
A Hierarchical Protocol for Decentralizing
Information Dissemination in Distributed

Systems
JOHN G. VAUGHAN

Department of Computer Science, University College Cork, Cork, Ireland

Systems of distributed processors connected by a physical network may have a virtual structure imposed
on them to facilitate parallel cooperative system actions. This paper describes the Multiple Virtual Rings
organization which is an instance of this approach. System processors are partitioned into groups,
structured as virtual rings, which operate in parallel to accumulate local information and make decisions.
A hierarchy of rings is formed, at the pinnacle of which is one ring which joins the system together and
enables overall cooperation. The configuration of the virtual ring hierarchy is explained and issues which
are independent of the ring topology are discussed. A simulation study of a large distributed system is
presented which investigates the operation of load balancing algorithms in a hierarchical processor
organization.

Received November 8, 1993, revised January 19, 1995

1. INTRODUCTION
In a distributed system of workstations connected by a
network, the entire system may be applied in a
cooperative manner to the solution of common prob-
lems. A prime example of such an application is the
collective processing of computing load by network
processors. When this processing is scheduled in order to
optimize a system-wide performance criterion such as
mean job response time, the resulting activity involves
exchanging jobs between processors and is known as
load sharing or load balancing. In order to make sensible
scheduling decisions, some form of information distribu-
tion must be organized in the network. Information
distribution can be triggered on demand, when a system-
wide scheduling decision has to be made at a processor,
or it can occur periodically, in which case the scheduling
decision is based on the latest locally-available informa-
tion. In addition, the area from which information is
gathered can be limited to within a local neighbourhood
of the decision maker or it can include the entire set of
system processors. Whatever policy is adopted in this
regard, it must facilitate rapid action by harnessing
the parallelism inherent in the system structure. The
approach taken in this paper is to organize the processors
in a virtual structure so that individual processors are
grouped into neighbourhoods and information gathering
within a neighbourhood occurs in parallel with that in
other neighbourhoods. The neighbourhoods themselves
are in turn grouped into higher-level neighbourhoods
and the pattern continues until at the highest level
there is just one neighbourhood which completes the
virtual interconnection of all the network processors.
The hierarchical nature of the structure implies that the
age, nature and precision of the information distributed
may vary between levels.

We present here an instance of this philosophy called
the Multiple Virtual Rings (MVR) protocol. MVR
structures each neighbourhood in the hierarchy as a
virtual ring in which an information-gathering token
circulates. The structure can be set up either statically or
dynamically. The nature of the configuration algorithm
allows each node to calculate its own position in the
structure, allowing for both local and global reconfigu-
ration on processor failure and repair. The remainder of
this section describes the context in which our work on
information dissemination is performed. Related work
on hierarchical processor organizations is surveyed
in Section 2. The MVR configuration algorithm is
described in Section 3. Strategies are outlined for
coping with failure in Section 4, which also discusses
issues encountered in the application of MVR to
load-balancing which must be addressed in all similar
hierarchical organizations. Section 5 explores the
importance of neighbourhood size and gives a method
for theoretically determining the virtual ring size which
is most appropriate to certain synchronization and
transmission delay assumptions. Section 6 evaluates the
hierarchical organization of distributed systems by
testing load balancing algorithm performance in a
system of 500 processors.

The background to our work lies in the investigation
of information dissemination for distributed load
balancing. One of the main components of a load
balancing algorithm is its information policy. This
specifies the amount of load information to be used
in arriving at a scheduling decision and the way in
which it is to be distributed. Information provided by the
information policy is used by a placement policy to
identify suitable hosts for the execution of jobs which are
eligible for remote scheduling. Issues which have to be

THE COMPUTER JOURNAL, VOL. 38, No. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/57/353871 by guest on 10 April 2024



58 J. G. VAUGHAN

addressed in the design of the information policy of a
distributed scheduling algorithm are as follows:

1. Centralization. Should information be exchanged
between every pair of processors in the network or
should it be sent to and distributed from a central
coordinator?

2. Periodicity. Should information be requested only
when needed, sent only on change of state or
distributed periodically? In the case of periodic
distribution, what period should be used?

3. Quantity. How much information is necessary to
describe a processor's load state and from what subset
of the system's processors should it be gathered at a
particular network node?

4. Quality. Information describing dynamic system
state grows irrelevant with age. The degree to
which it is useful depends on the frequency with
which it is gathered as well as the underlying
message transmission delays inherent in the network.

The degree to which a distributed algorithm should be
decentralized is one of the basic information-related
questions in load balancing. Zhou (1988) investigates
several algorithms and concludes that a centralized
approach to both information gathering and decision
making is best, due mainly to a reduction in message
traffic over the distributed approach. He also
concludes that there is little difference in performance
between periodic and non-periodic information policies.
Stankovic (1989) observes that most decentralized
algorithms will have 'points of autonomy' and 'points
of coordination' and comments on the tradeoff between
expending effort on information exchange and advanc-
ing the speed of decision making. He identifies the
solution of this tradeoff as being an algorithm design
decision. The MVR protocol presented in this paper
attempts to reconcile the centralized and distributed
philosophies by having centralized actions within each
base-level neighbourhood, distributing the neighbour-
hoods and centralizing the information summary at the
highest level. MVR is designed for centralized periodic
information gathering within each neighbourhood.

The issues of periodicity, information quality and
information quantity need to be determined for each
individual system by performing sensitivity tests.
The indications are that detailed information is not
required, but that a small amount of information must
be distributed in a timely manner in order to be useful.
The usefulness of gathering an increased quantity of
information is investigated by Casavant and Kuhl
(1987). They conclude that although the overhead
resulting from information gathering to detect the
global system state is too great for such an effort to be
profitable, it may be beneficial to gather and use
information about a small subset of the system. Eager
et al. (1986) advocate the use of adaptive load-balancing
policies which use very little information regarding the
state of the system. They show that such an approach

considerably improves performance over the case where
load balancing is not used, and is nearly as good as
approaches using more information.

The information quality issue is examined in Dikshit et
al. (1989) and Shin and Chang (1989) with respect to
frequency of collection, and in Mirchandaney et al.
(1989) with regard to the effect of transmission delays.
Dikshit et al. (1989), reporting on a testbed system for
the evaluation of load-balancing schemes using process
migration, conclude that poorer scheduling decisions
result from decreasing the frequency of information
distribution, and that load balancing is harmful if the
frequency falls below a certain level. Shin and Chang
(1989) comment on the difficulty of exchanging informa-
tion sufficiently often while maintaining low network
traffic overhead. Their solution is to have each
node broadcast an information update within a small
radius of itself whenever it experiences a state change.
Mirchandaney et al. (1989) discuss the performance
degradation caused by delays in information distribution
and job transfer. They find that when high delays
exist (greater than or equal to 10 times the mean
job service time), employing non-local information is
non-productive. In the presence of such delays,
load-balancing itself is useful only at high system loads.

2. RELATED WORK

Hierarchical processor organisations have been
described for both multiprocessing and distributed
processing configurations. Multiprocessor hierarchies
are presented in Ahmad and Ghafoor (1991), Horton
(1993), Maples (1985) and van Tilborg and Wittie (1984).
A multi-level approach to dynamic load balancing in
multiprocessor systems is examined by Horton (1993).
The algorithm is intended for use in the parallel solution
of partial differential equations, an application in which
each calculation phase is followed by a synchronization
phase during which the load-balancing algorithm is
applied. The algorithm bisects the set of processors,
balances the load between the two subsets and is applied
recursively to each subset until the newly-created subset
is indivisible. This approach concentrates on scheduling
rather than information distribution and is applied in
a quasi-static manner during synchronization. It also
differs from MVR in that its neighbourhood size is fixed
at 2, and scheduling action at a higher level must initiate
and terminate completely before scheduling action can
begin at a descendent lower level containing a subset of
the nodes considered at the higher level.

Maples (1985) reports on the MIDAS project, which
organizes the processors of a multiprocessor system in a
multi-level pyramidal fashion, so that in an L-level
system, the number of processors at the base of the
pyramid is 2*8L~1. At the base level, processors are
grouped in clusters of 16. At the next level, a secondary
processor oversees the operation of each cluster. These
secondary processors are in turn clustered and placed

THE COMPUTER JOURNAL, VOL.38, NO. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/57/353871 by guest on 10 April 2024



A HIERARCHICAL PROTOCOL FOR INFORMATION DISSEMINATION 59

under the control of another supervisory processor, and
the hierarchical organization continues until at the apex
of the pyramid there is just one supervisory processor.
Control directives, information and task delegation
flows vertically in the pyramidal structure. Processors
within a cluster are connected by a crossbar switch, and
communication and synchronization information flows
horizontally in the structure. The paper comments on
the performance of a two-level machine and describes
the expansion to machines of three and four levels,
the latter machine having 1024 processors at the base
level. The scheme reported in Maples (1985) differs
from the present work in that MIDAS imposes a
physical organization on the components of a multi-
processor system, whereas MVR structures the compo-
nents of a distributed system in a logical fashion.
In addition, MIDAS forms a physical hierarchy of
processors by dedicating special processors to super-
vision. This contrasts with MVR's virtual hierarchy in
which processors may be active at several levels and a
processor's position in the structure may change due to
re-initialization or re-configuration.

Ahmad and Ghafoor (1991) propose a two-level
organization of a multiprocessor system for load-
balancing purposes. At the lower level, processors are
grouped in spheres, and the information-collection and
scheduling functions within each sphere are centralized
at a pre-identified control node called a scheduler. At the
upper level, each scheduler collects information from
remote spheres and makes remote scheduling decisions
based on its local view of the global situation. Simulation
of this organization for a variety of multiprocessor
structures indicates good performance with respect to
response time, resource utilization and control overhead.

Van Tilborg and Wittie (1984) describe a technique for
scheduling competing task forces in multicomputers
which they call wave scheduling. This technique is based
on the organization of processors in a virtual hierarchy
which is not directly related to the physical connections
between nodes of the multi-computer. At the lowest level
are worker nodes which execute user tasks. Processors
at higher levels are designated as managers, and are
responsible for task force scheduling and maintaining
communications integrity. Managers may themselves be
organized under other managers at higher levels in the
virtual hierarchy. Direct exchange of control informa-
tion occurs only between adjacent hierarchy levels. At
the topmost level there are several managers which
exchange control and status information among them-
selves. Having many managers at a level facilitates
reallocation of function if a manager fails.

Hierarchical organizations of distributed processors
have been described in Evans and Butt (1994), Kim et al.
(1993) and Zhou et al. (1993). Kim et al. (1993) advocate
a hierarchical structure in order to reduce communica-
tions costs and increase fault tolerance. They describe a
two-level framework and discuss its application to the
problems of distributed mutual exclusion and majority

consensus. They believe this approach to be particularly
appropriate in an internetwork environment.

Evans and Butt (1994) describe network partitioning
techniques to be used in large distributed systems in
order to reduce the communication costs of load-
balancing algorithms. Their approach is to form
groups of processors according to geographical criteria
and apply load balancing algorithms at two levels in
the resulting system, i.e. within groups and between
groups. Their study is based on a simulated 16-processor
system and is largely concerned with the effect of group
membership (i.e. to which group each processor belongs)
on load-balancing performance. It examines static
group membership (with and without inter-group load
balancing), dynamic group membership and joint group
membership.

Zhou et al. (1993) describe the Utopia load sharing
facility for large distributed systems. Utopia uses a two-
level structure which organizes processors into clusters
in order to promote scalability. Within a cluster, the
Central and Global load balancing algorithms (Zhou,
1988) are provided as options. Information distribution
between clusters is subject to a directed graph organiza-
tion of the clusters in the case where clusters with extra
computing resources, called widely-sharable hosts, can be
readily identified. When the widely-sharable hosts are
not concentrated in a few clusters, the technique of
virtual clustering is used to form a sink node in the
directed graph. The digraph allows load information to
be disseminated with low overhead among those clusters
to which it is most useful.

3. MVR CONFIGURATION

A processor which is connected to a network and wishes
to cooperate with other network nodes to form a
hierarchy under MVR needs to know several items of
static information. These are, the total number of nodes
in the system (denoted by m), the logical i.d. of the
processor (denoted by N) and the maximum number of
processors to be connected in a single virtual ring
(denoted by p). The latter quantity is called the nominal
ring size and rings which connect exactly p processors are
referred to as complete rings. Due to the way in which the
MVR structure is built, some rings may contain fewer
than p processors and these are called incomplete rings.
The logical processor i.d. is particular to MVR and
determines a processor's position within the structure. It
is calculated on each configuration and reconfiguration
and does not persist when a processor leaves the
structure, albeit temporarily.

The MVR scheme does not identify particular
processors as having a uniquely supervisory function.
Rather, all processors function at the base of the
structure, while some processors may perform duties at
several levels in the hierarchy. The number of levels in the
hierarchy is a function of the total number of processors
to be connected, m, and of the nominal ring size, p. For

THE COMPUTER JOURNAL, VOL.38 , No. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/57/353871 by guest on 10 April 2024



60 J. G. VAUGHAN

convenience in the pseudocode which follows, we declare
a limit on the maximum number of levels. The number of
levels which actually occurs in a particular MVR
configuration is then calculated as follows:

number_of_levels := ceil (logpm);

Levels are numbered from 1 to number_of_levels such
that the base level is level number 1. Each processor
maintains a local configuration table comprising a record
of its MVR connections at each level:

const maxlevels = 10;
type

node_id = L.maxint;
levelrecord = record

connected, {connected is true if the node is
connected in a ring at level L}

firstnode, {firstnode is true if the node is a
firstnode}

lastnode: boolean; {lastnode is true if the node is a
lastnode}

predecessor, {if the node is not a firstnode,
then predecessor gives the
logical i.d. of node N's
predecessor in the ring}

successor, {if lastnode is false, then
successor gives the logical i.d.
of node N's successor in the
ring}

first_id: node_id {if lastnode is true, then firstjd
gives the logical i.d. of the
ring's firstnode}

end;

configuration_table = array[1..maxlevels] of
levelrecord;

var
configtab: configuration_table;

A virtual ring is designed to be traversed by a token
which originates at a particular node of that ring,
called the firstnode, passes through intermediate nodes
and ends its traversal at a preidentified node called the
lastnode. The token is created at the firstnode and is
destroyed on arrival at the lastnode. Token creation may
be periodic or event-driven, but up to now we have used
periodic token creation.

As the token travels through the nodes of the ring, it
accumulates information, so that when it arrives at the
lastnode, information has been gathered from all nodes
of the ring. In order for all nodes to be aware of each
others' status, the token should circulate once again in an
information dissemination phase. Thus in a p-node ring,
the token makes p — 1 internode hops to bring complete
ring information to the lastnode. This could be followed
by a further p — 1 hops to distribute the complete

information as far as the node preceding the lastnode.
This means that a total of 2(p — 1) internode hops are
needed for full dissemination of information within the
ring. However, since the lastnode possesses complete ring
information following one token traversal, it can make
an immediate central decision for the ring, and this is the
approach that we advocate.

When the number of system processors exceeds the
nominal ring size, more than one ring will exist at level 1.
Each of these rings will have its own circulating token, so
that information-gathering within the rings is concur-
rent. To facilitate system-wide information migration,
the level 1 rings are connected by a level 2 ring which has
its own circulating token. Since a token is passed from
node to node, certain processors of the level 1 rings
must also serve as processors in the level 2 ring. These
processors are called Interlevel Contact Points (ICPs),
and are responsible for transmitting information from
one level to another. The idea of an ICP is not only
applicable in MVR, but may also be applied in any
hierarchical information-distribution protocol which
does not appoint special supervisory processors.

A token circulating in a ring at level 1 terminates at the
lastnode of that ring. The information gathered by the
token must be sent to the ring's firstnode, since that node
is the ICP for communication to higher-level rings.
For this reason, a processor which is the lastnode of a
particular ring maintains the logical i.d. of the firstnode
of that ring in its corresponding levelrecord.

For a given nominal ring size, the number of levels in
an MVR structure depends on the total number of
processors to be connected. For many MVR structures,
all of the virtual rings in the structure will be complete,
i.e. no processor will exist at any level in a ring which
connects fewer than the number of nodes specified by the
nominal ring size. However, for certain combinations of
system size m and nominal ring size p, some of the virtual
rings may connect fewer than p elements. Thus for
p = 10 and m = 6, there is only one ring, which we call
incomplete. The gathering of information within incom-
plete rings takes place in the same manner as for
complete rings. However, the configuration algorithm
has to recognize that a ring is incomplete and adjust the
levelrecord entries accordingly.

Figure 1 shows a system of 20 processors connected by
an MVR structure using a nominal ring size of p = 4
processors. There are five complete rings at level 1, only
one complete ring at level 2 and the sole level 3 ring is
incomplete. There are three levels, comprising a total of
seven virtual rings and therefore seven asynchronously
circulating tokens. Five of these rings are at the base
level, one at level 2 and one at level 3. Parallelism occurs
both in information gathering and decision making due
to asynchronous operation of the rings. Consider the
level 1 ring connecting logical nodes 1,2,3 and 4. Node 1
is the firstnode and node 4 is the lastnode. A token will
originate at node 1, pass through nodes 2 and 3 and
terminate at node 4. All the nodes are connected at this

THE COMPUTER JOURNAL, VOL. 38, No. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/57/353871 by guest on 10 April 2024



A HIERARCHICAL PROTOCOL FOR INFORMATION DISSEMINATION 61

(a)

L.3

L2

LI

9 5

1

1 13

17

17

9
10 12

11

5
6 8

7

1
2 3

4

13
14 16

15

17
18 20

19

(b)

FIGURE 1. MVR interconnection of 20 processors with a nominal
ring size of p = 4 processors, (a) Plan view showing complete and

incomplete rings, (b) Elevation showing connection hierarchy.

level. To communicate information between the level 1
rings with firstnodes 1, 5, 9 and 13, a level 2 ring
is formed. The level 2 token circulates among the
processors from which level 1 tokens originate. Thus
the level 2 token begins its traversal at node 1, passes
through nodes 5 and 9, and terminates at node 13.
Information is collected and used within the level 2 ring
in the same manner as in the level 1 rings. In the 20-node
scheme of Figure 1, the level 1 lastnodes are 4, 8, 12, 16
and 20. When tokens arrive at these nodes, the completed
ring information is sent to nodes 1, 5, 9, 13 and 17,
respectively. This information is collected at level 2 and
in due course complete level 2 information is returned to
node 1 (the level 2 firstnode) from node 13 (the level 2
lastnode). Level 3 information is collected and returned
to node 1 (the level 3 firstnode) by a token circulating
between nodes 1 and 17.

Information moves vertically between adjacent levels
of the hierarchy through the ICPs. The hierarchical
structure of MVR is emphasized in Figure l(b) by giving
an elevation view which shows the vertical communi-
cation paths from level 1 to level 2 at nodes 1,5,9,13 and
17, and from level 2 to level 3 at nodes 1 and 17. The
situation at level 2 is interesting, since as well as the
complete ring connecting nodes 1, 5, 9 and 13, there is an
incomplete ring which contains just one element, node
17. In this latter ring, node 17 is both the firstnode and

the lastnode. Thus it is not necessary to have a token
circulating within this virtual ring. At level 3, there is one
ring which connects just nodes 1 and 17. Node 1 is the
firstnode and node 17 is the lastnode. Consequently,
node 17, although connected at all three levels, only
handles a token at levels 1 and 3. In contrast, node 1
which is also connected at the three levels, handles a
token for each level.

To join an MVR structure, a processor must complete
an appropriate number of levelrecords in its configura-
tion table. In order to accomplish this, the processor
needs to know the total number of processors in the
system as well as its own MVR-specific logical i.d.
Furthermore, all processors need to agree on the
values of these items. The MVR configuration phase is
decentralised and proceeds according to the following
steps:

1, Configuration begins when all processors exchange
messages to form a distributed queue. Once the queue
is formed, all processors are aware of the system size,
m. A processor can find the nominal ring size, p, by
consulting a previously-constructed local table. As we
discuss later, the best nominal ring size to use is
predictable and depends on the system size. From this

procedure configure (var configtab : configuration_table;
N, (logical i.d. of this node}
m, (number of nodes in system}
p, (nominal ring size } : node_id);

var
number_of_levels: L.maxlevels;
i, L: L.maxint;
first: boolean;
begin
number_of_levels := ceilGo|» m);
for L := 1 to number_of_levels do

with configtab[L].levelrecord do
begin
connected := ((N -1) mod p1""1 = 0);
if connected then

begin
firstnode := «N -1) mod p L = 0);
lastnode := ((N • 1 + pLrl)mod pL = 0);
if not firstnode then

predecessor:= N-p
if not lastnode then

L-l.

successor := N + p
else

lastnode := true;
if lastnode then

begin
i:=N;
first := firstnode;
while not first do

begin
i := i - p1-1;
first := (((i - 1) mod pk) = 0);
end;

firstjd := i
end

end
end

end; (procedure configure)

FIGURE 2. MVR configuration procedure called by each processor.

THE COMPUTER JOURNAL, VOL. 38, No. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/57/353871 by guest on 10 April 2024



62 J. G. VAUGHAN

information, the processor can calculate the number
of levels in the hierarchy.

2. The processor at the head of the queue takes logical
i.d. 1 and informs its successor which then takes
logical i.d. 2, continuing in this manner until the
processor at the tail of the queue takes logical i.d. m.
In order to maintain a physical foundation for the
MVR structure, processors subsequently broadcast
their (physical_id, logical_id) pairs. Thereafter each
processor maintains a table which enables it to
associate a physical network address with a given
logical i.d.

3. Each node executes the configuration algorithm
shown in Figure 2 in order to complete its configura-
tion table. This algorithm is called only when the
conditions p > 1 and m ^ p are true.

This configuration procedure assumes that a processor's
position in the logical structure does not affect its
performance due to the topology of the physical
network. If this assumption does not hold, steps 1 and
2 of the configuration procedure must be modified
accordingly. If a processor attempts to form a distributed
queue when one already exists, it is joined to the end of
the existing queue and informed of the i.d. of its
predecessor, from which it can calculate its own logical
i.d. and the system size. Its attempt to form the
queue alerts the other processors to its existence and
enables them to respond by sending it their (physical_id,
logical_id pairs).

4. EXPERIENCE WITH THE APPLICATION
OF MVR

Experience in the application of MVR to distributed
load balancing has highlighted some interesting situa-
tions. Some of these may arise due to the MVR structure
itself, but many are caused by the basic idea of a
hierarchy of cooperating neighbourhoods and must be
addressed by any instance of this abstraction.

The first case concerns how MVR should react to
certain types of failure. If a logical link failure between
processors />, and Pj occurs, this is detected at processor
Pi as a failure to find a route to Pj (and vice versa). Pt

may regard this situation as equivalent to failure of
processor Pj and hence link failure is dealt with in the
same manner as processor failure. Processor failure not
only necessitates a restructuring of MVR links, but can
also give rise to token loss.

Although MVR generally assumes an under-
lying reliable message delivery subsystem, loss of the
information-gathering token can still occur when a token
sender node believes that the next node in the ring is
active and transmits the token, subsequently discovering
that the destination has failed. Special recovery actions
to cope with token loss are unnecessary since MVR's
normal actions make it resilient to such a failure. Within
each virtual ring, a new token is periodically created by
the firstnode and destroyed when it reaches the lastnode.

Thus when a token is lost, a new token will be created in
any case at the beginning of the next information-
collection period.

The short-term approach to reforming the MVR
structure following failure of processor Pj is to
re-calculate the logical links of all processors previously
directly connected to Pj at some level in the MVR
hierarchy. If the failed processor is a firstnode or a last-
node in some ring, then the surviving processors in that
ring must agree on a new firstnode or lastnode. This may
cause partitioning of the MVR structure (even though
the physical network may not be partitioned), since loss
of a firstnode at level L implies that there is no route for
information exchange with levels L + 1 and above. Note
also that a firstnode at level L is also a firstnode at levels
L— 1 down to 1. Figure 3(b) shows the 27-processor
structure of Figure 3(a) after failure of node 1. Note that
the structure now exists as three separate parts whose
highest levels are:

1. An incomplete level 1 ring connecting nodes 2 (the
new firstnode) and 3.

2. An incomplete level 2 ring connecting nodes 4 (the
new firstnode) and 7.

3. An incomplete level 3 ring connecting nodes 10 (the
new firstnode) and 19.

The lower-level rings connected by the level 2 and 3
incomplete rings are themselves complete. This gives
rise to a need for a medium-term solution to processor
failure, which is reconfiguration. Reconfiguration may
be initiated by a node which discovers that one of the
original members of a ring in which it operates has
been out of operation for an extended period of time.
When a processor receives a reconfiguration message, it
is obliged to yield priority to the request and take place in
a new configuration phase. Thereafter, reconfiguration
proceeds in the same manner as the initial configuration
procedure described in the previous section. Logical
node i.d.s are reassigned and the MVR structure
configured for the new system size. This can mean the
use of a different nominal ring size p, although a policy
decision can be taken to maintain the original ring size
on reconfiguration since the failed processors may be
expected to rejoin the system at some future stage. The
dynamic assignment of logical node i.d.s means that
saving the structure of the original configuration for use
when the failed processors are repaired is of no value.
Thus, in Figure 3(c), which shows the partitioned system
of Figure 3(b) after reconfiguration, it must be under-
stood that the processors connected as ring nodes may
have entirely different physical addresses to the pro-
cessors at the same positions in Figure 3(a). When a
repaired processor wishes to join an existing MVR
structure, it broadcasts its request to the other system
processors and is duly informed (by the processor with
highest existing logical i.d.) of its new logical i.d., the
number of system processors and the nominal ring size in
use. In this way the repaired processor may calculate its

THE COMPUTER JOURNAL, VOL.38, No. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/57/353871 by guest on 10 April 2024



A HIERARCHICAL PROTOCOL FOR INFORMATION DISSEMINATION 63

position in the structure and current structure members
are informed of the new arrival.

The second case arises from a restriction on job
migration possibilities due to the MVR structure. If a
scheduling action at level L seeks to balance load among
level L — 1 rings, the jobs which are available for direct
transfer from these rings are those resident at the L — 1
ICPs. Thus a scheduling decision at level L may be futile
if no transferable job exists at the ICP in question. The
solution that we have adopted is to bias job transfers
within the level L—\ rings so that transferable jobs are
always migrated to the ICPs even if such a transfer is not
immediately profitable from a scheduling point of view.

The third case concerns the attachment of appropriate
significance to information collected from different levels
of the hierarchy. The problem arises in MVR because of

the likely existence of incomplete rings. However, this is a
problem that occurs in any hierarchical information-
collection structure, since no matter how the groups of
processors are formed, there is always a possibility that
some groups will be larger than others. To illustrate the
situation, suppose that the objective of a load-balancing
algorithm is to try to schedule equal numbers of jobs on
all processors. Consider the nineteen-processor system of
Figure 4 which uses a nominal ring size of p = 3.
Processor 19, although it is active at all three levels, only
communicates with other processors at level 3. Suppose
the system is perfectly balanced with, say, two jobs at
each processor. The job counts reported by the
processors at each active level are shown in Table 1.
The count reported at level 3 by processor 19 is the same
as its level 1 count. Thus system load appears to be

2 3

5 6 8 9
(b)

A A A A
5 6 8 9

(a)

24 23 21 20 12 11 18 17

22

FIGURE 3. (a) MVR interconnection of 27 processors with a nominal ring size of p = 3 processors, (b) Interconnection pattern after failure of node
1. (c) MVR reconfiguration of (b) with a nominal ring size of p = 3 processors.

T H E COMPUTER J O U R N A L , V O L . 3 8 , N o . 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/57/353871 by guest on 10 April 2024



64 J. G. VAUGHAN

12 11 18 17

19

(a)

L3

L2

LI

9

19 4

1

1 7 13

>

10 16

19 4 1 7 13
5 6 2 3 8 9 14 15

(b)

10 16
11 12 17 18

FIGURE 4. MVR interconnection of 19 processors with a nominal
ring size of p = 3 processors, (a) Plan view showing virtual ring

structure, (b) Elevation showing three-level connection hierarchy.

unbalanced at level 3. To compensate for this type of
information-reporting error, we use a weighting factor
WL at each level L of every ICP such that

WL.'- 1

where p is the nominal ring size and r is the actual
number of processors connected to this ring.

Then the load information reported to level L + 1
from level L is multiplied by WL. Processor 19 in Figure

4 has WL values at levels 1, 2 and 3 of 3, 3 and 1,
respectively. When these weighting factors are applied to
the job counts, the values shown in Table 2 ensue. As a
result, system load no longer appears to be unbalanced at
level 3.

The fourth case is caused by interference between
decision-making activities at different levels in the virtual
ring hierarchy. In the load-balancing context, the
participation of an ICP processor in a job scheduling
decision at level L affects information-gathering and
decision making in rings for which the processor is
also an ICP below level L and may delay decision
implementation in such rings at levels above L. To
resolve potential inter-level conflict, a tristate flag,
termed the C-flag, is used at each active level of an
MVR node. The flag takes the values 'changed',
'unchanged' and 'deciding'. A level L C-flag is initialized
with the value 'unchanged', indicating that a job transfer
is not being considered at levels above L. If the flag is set
to 'changed' then a job transfer involving the node has
recently been decided at a higher level, implying that any
current information-gathering or decision-making effort
should be cancelled and restarted. If the flag is set to
'deciding', a job transfer is under consideration at a level
above L but it is not definite that the transfer will take
place. The C-flag at level L is checked when an MVR-
connected processor P begins to be involved in a
scheduling decision at that level. If the flag indicates
'changed', its value is set to 'unchanged', the current
decision-making phase is aborted and a new information-
gathering phase is initiated. If the flag is set to 'deciding',
the decision phase is suspended until the flag again
changes state, upon which its new value is checked. If the
level L C-flag has the value 'unchanged', then processor
P checks its C-flags at all levels below L. If any of these is
not set to 'unchanged', the level L decision is postponed
until all lower-level C-flags indicate 'unchanged'.
Once the level L decision is allowed to proceed,
processor P sets its C-flags at level L and all lower levels
to 'deciding' and begins the decision phase, cooperating

Level

1
2
3

Level

1
2
3

1

2
6

18

1

2
6

18

2

2

2

2

TABLE 1.

3 4

2 2
6

TABLE 2

3 4

2 , 2
6

Job counts reported at each level

5 6 7 8

2 2 2 2
6

. Job counts reported at

5 6 7 8

2 2 2 2
6

T H E C O M P U T E R

9

2

1 by the processors of Figure 9:

Processor i.d.

10 11

2 2
6

18

12 13

2 2
6

each level by the processors of Figure 9

9

2

Processor i.d.

10 11

2 2
6

18

J O U R N A L , V O L . 38,

12 13

2 2
6

No. 1,

unweighted job counts

14 15

2 2

16

2
6

: weighted job counts

14 15

2 2

1995

16

2
6

17

2

17

2

18

2

18

2

19

to
 t

o
 to

19

2
6

18

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/57/353871 by guest on 10 April 2024



A HIERARCHICAL PROTOCOL FOR INFORMATION DISSEMINATION 65

with other nodes in its level L ring if necessary. When the
decision is made, processor P sets its C-flags at level L
and all lower levels to 'changed' or 'unchanged',
depending on the outcome of the decision.

5. SELECTING A NOMINAL RING SIZE

The MVR structure facilitates parallel decision-making
due to simultaneous activities in rings at the same level.
The degree of parallelism increases in proportion to the
number of rings and in inverse proportion to the nominal
ring size. The speed of making a system-wise decision
may be expected to increase in proportion to the degree
of parallelism. However, higher parallelism implies a
greater number of levels in the MVR hierarchy and
interlevel synchronization delays retard system-wide
decision speed. Consequently, if the number of levels is
too great, synchronization overhead will outweigh the
advantage of parallel action. It follows that, for a given
system size of m processors, there is a nominal ring size
popt which is optimal in the sense of yielding the fastest
decision speed. In this section we describe a function we
have used to describe algebraically the structure imposed
on a system of processors by the MVR protocol. The
function is called a path function and it may be used to
predict popt theoretically. In this way the local table of
best nominal ring size versus system size which is used by
each processor in step 1 of the MVR configuration
procedure can be constructed beforehand.

The path function is denoted by V =f(s), where s
is a variable used to reflect synchronizations between
levels in the MVR hierarchy. Coefficients of s° describe
transmission delays on the virtual paths between nodes.
Coefficients of s', i ^ 1, describe synchronizations
between levels. The following rules may be used to
construct the path function for a particular system size
and nominal ring size:

Rule 1: The value of V{s) is initially 0. For each
internode path not having a parallel path that
has already been taken into consideration, a
coefficient of s° is added to V{s).

Rule 2: Each synchronization between levels L and
L — 1 at an ICP adds a coefficient of s to V{s).
Synchronizations which may occur in parallel
MVR substructures are reckoned for only one
of those substructures. If L = 2, the coefficient
of s is the value of the path function for the
level 1 ring linked to the ICP. If L > 2, the
coefficient is formed by deleting the s° term
from the path function describing the sub-
structure connected to the ICP below level L.

Figure 5 shows sample configurations to be used in the
illustration of these rules. Figure 5(a and b) shows the
simple application of Rule 1. In Figure 5(a), a level 1
token travels from node 1 to node 2 and complete ring
information is returned to node 1 from node 2. Thus the
number of paths traversed is two, which becomes the

coefficient of s°, so the path function V is V = 2.
Similarly, in Figure 5(b), three paths are traversed
yielding V = 3.

The s° coefficient for Figure 5(c) is calculated as
follows. Three paths are traversed at level 1, that is, from
node 1 to node 2 to node 3 as in Figure 5(b). In addition,
a level 2 token travels from node 1 to node 4 and
information is returned to node 1 from node 4, giving an
extra two path traversals. Thus the coefficient of s° is 5.
The sl coefficient is determined according to Rule 2
by noting that there is one interlevel synchronization,
which occurs between levels 2 and 1 at node 1. The
synchronization is represented by s and is multiplied by
the path function of the level 1 structure with which level
2 synchronizes. The level 1 path function is 3 as in Figure
5(b), so the path function-component due to synchro-
nization is 3s. The complete path function is formed by
adding the separate components together, so V — 5 + 3s.

In Figure 5(d) the s° coefficient is still 5, since the three
additional paths between nodes 4, 5 and 6 are in parallel
to the paths connecting nodes 1, 2 and 3. There are two
interlevel synchronizations, each adding a component of
value 3s to the path function. Thus V — 5 + 3s + 3s =
5 +6s.

In Figure 5(e), the three level 1 paths joining nodes 1, 2
and 3 are paralleled by those of rings 4-5-6 and 7-8-9,
so the level 1 s° coefficient contribution is 3. At level 2,
there are 3 paths in the ring connecting nodes 1, 4 and 7,
so the level 2 s° coefficient is 3. There is an interlevel
synchronization at nodes 1, 4 and 7, each contributing a
term of value 3s. Thus the path function is V = 3 + 3 +
3s + 3s + 3s = 6 + 9s.

Figure 5(f) adds a level 3 connection between nodes 1
and 10 which contributes an extra 2 units to the s°
coefficient. This is added to the path function of Figure
5(e) to give 8 + 9s. At node 1 there is a synchronization
of three levels. The synchronization expression corre-
sponding to the levels up to and including level 2 for
which node 1 is an ICP is 95. This is multiplied by s to
indicate the extra level 3 synchronization, giving a path
function component of 9s2. The complete path function
for this structure is therefore V = 8 + 9s + 9s2.

Figure 5(g) extends the MVR structure by the addition
of extra nodes whose interconnections operate in parallel
to those already existing at levels 1 and 2. Thus the
path function component corresponding to those levels
continues to be 8 + 9s. For level 3, there is an additional
synchronization at node 10 which contributes an extra
9s2 to the path function. Thus the complete path function
is V = 8 + 9s + 9s2 + 9s2 = 8 + 9s + 18s2.

Table 3 lists path functions for system sizes of
four to 20 nodes and nominal ring sizes of three to six
nodes. To interpret the path function values, we recall
that coefficients of s° in V(s) account for transmission
delays, coefficients of s1 correspond to synchronizations
between pairs of levels, coefficients of s2 describe
synchronization between three levels, and so on. For
the purpose of interpretation, the powers of s in V(s) may

THE COMPUTER JOURNAL, VOL.38, No. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/57/353871 by guest on 10 April 2024



66 J. G. VAUGHAN

(a) 2»=2

(b)

5 3

(f)

(c) 3s

10

3

2

(d) 5 3

(e)

2 12 11 18

!P=8 + 9s+ 18s2

FIGURE 5. MVR structures with their corresponding path functions.

TABLE 3. Path functions corresponding to a range of system sizes
and nominal ring sizes

System
size

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

3

5 + 35
5 + 55
5 + 65
6 + 65
6 + 85
6 + 95
8 + 95 + 9s2

8 + 1U + 9s2

8+ 125 + 9.S2

8 + 95+1252

8 + 95+1452

8 + 95+1552

8 + 95+ 15s2

8 + 95+ Ms2

8 + 95+1852

9 + 95+1852

9+115+1852

Nominal ring size

4

4
6 + 45
6 + 65
6 + 75
6 + 85
7 + 85
7+105
7+115
7+12i
8+12s
8 + H 5
8+155
8+I65
10+ I65+ I652

10+ I85+ I652

10+ 195+ I652

10 + 205+ I652

5

5
7 + 55
7 + 75
7 + 85
7 + 95
7 + 105
8+ 105
8 + 125
8 + 135
8 + 145
8+155
9+155
9 + 175
9+ I85
9+195
9+ 205

6

6
8 + 65
8 + 85
8+95
8 + IO5
8 + II5
8 + 125
9 + 125
9 + 145
9 + 155
9+165
9 + 175
9+185
10+ I85
10 + 205

be ranked in any order, depending on the relative
magnitude of transmission and synchronization delays.
One order we have investigated has ranked transmission
delays as being more significant than synchronization
between pairs of levels and less significant than synchro-
nizations between three or more levels. Ordering the
powers of s by increasing delay contribution we therefore
get

sl < s < s1 < sl < • • • < s",

where n + 1 is the number of levels in a given
configuration. We apply this ordering to the path
functions of Table 3 and assume in doing so that the
coefficients of less significant powers of s are negligible
when compared with those of the more significant
powers. As our objective is to increase decision-making
speed, and therefore to minimize delays, the following
best nominal ring sizes are predicted. For system sizes, m,
from 2 to 5, the best predicted ring size is equal to the
system size; in other words a single-ring structure is best.
For systems with six to nine nodes, the best nominal ring

THE COMPUTER JOURNAL, VOL.38, No. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/57/353871 by guest on 10 April 2024



A HIERARCHICAL PROTOCOL FOR INFORMATION DISSEMINATION 67

size is 3, giving two-level structures. For 10 to 16 nodes
the best ring size is 4 and for systems with 17 to 20 nodes
Popt = 5. In this way, the path function can be used to
predict an appropriate nominal ring size for a particular
system size. The predicted value can be considered an
initial approximation which can be subsequently refined
by experiment.

6. SIMULATION EXPERIMENTS

This section presents an evaluation of hierarchical
information distribution in distributed systems. The
problem we have selected is that of load balancing in a
large distributed system comprising a group of proces-
sors situated at each of five geographically remote sites.
At each site, interprocessor communication occurs over
an ethernet with a transmission rate of lOMbit/s, which
is modelled according to the description provided in
Schwartz (1987). It is assumed that each group has its
own file server, so that job migration arising from load
balancing within each group is by means of command
line transfer. The transmission delay due to local
job migration is modelled as the time to transfer one
minimum-sized ethernet message, that is, 72 bytes, 46 of
which are data. The objective of load balancing at a
site is to reduce the mean job response time over all the
processors at that site.

It is well known (Zhou, 1988) that load balancing
performance improves with increasing number of pro-
cessors, up to a certain limit. Accordingly, we performed
preliminary simulation tests which showed that, under
the conditions specified above, there was no improve-
ment in system response time for more than 100
processors per site. Since we wished to investigate
the conditions under which load balancing might be
worthwhile in large systems, we set the number of
processors at each site to 100, making a total of 500
processors in the overall system.

The interconnection pattern of the resulting distrib-
uted system is shown in Figure 6. The five group file
servers are directly connected to each other by point-to-
point links with transmission speeds lower than the
ethernet rate. Job migration between processor groups
must be implemented by migrating the associated
job files. We assume that each job has a single associated
file whose size is generated from the empirical distribu-
tion published for the Unix system by Mullender and
Tanenbaum (1984). Transmission delays between groups
are modelled as multiples of the time it would take
to transfer the job files across an ethernet. In this
calculation the maximum amount of data which can be
held in an ethernet frame (1500 bytes) is taken into
account, the multiplication factor is 103 and jobs are
transmitted in several frames if necessary. The model
incorporates the CPU overhead of message transmission
and reception as follows: each time a message is
transmitted to or received from a processor, a system

2 100 102 200

25

400 302

FIGURE 6. Interconnection pattern of the 500-processor simulated
system.

process is started at that processor with an execution
time of 20 ms.

Our investigation of load balancing in this large
distributed system is based on the following reasoning.
There is no advantage to balancing load between
more than 100 processors. However, if there is no load
balancing between groups, a group with a higher average
load than that of the other groups has no means of
relief. Experiments performed by Zhou (1988) identify
centralized load balancing as yielding the best perfor-
mance. A logical disadvantage of centralized system-
wide load balancing is that load balancing is neutralized
if the load-balancing processor fails. A compromise is to
apply centralized load balancing within each group of
processors. Load balancing between groups then allows
system-wide scheduling while minimizing performance
degradation if one of the load balancing processors fails.

We performed a discrete-event simulation of the
system shown in Figure 6, using the following
additional parameters: CPU scheduling within each
processor is round-robin with a time quantum of
100 ms. Job execution times are generated from an
exponential distribution with a mean 1/fi of 1.492 s,
which is the execution time mean used in Zhou (1988).
Job interarrival times are exponential with a mean I/A
which changes in order to vary the offered system load
P = VM-

Three load-balancing algorithms were simulated. For
all these algorithms, the load index, which indicates the
busyness of each processor, is the number of jobs waiting
to use the processor. The performance index is the mean
job response time and the objective is to minimize
this quantity. The algorithms have the following
characteristics in common: The load-balancing decision
is initiated by the arrival of a job and the arriving job
itself is the one selected for possible remote execution.

THE COMPUTER JOURNAL, VOL.38 , No. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/57/353871 by guest on 10 April 2024



68 J. G. VAUGHAN

The job is eligible for transfer if its execution time is less
than a threshold TCPU (set to 100 ms for these tests) and
the current length of the CPU queue is greater than a
threshold T{ (equal to 1 for these tests). Algorithmic
stability is assured by allowing jobs to be transferred to a
remote site at most once before being executed.

The CENTRAL algorithm (Zhou, 1988; Zhou et al.,
1993) is well-known and is used here as a basis
for comparing the value of partially-distributed load
balancing to completely centralized load balancing.
The DistCent algorithm is a distributed application of
the CENTRAL algorithm based on the two-level
structure shown in Figure 6. Since it is known from the
preliminary tests that load balancing between more than
100 processors does not improve performance, the
Disjoint-Central algorithm, which operates independ-
ently in each 100-processor group, provides a benchmark
against which the value of including greater numbers
of processors in the load balancing activity can be
assessed. The information and location policies of these
algorithms are as follows:

6.1. CENTRAL

Every P\ seconds (Pl = 3s here), processor 1, acting as
the load information centre (LIC), receives load updates
from all the other processors and assembles them into a
load vector. If the load of a processor is the same as that
sent out the last time, no update needs to be sent to the
LIC. The LIC acts as a central scheduler for all the
processors. When a job is eligible for load balancing,
the processor sends a request to the LIC, together
with the current value of its load. The location policy of
CENTRAL searches the load vector for the processor
with the lowest load and if this load is lower than that of
the job's current location by a relative transfer threshold
A, (set to 1 for CENTRAL and DistCent) or more,
the job is sent to that processor. Otherwise, the job is to
be executed at its current location. If there are several
processors with the same shortest queue length, one of
them is selected randomly. The originating processor is
informed of the execution site and the load vector is
updated to reflect this decision.

6.2. DistCent

The network is logically partitioned in accordance with
the physical boundaries shown in Figure 6. The ethernet-
connected processors form five local groups at level 1.
The groups contain processors 1 to 100, 101 to 200, 201
to 300, 301 to 400 and 401 to 500, the LICs for these
groups being processors 1, 101, 201, 301 and 401,
respectively. Within each group, the CENTRAL algo-
rithm is applied with information period P} (P{ = 3s)
and relative transfer threshold A, (A! = 1). The LICs
of the level 1 groups are connected at level 2 and
the CENTRAL algorithm applied between these with
information period P2 (Pj = 10s) and relative transfer
threshold A2 (A2 = 100), using processor 1 as the

coordinator or 'superLIC. Information distribution
occurs in parallel in the five level 1 groups and the
single level 2 group. The information collected and
distributed for each group at level 2 is the sum of the load
indices of all the processors belonging to that group.
When a job arrives at a processor it triggers a request to
the local level 1 LIC. This in turn consults the superLIC
which decides the best group in which the job should
execute. If this is not the job's current group, the job is
sent to a remote level 1 LIC which then schedules the job
for execution within the remote group. Otherwise, the
job is executed in its current group at a site determined by
the local LIC.

6.3. Disjoint-Central

The network is logically partitioned in accordance with
the physical boundaries shown in Figure 6. The ethernet-
connected processors form five local groups. The groups
contain processors 1 to 100,101 to 200, 201 to 300, 301 to
400 and 401 to 500, the LICs for these groups being
processors 1, 101, 201, 301 and 401 respectively. Within
each group, the CENTRAL algorithm is applied with
information period P\ (Pl = 3s) and relative transfer
threshold Ai (Aj = 1). There is, however, no load
balancing activity between the five groups.

Two types of experiments were carried out. In the first
type, the load levels are homogeneous, i.e. the offered
load is the same at every processor in every group. In the
second type, load levels are homogeneous within groups
but heterogeneous between groups, so that one group
has a higher offered load than the other four. In all
experiments, independent replications were performed to
ensure that the results presented are within 5% of the
mean value at the 95% confidence level.

3800 -

R
E
S
P
o
N
S
E

T
I
M
E

(mS)

3400 -

3000 -

2600 -

2200 -

1800

0.35 0.5

LOAD LEVEL

0.65

FIGURE 7. System-wide mean job response times plotted against
load level for the three load balancing algorithms.

THE COMPUTER JOURNAL, VOL.38, NO. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/57/353871 by guest on 10 April 2024



A HIERARCHICAL PROTOCOL FOR INFORMATION DISSEMINATION 69

6.4. Experiment 1

This experiment examines the performance of the
algorithms under homogeneous loading conditions for
different load levels. Figure 7 shows the system response
time plotted against load level for the three algorithms. It
can be seen that the worst performance is obtained from
CENTRAL, which is not surprising since this algorithm
performs best for fewer processors. The best results
are obtained for the Disjoint-Central algorithm, again
supporting the argument against load balancing among
large numbers of processors. The DisCent algorithm
gives a response time which lies between those of the
other two algorithms. Thus, system-wide load balancing
is not justified in large distributed systems under
homogeneous loading conditions.

6.5. Experiment 2

In this experiment, one group experiences a very high
load level (p = 0.8), while the load level in the other
groups is lighter and the same in each of the four groups.
The mean system-wide job response times are displayed
in Table 4(a) for light load levels of p = 0.35 and p = 0.5.
As in the case of homogeneous loading, the Disjoint-
Central algorithm yields the best performance, followed
by the DistCent and CENTRAL algorithms. However,
the situation within the heavily-loaded group is different,
as shown in Table 4(b). Here, Disjoint-Central gives a
very poor performance owing to the impossibility of
migrating jobs from this group to relieve the heavy load
level within it. The results from the CENTRAL
algorithm are better, while the best results are delivered
by DistCent.

It can be concluded that, under the stated operational
conditions, load balancing among large numbers of
processors always results in a cost to the system by way
of degraded mean system-wide job response time.
However, having no system-wide load balancing may
give rise to unacceptable local response times in subsys-
tems. The two-level partially distributed DistCent algo-
rithm consistently performed better than the completely
centralised CENTRAL algorithm, while giving better local
response in heavily-loaded subsystems than the localized
Disjoint-Central algorithm. This validates the hierarchical
approach to information distribution. The real value of
DistCent lies in the economic advantage of applying it in
systems where loading is heterogeneous rather than

TABLE 4. Response times in a heterogeneously-loaded system: four
groups operate with p = p ^ , and the remaining group with p = 0.8

(a) Systemwide response (b) Heavily-loaded group
times (ms) response times (ms)

Algorithm Plight = 0-35 piigh, = 0.5 Aight = 0.35 Plight = 0.5

Central 2659
DistCent 2489
Disjoint-Central 2323

2951
2713
2413

2348
2147
2987

2676
2150
3244

purchasing extra equipment to deal with localized high
load levels.

7. SUMMARY

We have presented an organisation of a distributed
system which allows information to be gathered in a
parallel, structured fashion. The organization imposes a
virtual interconnection pattern on the system such that
system processors are grouped in rings which in turn are
connected to higher-level rings in a multilevel hierarchi-
cal structure. The rings are traversed by information-
gathering tokens which terminate at a processor which is
potentially a centralized decision maker. These rings can
be configured dynamically and patched or reconfigured
on the occurrence of processor or link failure and repair.
The nominal ring size is an important parameter of the
configuration algorithm, and we have shown how an
algebraic description of the transmission and synchroni-
zation delays in the MVR structure may be formulated in
order to determine the virtual ring size which is most
appropriate to the delay characteristics of the structure.

Although the organization has been presented here as
a hierarchy of rings, many of the points which have
been discussed are applicable to a general hierarchical
organization where each group of processors in the
hierarchy is linked together by a connection pattern which
is not necessarily a ring. The configuration algorithm
needs only slight modification to substitute another
virtual topology for the ring. Vertical information-flow
paths must exist in any such structure, so the function of
the ICPs will have to be continued in some manner. The
problem of weighting information appropriately at
each level will exist no matter what topology is used.
Likewise, the resolution of conflict between levels is a
topology-independent issue.

We have explored the application of a load balancing
algorithm in a large distributed system organized as a
two-level hierarchy. The performance of the hierarchical
algorithm, DistCent, has been compared with that of a
centralized algorithm applied to the overall system
(Central) and to disjoint subsystems (Disjoint-Central).
The hierarchical algorithm has functioned successfully,
yielding better performance than the completely central-
ized algorithm for the large system which we have
simulated. It has also been shown to provide relief for
heavily-loaded subsystems under asymmetric loading
conditions. Comparison of DistCent with Disjoint-
Central does, however, indicate that system-wide
scheduling in large distributed systems is justified by
taking advantage of geographical heterogeneity in
system load rather than on the basis of improving
overall system response.

ACKNOWLEDGEMENT

The author wishes to thank Mark O'Connor for his
assistance with the simulation experiments.

THE COMPUTER JOURNAL, VOL.38, No. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/57/353871 by guest on 10 April 2024



70 J. G. VAUGHAN

REFERENCES

Ahmad, I. and Ghafoor, A. (1991) Semi-distributed load
balancing for massively parallel multicomputer systems.
IEEE Trans. Software Eng., 17, 987-1004.

Casavant, T. L. and Kuhl, J. G. (1987) Analysis of three
dynamic distributed load balancing strategies with varying
global information requirements. In Proc. 7th Int. Conf.
on Distributed Computing Systems, pp. 185-192. IEEE
Computer Society Press, New York.

Dikshit, P., Tripathi, S. K. and Jalote, P. (1989) SAHAYOG: a
test bed for evaluating dynamic load-sharing policies.
Software—Practice and Experience, 19, 411-435.

Eager, D. L., Lazowska, E. D. and Zahorjan, J. (1986)
Adaptive load sharing in homogeneous distributed systems.
IEEE Trans. Software Eng., 12, 662-675.

Evans, D. J. and Butt, W. U. N. (1994) Load balancing with
network partitioning using host groups. Parallel Comput., 20,
325-345.

Horton, G. (1993) A multi-level diffusion method for dynamic
load balancing. Parallel Comput., 19, 209-218.

Kim, C , Lee, J.-Y. and Park, C.-M. (1993) Hierarchical
decision structure for distributed algorithms. In Proc. 4th
Workshop on Future Trends of Distributed Computing
Systems, pp. 203-207. IEEE Computer Society Press, New
York.

Maples, C. (1985) Pyramids, crossbars and thousands of
processors. In Proc. 1985 Int. Conf. on Parallel Processing,
pp. 681-688. IEEE Computer Society Press, New York.

Mirchandaney, R., Towsley, D. and Stankovic, J. A. (1989)
Analysis of the effects of delays on load sharing. IEEE Trans.
Comp.,38, 1513-1525.

Mullender, S. J. and Tanenbaum, A. S. (1984) Immediate files.
Software—Practice and Experience, 14, 365-368.

Schwartz, M. (1987) Telecommunications Networks: Protocols,
Modeling and Analysis. Addison-Wesley, Reading, MA.

Shin, K. G. and Chang, Y.-C. (1989) Load sharing in
distributed real-time systems with state-change broadcasts.
IEEE Trans. Comp., 38, 1124-1142.

Stankovic, J. A. (1989) Decentralized decision making for task
reallocation in a hard real-time system. IEEE Trans. Comp.,
38,341-355.

van Tilborg, A. M. and Wittie, L. D. (1984) Wave scheduling—
decentralized scheduling of task forces in multicomputers.
IEEE Trans. Comp., 33, 835-844.

Zhou, S. (1988) A trace-driven simulation study of dynamic
load balancing. IEEE Trans. Software Eng., 14, 1327-1341.

Zhou, S., Zheng, X., Wang, J. and Deslisle, P. (1993) Utopia: a
load sharing facility for large, heterogeneous distributed
computer systems. Software—Practice and Experience, 23,
1305-1336.

THE COMPUTER JOURNAL, V O L . 3 8 , No. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/57/353871 by guest on 10 April 2024


