standard inverted-list data
structures. This is contrast to PAT, which is implemented
using special-purpose data structures.

1.2. Organization of the paper

The remainder of this paper addresses the three issues
listed earlier. In the next section we discuss the issue of
document structure and present our model for capturing
document structure. The third section describes the
query algebra and gives a number of examples of its
use. The fourth section details an implementation
framework for the query algebra. The concluding
sections discuss our work in the context of existing
approaches, summarize our resuits, and outline future
research. A useful generalization of the algebra is
included as an appendix.

2. STRUCTURED TEXT

Text has natural structure. A document may divide into
chapters, pages, sentences, paragraphs, sections, sub-
sections, books, volumes, issues, lines, verses or stanzas.
A document may include a title, a preface, an abstract,
an epilogue, quotes, references, emphasised passages,
digressions and notes. Characteristics of documents vary
greatly. A document may have an identified author, or it
may be anonymous; it may be precisely dated, or it may
be undated; it may be written in Russian using cyrillic
characters; it may be written in Japanese using Kanji; it
may be part of a larger work; it may stand alone. Each
document is structured differently and the structure may
vary even within a document.

2.1. A fixed schema cannot be assumed

A text database should permit queries to be expressed in
terms of the natural structure of the documents stored
within it. Suppose we are interested in prophesies
by supernatural creatures. We might wish to make the
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following queries of a text database that included the
Works of Shakespeare:

1. Find plays that contain ‘Birnam’ followed by
‘Dunsinane’.

2. Find fragments of text that contain ‘Birnam’ and
‘Dunsinane’.

3. Find the pages on which the word ‘Birnam’ is spoken
by a witch.

4. Find speeches that contain ‘toil’ or ‘trouble’ in the
first line, and do not contain ‘burn’ or ‘bubble’ in the
second line.

5. Find a speech by an apparition that contains ‘fife’ and
that appears in a scene along with the line ‘Something
wicked this way comes’.

Not only do these examples use document structure to
express the query, but the required result—be it play,
page, speech, line or merely fragment of text—is also
specified in terms of this structure.

A system for capturing document structure should
be flexible enough to accommodate the variations in
structure that occur naturally. Unfortunately, this
requirement is at odds with attempts to impose a fixed
schema on the database. It should be possible to index all
structure in a document thought to be important at the
time that the document is added to the database; it
should be possible to add further structural indexing at a
later time. Furthermore, when a structural element is
irrelevant to the document at hand there should be no
artificial requirement to index that structural element—
it should not be necessary to break a poem into
paragraphs.

2.2. A structural hierarchy cannot be assumed

Several researchers have used hierarchical relationships
to describe document structure [7, 13, 14, 15]. However,
document structure is not always strictly hierarchical—
paragraphs stretch across pages, sentences stretch
across lines. Nonetheless, containment of one struc-
tural element within another is often significant to a
document’s structure—sentences are usually wholly
contained within a paragraph, lines are usually
wholly contained on a page. It might be argued that
with the increasing availability of documents in
electronic form, structural elements such as pages and
lines are irrelevant and are merely artifacts of an older
technology. This is not the case. For example, page
numbers are essential in citing federal court decisions
in US federal courts. Recently ownership of page
numbers for citation purposes has been enforced by
the major publisher of US legal decisions [30]. Data-
bases not licensed by this publisher cannot index and
report citations using these copyrighted page numbers,
making an unlicensed database effectively worthless.
While this is an extreme example, pages and lines cannot
be ignored while the primary form of text remains the
printed page.

2.3. Indexing structure is not indexing markup

When documents are stored and manipulated elec-
tronically, document structure is specified by some
form of markup: a tagging scheme used to delimit the
beginning and end of various structural elements. A
markup tag often takes the form of a special character
sequence embedded in the text. Standard document
formats—including SGML [5, 18], ODA [19], TgX [21]
and troff [25]—all use embedded tagging schemes to
delimit structural elements.

The presence of markup tags in these document
formats suggests that indexing the tags might be an
effective approach to capturing document structure.
Several problems exist with this approach. Different
document formats use different syntax for tags. Despite
these differences it is often desirable that delimiters for
equivalent structural elements be indexed together. For
example, all paragraph boundaries should be indexed
together regardless of the particular paragraph
delimiters used by the various document formats. Some
document formats do not explicitly tag certain structural
elements. It still must be possible to index these
structural elements. At the same time it should remain
possible to index tags specific to a document format. A
particular word processor format might not clearly
delimit paragraph boundaries; it might be necessary to
use a heuristic to identify these boundaries. In this case,
indexing the document-specific tags in addition to
paragraph boundaries would permit queries on the
actual structure of the document as well as the inferred
structure of the document. In some circumstances this
inferred structure might not accurately reflect the true
structure.

A metric is necessary to specify the proximity of
elements in the text. It is desirable to view the text as a
sequence of words (or other basic textual units). Tags
should not be treated as words for proximity purposes.
The distance between words might otherwise depend
on variations in tagging schemes. For example, two
words that are visually adjacent in the printed form of a
document should be indexed as adjacent regardless of
the presence or absence of a tag that changes the font
from one word to the next. Our solution is to assign
integer positions to words and to permit tags to take on
rational values. Tags may then be indexed arbitrarily at
or between word positions. This approach simplifies
incremental indexing of a document. For example, if font
changes were not indexed when a document was added
to the database this indexing could be added at a later
time without re-indexing the entire document.

2.4. Our model

We model a text database as a string of concatenated
symbols a, ...ay drawn from a text alphabet ¥ and a
stoplist alphabet g, where Ty NXs=0. An index
function Iy : Xy — {1} maps each symbol in the
text alphabet to the set of positions in the database string
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where the symbol appears. No equivalent index
function for symbols from the stoplist alphabet is
defined; symbols from the stoplist serve merely to
occupy positions in the database string and to maintain
proximity relationships. The text alphabet and the
stoplist alphabet are together referred to as the database
alphabet (= 1 UXg). The document is marked up
using symbols drawn from a markup alphabet 3,,, where
£p Ny =0. An index function Z,, : £ — 22 maps
each symbol in the markup alphabet to a set of rational
numbers corresponding to the associated positions in the
database string. Symbols in the markup alphabet do not
appear in the database string; they are used only for
indexing purposes. Combining the text alphabet and
the markup alphabet into a single index alphabet
¥ = £, Uy, we define the index function Z : & — 29
as the union of Z 4 and I,,. For convenience we define
the value ¢ to be the smallest positioning quantum in the
database—e is the largest rational number for which p/e
is an integer for every value p in the range of the index
function 7.

Figure 1 is a portion of a structured document. The
document includes stage directions, speakers, speeches,
lines, pages, acts, and scenes. The document demon-
strates the importance of containment relationships and
illustrates that a strict hierarchy is too rigid a model to
capture these relationships. The first speech by the FIRsT
wiTcH (“When shall we three . ..”) consists of the first two

Thunder and lightning. Enter three Witches. 11

FIRST WITCH

When shall we three meet again?

In thunder, lightning, or in rain?
SECOND WITCH

When the hurly-burly’s done,

When the battle’s lost and won.
THIRD WITCH

That will be ere the set of sun.
PIRST WITCH

Where the place?
SECOND WITCH
THIRD WITCH

There to meet with Macbeth.
FIRST WITCE

I come Grey-Malkin.
SECOND WITCH
THIRD WITCH
ALL

Fair is foul and foul is fair,

Hover through the fog and filthy air.

Upon the heath

Paddock calls!
Anon!

Ezeunt 10

Alarum within 1.2
Enter King Duncan, Malcom, Donalbain, Lennoz,
with Attendants, meeting a bleeding Captain
KING
What bloody man is that? He can report,

53

FIGURE 1. Text structure in Macbeth.

lines on the page. The eighth line on the page (‘I come
Grey-Malkin...”) contains a speech by each of the
witches. In one case several lines are contained in a
speech, in the other several speeches are contained in a
line.

One possible representation of the document in our
text database model uses words as the text alphabet:

Y7 = {again,air,alarum,all, anon, attendants,
battle, be,bleeding, bloody, burly, calls,

can, captain, come, donalbain,...}.

The stoplist alphabet consists of words that occur most
commonly in English text:

Ys = {and, for, in, is, of, that, the, to, said}.

In this instance we made the arbitrary choice to ignore
case and punctuation in creating the database alphabet.

The symbols from database alphabet are concatenated
in the order they appear textually to form the database
string:

thunder and lightning enter three witches first
witch when shall we three meet again in thunder
lightning or in rain second ...

To represent symbols in the markup alphabet we use
the notation ‘[name’ to represent the start of a named
structural element and ‘name]’ to represent the end of the
named structural element. Using this notation, the
start of a scene would be indexed by the symbol
‘[scene’ and the end of a scene would be indexed by the
symbol ‘scene]’. Indexing for a portion of our example
document is given in Figure 2. Where possible, we choose
to index markup symbols at integer positions. It is only
in the case that a structural element begins and ends at
the same word that we index a markup symbol halfway-
between two database symbols (and so e = % in this
case). There are alternatives to this indexing. We could
choose to index all markup symbols at the halfway
point between database symbols, or choose to order the
markup symbols between database symbols and give
each a unique position. The exact choice depends on

details of implementation and loading; the results of this

61 62 63 64 65
first witch i come grey
{speaker speaker] {speech
[1ine
66 67 68 69 70
malkin second vitch paddock calls
speach] (speaker speaker] [speech speech]
n 72 721 73 73}
third witch anon
{speaker speaker] {speech speech] [speaker
line] [lire
4 75 76 7
all fair foul
speaker] [speech

FIGURE 2. Indexing for a portion of Macbeth.
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paper are independent of this choice. In our experience it
is usually best to limit positions to rational numbers
where the denominator is a small fixed power of 2. It is
then necessary to store only the numerators of these
rational numbers in the database.

3. THE QUERY ALGEBRA

We represent the result of a search as a set of ranges or
extents in the database string. Each extent is of the form
(p,q), where p € Q is the starting position of the extent
and g € Q is the end position of the extent. The length of
an extent is g—p + ¢, making the smallest extents of
length e. The largest possible extent is Z = (—00, 00). An
extent (p,q) overlaps an extent (p',q’) if either
P <p<q or pP<g<q but not both. An extent
(p,q) is nested in an extent (p',q) ifp' < p<qg<yq.

Let M be the cardinality of the range of the index
function 7. In other words, M is the number of (rational-
valued) positions in the database string that are indexed
by Z. A search may be satisfied by O(M?) extents. If the
query is for a particular word, every extent that includes
an occurrence of the word may be considered a solution
to the query. A search to find a word that occurs exactly
once in the database is satisfied by at least M extents
and by as many as ([M/2] + 1)(|M /2] + 1), depending
on the position of the word in the database string.
However, many of these extents overlap and nest. In
order to reduce the number of extents that result from
a search, we do not include in the result set those
extents that would have other result extents nested in
them.

3.1. Generalized concordance lists

We refer to a set of non-nested extents as a generalized
concordance list, or simply GC-list, after the concordance
lists of Burkowski [7]. Burkowski’s concordance lists
have the property that the element extents must be non-
overlapping as well as non-nesting. In the case of a search
for a single word that occurs once in the database, the
resultant generalized concordance list contains a single
extent of length e that begins and ends at the word’s
position. The index function Z may be viewed as
mapping symbols in the index alphabet onto GC-lists:
The elements of the results are interpreted as extents that
begin and end at a single position.

We formalize the reduction of a set of extents to a
generalized concordance list as a function G(S). If
a=(p,q) and b = (p',q’) are extents from the database
string, we use the notation a C b to indicate that a nests in
b. We define the function G over sets of extents as:

G(S)={alae S and Bbe S such that b # a and bC a}

For an arbitrary set of extents S, every GC-list that is a
subset S is a subset of G(S). In this sense, G(S) is the
‘most general’ GC-list that is a subset of S. No similar
function can be defined for Burkowski’s concordance
lists. For an arbitrary set of extents S, there is no

concordance list that is a subset of S and a superset of
every other concordance list that is a subset of S.

It is easily shown that no GC-list may contain more
than M elements, otherwise two elements of the GC-list
would share an end point and one would nest in the other.

The elements of a GC-list are totally ordered by
their end points. If a = (p,q) and b = (p’, q') are distinct
elements of a GC-list either p < p’ and g < ¢/, or p > p’
and ¢ > ¢'. In the first case we say a < b and in the
second case a > b.

3.2. The query algebra

Each operator in the query algebra is defined over GC-
lists and evaluates to a GC-list. The operators are
presented in Figure 3. The operators fall into three
classes. The containment operators select the elements of
a GC-list that are contained in, not contained in, contain,
or do not contain the elements of a second GC-list. The
containment operators may be used to formulate queries
that refer to the hierarchical characteristics of structural
elements in the database. The expression on the right-
hand side of a containment operator acts as a filter to
restrict the expression on the left-hand side—the result
of the operation is a subset of the result of the left-hand
side. The two combination operators are similar to the
standard boolean operators AND and OR. The ‘both of’
operator is similar to AND: Each extent in the result
contains an extent from each operand. The ‘one of”’
operator merges two GC-lists: Each extent in the result is
an extent from one of the operands. The ordering
operator generalizes concatenation: Each extent in the
result starts with an extent from the first operand and
ends with an extent from the second operand. The
ordering operator may be used to connect markup
alphabet symbols that delineate structural elements,
producing a GC-list in which each extent corresponds
to one occurrence of the structural element. Examples of
the use of these operators are given at the end of this
section.

3.3. Elementary terms

As mentioned, the index function 7 may be viewed as
mapping symbols in the index alphabet onto GC-lists.
We add other types of elementary terms to our algebra.
We use the symbol " to represent the GC-list of all
extents of length n. The GC-list represented by X" has a
member extent beginning at each position in the
database. The expression I° represents the GC-list of
all extents of smallest size.

It is possible to synthesize extents from sources
external to our model. For example, it is often desirable
to select documents on the basis of their publication
dates. The range of possibilities for date-related queries
makes it difficult to represent publication date informa-
tion in our model. Nonetheless, the results of these
queries can be expressed as GC-lists and manipulated
using the algebra.
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3.4. Properties

The operators exhibit several basic properties. The
combination operators are associative and commutative:

AAB=BAA
(AABYAC=AA(BAC)
AVB=BV A

(AVBYVC=AV(BV(C)
The A operator distributes across V:
AA(BVC)=(AAB)V{(AAC)

The ordering operator is associative but not commu-
tative:

(AOB)OC=A4C(BOC)
AOB#BOA

The containment operators exhibit an interesting version
of commutativity, commutativity of containment criteria
applied to a particular GC-list:

(AeB)®C= (A0 C)o B, where 8,0 € {<,>, 4, ¢}

3.5. Query examples

Our algebra may be used to express the Macbeth queries
given earlier in the paper:

1. Find plays that contain ‘Birnam’ followed by
‘Dunsinane’.

(Z(‘[p1ay’) O I(‘play]’))
> (Z(‘birnam’) O Z(‘dunsinane’))
Containment Operators

Contained In:

The index function Z maps symbols in the index
alphabet onto GC-lists. The ordering operation is
used build a GC-list of plays and a GC-list of text
fragments that begin with ‘Birnam’ and end with
‘Dunsinane’. Each extent in the result of the
expression (Z(‘[play’) < Z(‘play]’) exactly delimits
the extent of a play. The GC-list of text fragments that
begin with ‘Birnam’ and end with ‘Dunsinane’ is used
to select from the GC-list of piays.

. Find fragments of text that contain ‘Birnam’ and

‘Dunsinane’.

Z(‘virnam’) A Z(‘dunsinane’)
Since no ordering is specified, the ‘both of’ operator is
used. Member extents of the resulting GC-list either

begin with ‘Birnam’ and end with ‘Dunsinane’, or
begin with ‘Dunsinane’ and end with ‘Birnam’.

. Find the pages on which the word ‘Birnam’ is spoken

by a witch.
PAGES > (Z(‘birnam’) < (< (s 1> }))

where

paGEs = I (‘[page’) O Z(‘page]’)

B = (Z(‘[speech’) O I(‘speech]’)) > I (‘birnam’)

s = I(‘[speaker’) O I(‘speech]’)

w = (Z(‘[speaker’) O I(‘speaker]’)) > I{‘witch’)
The expressions w and B specify speakers that are

witches and speeches that contain ‘Birnam’ respec-
tively. The expression s links speaker and speech

A« B= g({alaeAandeEBsuchthataCb})

Containing:

Ap B = g({alaEAandEIbeBsuchthatha})

Not Contained In:

AAB= G({a|a€ Aand 3 b€ B such that a C b})

Not Containing:

A¥ B= g({a|aeAa.ndﬂbEBsuchthatbCa})

Combination Operators

Both Of:

AAB= G({c|cC Zand 3a € Asuch thata C cand 3b € B such that b ¢})

One Of:

Ay B= G ({clcC Z and 3 a € Asuchthat aC cor 3 b€ B such that bC c})

Ordering Operator

Followed by:

A0 B= ¢ ({clc=(p,¢') where 3 (p,q) € Aand 3 (p',¢') € B such that ¢ < p'})

FIGURE 3. Definitions for the operators in the query algebra.
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together. The query is arranged to use the actual
occurrence of the word ‘Birnam’ to select pages. If a
speech by a witch stretched between two pages and
contained an occurrence of ‘Birnam’ on each page,
both pages would be selected.

4. Find speeches that contain ‘toil’ or ‘trouble’ in the
first line, and do not contain ‘burn’ or ‘bubble’ in the
second line.

SPEECHES > (FIRST2LINES > (T < B))

where
sPEECHES = Z (‘[speech’) O I (‘speech]’)
FIRST2LINES = 7 (‘[speech’) & LINES O LINES
T = LINESD> (Z(‘toil’) VI(‘trouble’))
B = LINES [¢ (Z(‘burn’) V I{‘bubble’))
LINES = Z(‘[Line’) O Z(‘line]’)

The expressions T and B select extents that match
criteria on the contents of the lines. The expression
FIRST2LINES evaluates to a GC-list consisting of the
first two lines after the start of each speech. This
expression does nothing to guarantee that both lines
are contained within the speech. The outermost
containment operator ensures this requirement.

5. Find a speech by an apparition that contains ‘fife’ and
that appears in a scene along with the line ‘Something
wicked this way comes’.

((FIFE < (S &> APPARITION))) < (SCENES [> B)
where
FIFE = SPEECHES D> T (‘fife’)
s = Z(‘[speaker’) O Z(‘speech|’)
APPARITION = (Z(‘[speaker’) O Z(‘speaker]’))
> Z(‘apparition’)
B = %’ > LINES > BRDBRY
SPEECHES = I (‘[speech’) O I (‘speech]’)
SCENES = I (‘[scene’) O Z(‘scene]’)
LINES = Z(‘[1ine’) O I (“1ine]’)
BRDBRY = Z(‘something’) O Z(‘wicked’) O Z(‘this’)
O I('way’) OZ(‘comes’)

This example illustrates the use of £”. The expression
B ensures that only lines that exactly match the quote
are selected. Lines such as ‘Something purple and
wicked this way comes’ are eliminated.
The query expressions given above assume a schema on
the database. The expression

Z(‘[speaker’) O I(‘speech]’)
occurs in several of the examples to associated speakers

with their speeches. In using this expression we make the
assumption that names of speakers are immediately

followed by the speeches that they make. While the
algebra does not depend on this assumption holding,
the correctness of the query does. The schema of the
database is independent of the algebra and must be
described by mechanisms external to the algebra.

The algebra can be used as a tool to enforce a schema.
If all speakers must be followed by a speech and all
speeches must be proceeded by a speaker, the following
expressions must evaluate to the empty GC-list:

(Z(‘speaker|’) OZ(‘[speaker’))
¥ (Z(‘[speech’) O I (‘speech]’))

(Z(‘speech]’) OZ(‘[speech’))
% (Z(‘[speaker’) O Z(‘speaker]’))

4. AFRAMEWORK FORIMPLEMENTATION

Start points and end points place identical total orders on
the elements of a GC-list. We exploit this total order to
develop a framework for efficiently implementing our
algebra. The approach consists of indexing into GC-lists.
The total order is used as the basis for this indexing.
Given a GC-list and a position in the database we index
into the GC-list to find the extent that is in some sense
‘closest to’ that position in the database. We begin with
an example and follow this with a formal exposition of
the framework.

Consider evaluating the expression 4 < B (see Figure
4). An extent from the resultant GC-list starts with an
element from A and ends with an element from B.
Suppose (p, ) is the first extent in 4. If (p',¢’) is the first
extent from B with p’ > ¢ then ¢’ must be the end of the
first extent of 4O B. We index into B to find the first
extent with p’ > g. The last extent from A4 that ends
before p’ starts the first extent of 4 O B. We index into 4
to find the greatest extent (p”,q") where ¢ < p'. The
extent (p”, ') is the first solution to 4 © B. Indexing first
into B and then into A in this manner gives us the first
extent in 4 < B directly in two steps. The next solution to
A< B begins after p”. We index into A4 to produce the
first extent after p”. This procedure of successively
indexing into A and B can be continued to find the
remaining extents in 4 < B.

Our implementation framework consists of four access
functions that allow indexing into GC-lists in various
ways. Each of the access functions represents a variation
on the notion of ‘closest extent’ in a GC-list to a specified
position in the database. We implement the four access
functions for each operator in our algebra using the
access functions of its operands.

The access function 7(S, k) represents the first extent
in the GC-list § starting at or after the position k:

(p.q) if 3(p,q) € Ssuch thatk <p
and A(p',q') € S such that
k<p <p

(00,00) if A(p,q) € Ssuchthatk < p

T(S7 k) =
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The access function p(S, k) represents the first extent in S
ending at or after the position k:

(r,9) if 3(p,q) € S such that k < ¢
and A(p',q) € S such that
p(S, k) = k< d
s£q9 <49
(c0,00) if A(p,q) € S such that k < g

The access functions 7'(S,k) and p/(S,k) are the
converses of 7 and p. The access function 7(S,k)
represents the last extent in S ending at or before the
position k; the access function p'(S, k) represents the last
extent in S starting at or before the position k:

if 3(p,q) € Ssuch that k > ¢
and A(p',4) € S such that
k>4 >q

if A(p,q)€ Ssuchthatk>gq

((p,9)
7 (S,k) = {

\ (~—OO, —OO)

if 3(p,q) € Ssuch thatk = p
and A(p',q') € S such that
k=p >p

if A(p,q) € Ssuch thatk>p

((p,q)
P'(S, k) =

{ (—00, —00)

Figures 5 and 6 give definitions of 7 and p over the
operators when k < oco. For simplicity, the case of k = oo
is omitted from the figures. In that case we have:

7(S,00) = p(S,00) = (00, 00).

The notation used in the figures is loosely based on the
functional programming language ML [24]. An expres-
sion of the form ‘let definitions in expression’ yields the
value of the expression following the in, evaluated in the
context of the definitions following the let. A conditional

/ Start of database

A I——lq b
p
B First extent in A
AOB

‘y q
First extent in A O B

expression ‘if condition then expression else expression’
evaluates to the expression following the then if the
boolean condition following the if is true, and evaluates
to the expression following the else if the boolean
condition is false. Equations for 7 and p’ are not
given; they can be easily inferred from those for 7 and p.

We examine in detail the equation for 7(4 <1 B, k) (see
Figure 7). This equation yields the first element of 4 <1 B
that starts at or after the position k. The extent
(p,q) = 7(4,k) is taken as a candidate solution. For
(p, q) to be the solution it must be contained in an extent
of B. An extent of B containing (p, ¢) must end at or after
g. The first such extent is (p, ¢') = p(B, q). There are now
two cases: (i) if p’ < p then (p, q) is contained in (p', ')
and (p, g) is the solution to 7(4 < B, k); (ii) otherwise
P’ > p and (p, q) is not contained in (p',4’). In this case,
(p,q) is not contained in any extent of B. For if there
existed an extent (p”,4") in B that contained (p,q) we
would have:

p'>p since (p',q) does not contain (p, q)
p >p//
p'>p' since (p”,q") is after (p',4)in the GC-list B

since (p”,¢") contains (p,q)

This is a contradiction and (p,q) is not a solution to
7(A4 < B, k). The solution to 7(4 <1 B, k) must start at or
after p’. Thus, 7(4 < B, k) = 7(4 < B,p).

A similar case analysis may be applied to understand
the remaining equations in Figures 5 and 6. This case
analysis may be formalized into a straightforward but
tedious proof of correctness for the equations.

Interpreting the equations operationally as recursive
functions expressed in a functional-style programming
language gives us the core of a text database search
algorithm. Two additional pieces are missing from the

r— Last extent in A before p/

p—
pll qll
: First extent
V/ in B after ¢
—
Py
p—

I

Increasing Positions

FIGURE 4. Evaluating 4 ¢ B.
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Containment
7 (A< B,k)= p(A < B,k)= p (A B,k)=
let let let
(pra)= 7 (4F) (r,9) = p(4F) (@)= P (AK)
(»,¢)= rp(B,q) in (¢, ¢)= 7 (B,p)
in T (A < B,p) in
if p’ < p then if ¢ < g then
(p,9) (r9)
else T(A> B,k)= else
7 (4 @ B,p)) let p(Av B,)
(p,a) = 7 (AK)
in
p(Av> B,q)
T(AdBE) = p(A# BE)= p (AW BE)=
let let let
(pg)= 7 (4,k) (7, q)= p(4,k) (p,9) = p (AF)
(¢ d)= p(B,9) in (¢,d)= 7(B,p)
in 7 (A 4 B,p) in
if p' > p then if ¢ > g then
(p,9) (pq)
else T (A} B,k)= else
AAB,q+e let T(A¥ B, +¢)
PR (B.0)= 7 (4,8)
m
p(A¥ Byg)

FIGURE 5. 7 and p for the containment operators.

algorithm: an implementation of the access functions for
elementary terms in the algebra—symbols from the
index alphabet and £"—and a top level driver procedure
that evaluates a query and generates a GC-list. A
discussion of the implementation of the access functions
for the elementary terms in the algebra appears later in
this section. One possible driver procedure is in Figure 8.
The driver procedure uses iterative calls to 7 to generate
the resultant GC-list. An equivalent driver procedure
can be written using p. The corresponding driver
procedures using either 7’ or p’ generate the GC-list in
reverse order.

During the evaluation of a query using the driver
procedure P of Figure 8 the number of calls to access
functions for sub-queries by the equations of Figure 5
and Figure 6 is linear in the sum of the size of the
GC-lists for the sub-queries. This observation ignores
the effects of indexing into the GC-lists. These effects
can be considerable. A direct evaluation of the
expression in the first example in Section 3.5 requires
at most

O(min(|Z(*[p1ay’)l, |Z(*play]’)l,
|Z(‘birnam’), |Z(‘dunsinane’)|))

calls to access functions for index alphabet symbols.
Quantifying the effects of this indexing requires model-
ling of expected queries and occurrence patterns of the
symbols in the index alphabet; this analysis is beyond the
scope of this paper.

4.1. Fixed-size extents

The symbol " represents the GC-list of all extents of
length n. Implementation is straightforward:

(2" k) = (k,k+n—¢)
p(Z" k)= (k—n+¢€k)
(", k) = p(Z", k)
p(E" k) = 72", k)

4.2. Index organization

Standard data structures for inverted lists may be used to
build implementations of 7 and p for the database index
[20, pp. 552-554]. Figure 9 shows the organization of an
inverted list data structure. The dictionary maps each
index symbol into a range in the index. For each index
symbol, the index contains a sorted list of database
positions where the symbol occurs. For a particular
symbol, a binary search implements the four access
functions with O(logn) efficiency, where n is the
number of occurrences of the symbol in the database.
Other data structures, such as B-trees [20, pp. 473-479]
or surrogate subsets [6], may be used to provide
O(logn) implementations that additionally permit
efficient insertions and deletions.

By slightly extending the data structure of Figure 9 it is
possible to store any GC-list as an inverted list. Each
index element would contain the start and end position
for an extent. Since the start and end positions place
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Combination

7 (AA B k) =
let
(Py Q) =T (Avk)
(r',¢) = 7 (B,k)
(r",¢") = 7' (4, max(q,q'))
(#" 4"} = 7' (B, max(q,q'))

(mjn(pll’ plll)’ ma.x(qll’ qlll))

T (A v B, k) =
let
(P’ q) = 7 (A,k)
. (Pl’ q') =7 (B’ k)
in
if ¢ < ¢’ then
(p,9)
else if ¢ > ¢’ then
¥4
else
(max(p,?'), q)
Ordering
(A0 B,k)=
let
(p,g) = 7 (Ak)

(#,4¢)= 7(B,g+e)

(pll, qll) = T, (A’ pl —_ €)
in

", ¢)

p(A ABk)=
let
(p,g)= ™ (AAB,k—¢)
in

(A A B,p+e)

p(A B, k)=
let
(Psq)z TI(AVB,k—E)
in
T(AT B,p+e)

p (A0 B,k)=
let
 (pa)= T (A0 Bk-¢)
in
r(ACOB,p+¢)

FIGURE 6. 7 and p for the combination and ordering operators.

identical total orders on the elements of a GC-list, any
data structure usable to implement access functions for
index symbols will serve equaily well to implement
access functions for GC-lists. In this way, GC-lists
for frequently-posed queries could be pre-computed and
stored as part of the database.

4. DISCUSSION

The standard boolean search algebra is a special case of
the algebra presented in this paper. If we assume that
the symbol pocs represents the GC-list of documents in
a database, the three basic boolean operators are
implemented as:

A AND B = (pocs > A) A (pocs > B)
A OR B = (pocs > A) V (pocs > B)
A NOT B = (pocs > A) % (pocs > B)

Similar definitions exist for proximity, concatenation,
and containment in titles, abstracts, paragraphs or other
pre-defined textual units.

Sacks-Davis ez al. [26] have classified types of queries

thata retrieval system for structured text should support.
The queries in this classification are representative
of the queries supported by the various proposals for
searching hierarchically-organized text reviewed in the
introduction to this paper. The query types generalize the
standard boolean search algebra in a number of ways:

1. Restriction of query scope to document components.
For example,

Find document with <section> containing ‘text’
and ‘retrieval’

This class of query retrieves a set of documents that
contain a component of the specified type that satisfies
the specified predicate.

2. Retrieval of a component other than a document. For
example,

Find <section>containing ‘text’ and ‘retrieval’

In this case the result of the query is a set of document
sections, rather than entire documents.
3. Retrieval based on document structure.

Find <heading> within a <section>
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L

A P
P q
B Case 1 II i, P<p= 7 (A< B,k)=(p9q)
P q
P
Case 2 ; , pP>p=> T(AQB,k): T(AQB,p’)
P

Increasing Positions

FIGURE 7. Evaluating A < B.

4. Retrieval of multiple component types.

Find <article> or <book> containing ‘text’ and
‘retrieval’

The view here is that a query retrieves a set of (usually
named) document components that satisfy a specified
selection criteria. In this view, the result of query is
effectively given a data type by the schema. As the
translation of the boolean expressions makes apparent, a
notion of containment must always be present, either
implicitly or explicitly, in a query such as ‘A AND B’.
The results of this paper are in direct contrast with this
view. Our algebra can express all of the queries outlined
above, but operates over a single uniform data type.

The two properties that characterize the extents in a
GC-list—non-nesting and overlapping—are key to the
simplicity and expressiveness of the algebra. Given a
corpus that contains the speech

All hail MacBeth! Hail to thee, Thane of Cawdor

the solution to the query
Z(‘hail’) AZ(‘Macbeth’)

will include both the occurrence of the string ‘hail
Macbeth’ and the occurrence of the string ‘Macbeth!
Hail’ that appear in the quote. Without the non-nesting
property, a great many extents would be included in the
solution. Without the overlapping property, an arbitrary
choice would have to be made concerning which of the
two to include. No implicit containment is required.

P(5) =
(p’ q) =T (S, —oo)
while p # oo loop
Output (p, q)
(p.g)= 7(S;p+ €)
end loop

FIGURE 8. Driver procedure.

The PAT text search system [11,27] is closest in spirit
to our work. A hierarchical text structure is not assumed.
However, our maxim of indexing structure not markup is
not followed, and the indexing of structure in the
PAT system is limited in comparison to our approach.
Markup tags are treated the same as any other text, and
the only structure that can be queried is that which is
explicit in the tagging. It is not possible, for example, to
add indexing of analogous structural elements from
documents with differing formats. Query operators in
PAT are similar to the operators of our algebra, but no
equivalent of our ‘both of’ (A) operator (or conse-
quently of the generalized combination operator of
the appendix) is provided. With a few superficial
exceptions, queries expressible in PAT are a subset of
those expressible in our algebra. PAT does not use a
uniform data type for query results, and this causes
significant semantic problems [27]. In particular, the
result type of a query expression can depend on subtle
properties of the text in the database. The addition
of a single document to the database can change the
result type of a query. Finally, PAT is implemented
with special-purpose data structures [12]. PAT has no
implementation framework amenable to the use of
inverted lists.

5. CONCLUSIONS AND FUTURE WORK

This paper presents a simple model for structured
text and a search algebra based on the model. The
expressiveness of the algebra is illustrated with a variety
of examples and by a comparison with existing
work. The algebra uses GC-lists uniformly as both
results and operands. A key feature of the algebra is
the use of containment relationships rather than
hierarchical relationships. The algebra does not pre-
clude the enforcement of a hierarchy or other schema.
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Dictionary

index symbol start ptr  end pir

birnam d \

[speaker ! \

Index

Database
Positions

\>

FIGURE 9. Inverted lists.

Rather, the algebra is independent of any schema and
can be used as a tool to ensure that a schema holds.
Finally, the algebra may be efficiently implemented.

1. Support for indirection. Queries based on indirect
document structure (such as footnotes, references, or
hypertext links) are not supported by our algebra.
Ideally, we would be able to formulate queries that
reference text that is indirectly associated with an
extent.

2. Co-existence with the relational model. We have
discussed the generation of synthetic extents. These
synthetic extents may be generated through the use
of queries to a relational database. It is also possible
to extend the relational algebra with text query
capabilities [1, 3, 14] and our algebra would form a
useful basis for such an effort. Finally, it is possible to
view tables in a relational database as structured
text and search them using our algebra. A companion
paper to this work [9] contains some further
development of this last idea.

3. Use of the algebra as a intermediate language. A user
needs a reasonable level of sophistication to work
directly with the algebra. In some cases, the algebra is
more suitable as an intermediate language between a
user interface layer and an underlying search engine.
The user interface would likely be graphical in nature;
relevance feedback [16] and other heuristic techniques
might be incorporated into this user interface.

4. Extensions to ranked retrieval. Our algebra may be
viewed be view as a generalization of the standard

boolean query algebra. Statistically-based ranked
retrieval is another important and standard retrieval
technique [17,28,29]. The results in the appendix
to this paper and the discussion of reference [26]
provide starting points for the application of relevance
ranking techniques to structured text search.

5. Improved evaluation strategies. Query evaluation by
the direct application of the framework in this paper
proceeds in a bottom-up fashion. The framework may
be used as foundation for developing combined access
plans for entire queries or sub-queries. Caching the
solutions to frequently-posed queries should also
speed evaluations. We are actively researching this
area.
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APPENDIX—A GENERALIZED
COMBINATION OPERATOR

Each extent in the solutionto Ag A4, AA,... AA,,_,
contains an extent from each of 4y ... A4,,_,. Each extent
in the solutionto 49V A; VA4,... V A4,,_, consists of an
extent from one of Ag...A4,_;. These two expressions
represent extremes of a more general operation: the
combination of n extents from m GC-lists. The combina-
tion operators may be used in concert to build these
combinations. For example, each extent in

(AA(BV C))V(BA(AVC))V(CA(AV B))

contains an extents from two of the three GC-lists: A,
B and C. Unfortunately, following this pattern, an
expression for combining n extents from m GC-lists has

size
m )
n—1

Nonetheless, the operation has intuitive appeal and is of
significant practical use. A common situation in which
this operation is of particular use is in selecting
documents that contain a few of a large number of
terms. During the early stages of a search session this
operation can exist in narrowing down a list of search
terms to those that retrieve the most relevant documents.
We extend our algebra with an ‘n of m’ operator that has
a direct implementation.
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Formally, we define the ‘n of m’ operator as follows:
nA(Ag, ... Am1) = G({c| {A|A4 € {4p,..., Apn 1}
and Ja € A4 such that aC c}| = n})

Each extent in nA (4y,...,A,,_;) contains an element
from exactly n of the Ay,...,4,,_;.

Definitions for the access functions 7 and p are
generalizations of those for A and V:

(A (Ag, Ay -y Apyy) k) =
let
(pi»g:)) = 7(4ik) (0<i<m)
q € {g;} such that |{g;|¢; < q}| = n
{Bo,..., Bur} = {4ila; < q}
Pj4;) =7'(Bjq) (0<j<n)

in
(min(p6’ oo :p;r—l): q)

p(nA(AOaAli' . aAm—l)ak) =
let '
(pa q) = TI(nA (AO:AI’ v aAm—l)’k— 6)
in
T(”A (A01A]’ v aAm—l)ap + 6)

The equation for 7(nA(Ag, Ay,...,Am1), k) first
evaluates 7(A4;,k) for each of the sub-queries
Ay, Ay, ..., A,_;. Then let g be the end point of the
first n of the resuitant extents and let By,...,B,_; be
those members of Ay, Ay,...,A,_; that end before q.
The expression 7'(B;,q) is evaluated for each of the
By, ..., B,_;. The resulting extents span the solution to
T(n A(AOa Alv o ,Am—l)a k)
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