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In this paper a particular computer interconnection network, the symmetric chordal ring network of
degree four, is presented, and the mapping of meshes and binary trees onto chordal ring networks is
analysed. Expressions for the network diameter (the maximum distance a message must travel between
any pair of computers) and the mean inter-computer distance are derived for a sub-set of chordal ring
networks. Such networks incorporate the maximum number of computers for a given diameter, and have
a communications cost, measured either as network diameter or as the mean internode distance, of
O(\/N). While these networks provide attractive properties for mesh-based applications on small- and
medium-sized multicomputer systems, binary trees are restricted to five levels (31 nodes).
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1. INTRODUCTION
The application of networks of computers (a processor
plus local memory) to applications such as machine
vision depends on a number of factors:

1. The combined processing power of the computers.
2. The efficiency with which data can be transferred into

and out of the network.
3. The efficiency with which data can be transferred

between computers in the network.
4. The manner in which the performance of the system

degrades when components fail.
5. The efficiency with which applications map onto the

network.
6. The fault-tolerance characteristics of the network

(this is dealt with in a separate paper; see Browne,
1995).

Multicomputer networks can be categorized by the
following criteria (Feng, 1981):

1. The control of the network may be centralized or
distributed.

2. The interconnection topology may be static or
dynamic.

3. Inter-computer communications may be established
by sender and receiver prior to transmission, or
packet switching may be employed.

Transputer-based multicomputers are based on degree
four network topologies and such a system was used as the
basis of the work reported in this paper. Image processing
in general, and machine vision in particular, is a task that
is well suited to parallel processing. Accordingly, the
performance of the transputer networks discussed in
this paper will be related to the requirements of image
processing. The principal operations involved in image-
processing can be classified as point operations, local
(neighbourhood) operations and global operations

(Jain, 1989). The four-way connectivity of arrays of
transputers provides a conceptually convenient basis for
neighbourhood operations since images can be readily
segmented in a way which maps onto a flat array. This
does not mean, however, that a flat mesh is necessarily the
best topology for image-processing, since if global opera-
tions predominate in a particular application the mean
inter-computer distance of the network will be the most
important factor.

In this paper graph theory terminology will be mixed
freely with the description of the equivalent hardware.
Thus a node in a graph is the same as a computer in a
multi-computer and an edge in a graph corresponds to an
inter-computer link. These links will be considered to be
bidirectional, so that the network graphs are undirected.
Expressions for the network diameter (the maximum
distance a message must travel between any pair of
computers) and the mean internode (inter-computer)
distance are derived for a set of optimal networks, which
incorporate the maximum number of computers for a
given diameter. The results of simulating the perfor-
mance of non-optimal chordal ring networks will be
reported.

Local image-processing operators can be catered for
by providing four-way links between adjacent compu-
ters, forming a mesh. By connecting the computer at the
end of each row with the computer at the beginning of
the next row, and connecting the first and last computer,
a Hamiltonian graph is formed. Define the inter-
computer distance d(i,j) as the minimum number of
links which must be traversed to interconnect computers
/ and/ For global operators, the total execution time will
be minimized if the mean inter-computer distance is
minimized. If each computer can proceed asynchro-
nously the mean distance will be a sufficient criterion, but
if the algorithm must be synchronized at intermediate
points (for instance, for the passing of computed values
between computers for subsequent processing) the
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72 R. F. BROWNE

diameter (the maximum inter-computer distance) may be
of significance.

If an image processing system is being used in a real-
time application (for instance, in an automated inspec-
tion system) the total processing time available per
picture is dictated by the application. If through external
changes the rate at which pictures are presented to the
system is increased, or if changes in the algorithms
involve an increased amount of processing, the system
architecture may need to be extended to incorporate
added computers. If this can be done incrementally and
without a major redesign the architecture will be more
acceptable as the basis for practical systems. In
comparison, the inability of networks such as the
hypercube to be extended by small increments of
processing power is a distinct disadvantage.

For a system which is to handle both local and global
image processing operators the criteria for selecting an
optimum interconnection strategy may be summarized
as follows:

1. The network diameter should be minimized.
2. The mean inter-computer distance should be mini-

mized.
3. The system should be incrementally extensible.
4. Any single faults should not lead to a complete failure

of the system.
5. Algorithms should be able to be implemented as

simply as possible.

These requirements may lead to conflicting network
descriptions, in which case the minimization of an objec-
tive function of these five factors would be required. This
paper does not consider the fourth requirement, which is
dealt with elsewhere (Browne, 1995).

The remainder of this paper is organized as follows. In
the next section a class of optimal chordal ring networks
is derived. In Section 3 the general mapping problem is
presented. Meshes can be mapped onto a chordal ring in
a number of ways, and these are presented and
contrasted in Section 4. The mapping of binary trees
onto chordal rings is analysed in Section 5.

2. OPTIMAL CHORDAL RING NETWORKS

Chordal ring networks of degree three, based on a fixed
chord length, were proposed by Arden and Lee (1981).
As part of a discussion of the (d,k) graph problem (in
which the number of nodes n for a graph of degree d and
diameter k is maximized) Doty (1984) has presented a
generalization of the chordal ring network. However, for
larger systems these networks lack the simplicity of those
of Arden and Lee. Akers and Krishnamurthy (1986)
have pointed out that solutions to the (d,k) graph
problem often ignore factors such as symmetry, ease of
routing, and the structure of the graph.

McKeown (1985) has investigated chordal ring net-
works of fixed chord length (independent of the number
of computers). The resultant networks are efficient in

regard to local communication and have useful fault-
tolerance, but a large system based on such a topology
would be very inefficient if processing involved global
references since the network diameter is of O(n). Some of
the properties of degree four chordal ring networks have
been examined by Browne and Hodgson (1990) where
the results presented in Section 2.2 of this paper were
derived by a different technique.

Arden and Lee (1982) have investigated the properties
of an alternative network, the multitree structured
(MTS) graph. When drawn in circular form these
graphs are seen to be related to chordal rings. Arden
and Lee concentrated on MTS graphs of degree three,
establishing bounds on the diameter. If applied to image
processing, the mapping from an image onto the MTS
graph nodes is unlikely to be simple.

This paper is concerned with chordal ring networks of
degree four in which each node has two circumferential
and two chordal links.

2.1. General description of chordal ring networks

Consider a ring of N nodes (computers). These nodes will
be referred to as nodes 0, 1, ..., (N<-1), and for
convenience will be assumed to be in ascending order
when the ring is traversed in a clockwise direction. An
equivalent numbering system can be derived by traver-
sing the ring in the reverse direction, i.e. - 1 , -2, -3 , . . . , so
that -1 is the same as (TV- 1). Each node is connected to
its two nearest neighbours; thus node i is connected to
nodes (i-1) and (/ + 1). In particular node 0 is
connected to nodes 1 and (N-l). All arithmetic
performed on node labels is modulo N.

In addition to the ring connections each node will have
two auxiliary (or chordal) connections to other nodes. If
a bidirectional link connects nodes / and j , then the
existence of the link is completely described if i is said to
be connected \oj or if j is said to be connected to /. For
convenience, each link is associated with just one node.
Thus in the case in which each node has two auxiliary
links (i.e. a total of four links, two being devoted to the
ring), only one destination needs to be specified. Because
of symmetry all nodes are equivalent and the network
can be analysed in terms of the communication between
node 0 and the other nodes in the network.

Let the chordal links of the network have a constant
chord length (or displacement) = d. Then

/ = (pid + qt) mod N, pt and qt integers,

generates all the nodes i in [0,N - 1]. The number of
chordal transfers is pt and the number of circumferential
transfers is qt. The number of full rotations involved in
going from 0 to

i = (ptd + q,) mod N

is (j)jd + q,) div N where mod' and div' represent the
integer modulo and division operators.

The allowed transitions are such that either pt or qt
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DEGREE FOUR CHORDAL RING NETWORKS 73

(but not both) can change by one, corresponding to the
inter-computer links. For example, 3d + 4 can go to any
one of 3d + 3, 3^+5, Id + 4 or 4d + 4.

Definition The length Lj of an internode link or
connection from node 0 to node j is the minimum
number of edges of the graph that must be traversed.

The length is then given by

LJ = Pj + 9j-

The maximum of the set of minimal paths for the full
network, that is the diameter, is given by the maximum
of the set of values given by Lj.

2.2. A special class of chordal ring network

In this section a special class of network is derived from
the condition that the network diameter should be a
minimum. It will be shown that this is equivalent to
minimizing the mean internode distance. A considera-
tion of the way in which the list of chordal transfers is
constructed provides a technique for structuring a
network so that the diameter is minimized. Some of the
results presented in this section have already been
reported by Browne and Hodgson (1990) but the
method used here is more general, with potential
application to other network topologies.

Consider chordal moves from node 0. In the forward
direction these will be at nodes d, 2d, 3d and so on.
Similarly, reverse chordal moves will be at nodes N-kd, N
- (k - l)d, N - (k - 2)d and so on (see Figure 1). These
locations can be tabulated as shown in Table 1.

One strategy for moving to any given node from node
0 is to go to the nearest node reachable by chordal moves
only and then to proceed by circumferential moves. Of
interest is the minimum number of moves that must be
made to reach any given node from node 0.

Referring to they'th entry in Table 1 as (c7, Lj), and the
following entry as (cj+l,Lj+i), the lengths of Lj + l,
Lj + 2, ... are generated by moving circumferentially up
from Cj. Similarly, the lengths Lj+\ + 1, Lj+\ + 2, ... are
generated by moving circumferentially down from c,-+!.
Let these two sequences of moves in opposing directions
around the ring meet at some point (cjm,Ljm), so that this
point is midway between (Cj,Lj) and {CJ+\,LJ+\). This
point is at a distance cjm — Cj beyond (CJ,LJ), so that to get
to this point from below the distance is Ljm =

TABLE 1. Locations of chordal moves

Chordal location (c) Length (L) of move

N-kd
d
N-(k- \)d
Id
N-(k- 2)d
3d

k
1
k- 1
2
k-2
3

Lj+ {Cjm - cj)- Similarly, to get to this point from above
requires moving a distance Cj+\ — Cjm back from Lj+\,
giving LJm = LJ+}+(cj+} - cjm). Thus

= CJ ~ LJ
and

The values of 2LJm alternate between (d + l)(k + l)-N
and K — kd + k. Let these values be related by
expression

2Ka=2Kb

the

(1)

where

l)-N (2)

and AT is a constant for any given chordal ring. Ka and Kb

correspond to the distance from node 0 to alternate mid-
points between adjacent pairs of chordal moves. Clearly
the maximum value of Ka and Kb is the diameter of the
network, and the objective in this section will be to select
values of k and K that minimize this value.

Combining (1) and (2), the following relationships are
obtained:

k =
2N-d-\-K

2d

2N-l-K

Differentiating with respect to d, the minimum values for
Ka and Kb both occur at

d2 = 2N - 1 - K

Thus the minimum values of Ka are Kb are (2d + K)/4
and (2d - K)/4, respectively. Clearly the maximum of Ka

and Kb is minimized when £ = 0 .
Therefore

N = 2k2 + 2k + 1
and

(3)

(4)

The network diameter is the maximum value of LJm,
which equals k. Thus

= 2k+l.

FIGURE 1. Node references: (I) N-kd, (2) d, (i)N-2kdand (4) Id.
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74 R. F. BROWNE

Since Ka has been maximized for given k, the number of
nodes TV is also a maximum for given k.

The sum of the minimum paths from node 0 to the
nodes from Cj to c,+1 — 1 is

9+1
SJ = Y,(LJ +l ~

Substituting the expressions derived above:

The value of the index j ranges from 1 to k. Summing
over these values,

S = (5)

is the sum of the distances to all nodes from node 0. By
symmetry, it is also the distance sum from any node. The
mean internode distance is given by

D = S/N (6)

Thus minimizing k is equivalent to minimizing D.
An example of a chordal ring with N = 13, d= 5,

k = 2 and D = 1.5385 is shown in Figure 2.
Mean internode distance as a function of the number

of nodes for general chordal ring networks (those that do
not in general belong to the category defined by
equations 1 and 2) is shown in Figure 3. For each
network the chordal displacement was chosen to
minimize the mean internode distance.

3. MAPPING OTHER NETWORKS ONTO
CHORDAL RINGS

Sequences of operations to be performed on multi-
computer systems commonly possess some fundamental
pattern. Such patterns are usefully described by graphs,
and the selection of multicomputer networks isomorphic
to these graphs is intuitively the preferred approach. For
instance, image processing, consisting inherently of
matrix operations, maps easily onto meshes, while
database searches map easily onto tree networks. The
use of a chordal ring is not intuitive in either of these
cases. In this and the next two sections the way in which
this mapping can be achieved, and the resultant
performance compared to the source network, will be
studied with respect to two networks—the mesh in
Section 4 and the tree network in Section 5. Graphs

r

Number of nodM

FIGURE 2.

FIGURE 3.

describing meshes and trees encompass the great
majority of computation-intensive operations.

Two types of mappings are defined as follows:

1. Direct: Given graphs G = {V,E}, G' = {V.E1}, then
for every vertex i in G there exists a corresponding
unique vertex in G'. The mapping of G onto G' is
denoted by F, —>V[. Furthermore,

V, -> V! and Vj -> Vj => Eu ^Ej

2. Indirect: Given a graph G = {V,E}, G' = {V',E'},
then for every vertex i in G there exists a correspond-
ing unique vertex in G'.

Note that G and G' are not, in general, isomorphic—G is
a subgraph of G'.

4. MAPPING MESHES ONTO CHORDAL
RINGS

Define a mesh as a graph consisting of a set of nodes

P = {(«,;), « e [ 0 , N r - l ] j e [0,Nc - l]}

and a set of edges

E ={riJt i e [0, Nr - 1] j e [0, Nc - 2];

ciJJe[0,Nr-2],je[0,Nc-l}}

where the row' r^ is the unordered pair (pij,Pij+i) and
the 'column' is the unordered pair (/?/;; Pi+\j)-

Define the communications cost as the mean number of
nodes to be traversed in performing a given operation. In
particular, the global cost is equal to the mean internode
distance for the network, while the local cost is the mean
distance to the four nearest neighbours in the mesh.

The direct mapping of meshes onto chordal rings is
based on the selection of a chordal displacement equal to
the number of columns Nc in the array. The alternative of
indirect mapping is less efficient for local (nearest-
neighbour) references, but in some circumstances will
result in an improved overall performance because of a
better global efficiency. This is discussed in Section 4.2
where a comparison is made between direct and indirect
mappings.

4.1. Direct mappings

Consider a mesh of Nc by Â r nodes. Consider a chordal
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uW

FIGURE 4.

ring of N = Nc Nr nodes and a displacement of Nc.
Define a mapping from node (i,j) in the mesh to node

k = Nci +j

in the chordal ring. The four edges incident on k connect
it to

{k±\)

=(k±l)

=Nci + {j ±

={ij±\)

and (k±d)

and (k±Nc)

) and Nc(i ±l)

and(/±lj)

which is a mesh (disregarding the additional edge
connections). The local cost for communications is 1.0.

4.2. Indirect mappings

Two mappings from meshes onto chordal rings will be
considered. Firstly, analogous to the simple direct
mapping above, consider

k = Nci + j

where in general the chordal ring displacement is not
equal to Ne. This will be referred to as simple mapping.
The alternative mapping to be reported here is a snake-
like mapping, defined by

= Nci+j for even-numbered rows,

k = Nc(i + 1) —j for odd-numbered rows.

Such a mapping has been used by Miller and Stout
(1985) for image processing on a mesh-connected
computer. A comparison of simple and snake-like
mappings with global mapping is shown in Figure 4,
which deals with the case of a 10 by 10 mesh. The local
cost based on simple mapping has a pronounced

TABLE 2. A 10 by 10 mesh mapped onto a chordal ring

Condition Optimum displacement Optimum mapping

a < 0.73
0.73 < a < 0.94
a > 0.94

10
45
44

direct
simple
simple

1 •

0.9-

o.a
0.7

0.6

I 0.5
TJ

0.4

0.3

0.2

0.1

0
20 30

torn

FIGURE 5.

minimum at a displacement of 10, which corresponds
to the case of direct mapping. For any particular
application, if a is the proportion of the operations
that are global then the total communications cost is

C = aCg + (1 - a)C,

in terms of global (Cg) and local (Cj) costs. In the case of
the example in Figure 4, the requirements for C to be
minimized are shown in Table 2. Since the minimum
value of C/=1.0 occurs when direct mapping is used,
applications having a small value of a will have the
smallest communications cost under direct mapping. The
values of a above which alternative mappings are most
efficient are shown in Figure 5 for the case of square
meshes. For small arrays only applications with a large
proportion of global operations will benefit from indirect
mapping, but for meshes having more than about 25
rows and columns indirect mapping provides the best
performance if global operations do not exceed 50% of
the total.

The mean global distance (global cost) for four
representative square meshes is illustrated in Figure 6.
For large meshes there are clearly a number of local
minima from which a suitable network displacement
could be selected. The mean global distance for a square
mesh of side R is given by

, R-l R-l R-l R-l

-I"
where N = R2. This is to be compared with the optimal
mean global distances for the mappings shown in Figure
6. If equations (3), (5), and (6), are applied to the chordal
ring of size N = R2 (that is, regarding this as belonging to
the special class of chordal rings), then

D = for large R

a is the proportion of operations that are global.

The left-hand part of this formula is exact only for those
in the class of special chordal rings, but it is accurate to
within 1 % for R ^ 5. The right-hand side of the formula
proves to be a good approximation for all cases of R ^
10. Thus
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so that the cost of global communications in algorithms
running on meshes implemented on chordal rings will be
just 70% of that incurred on a plain mesh architecture.

5. MAPPING BINARY TREES ONTO
CHORDAL RINGS

Consider a binary tree of L levels (labelled 0 to L - 1).
Any chordal ring containing the tree must have at least
2L — 1 nodes. Consider a direct mapping from the tree
onto the chordal ring (N,d), with N 5= 2L — 1. Consider
the number of nodes that can be accessed from the root
node by traversing a specified number of edges. In a
binary tree this is 2L - 2 nodes at the L-th level (that is,
all nodes excluding the root node). Let the root node

\ /\ X A
A A A A A A A

12 17 27 « It 20 2* S 13 IS 25 « 16 21 29

FIGURE 7.

correspond to node 0 in the chordal ring, and let the
nodes at level i map onto pd + q (p and q integers).

If/ = 1, the (p,q) permutations are (±1,0) and (0,±l), a
total of four selections. Similarly, for / = 2, the
additional permutations are (±2,0), (±1,±1), and
(0,±2), which, when added to the original four
selections, gives a total of twelve. In general, at the
j-the level the additional permutations (±(i - j),±j),
j = 0 to i, are available, giving an overall total of 2i{i +
1) selections. Thus the total number of nodes accessible
within i=L- 1 moves in the chordal ring is 2(L - \)L. If
the binary tree is to be able to map onto the chordal ring
then the number of accessible nodes in the chordal ring
must be at least as great as the number of accessible
nodes in the tree. Thus

2(L- - \)L L < 5

Therefore only trees of up to five levels can be directly
mapped onto a chordal ring. A possible mapping for
L = 5 is shown in Figure 7, based on a chordal ring with
33 nodes and a displacement of 9. Note that in the
diagram the difference in the node numbers at each end
of an edge is either 1 (i.e. adjacent along the
circumference) or 9 (adjacent along a chord). The tree
requires 31 nodes, but mappings of a 5-level tree onto
chordal rings of either 31 or 32 nodes do not exist.

6. CONCLUSIONS

Symmetric chordal ring networks of degree four possess
properties that make them attractive for small- and
medium-sized multicomputer systems (networks of up
to, say, 1000 nodes) for mesh-based applications. In
particular:

1. Their symmetry means that the computers that form
the network nodes are completely equivalent, thus
simplifying the task of hardware implementation. A
similar comment applies to the internode commu-
nications facilities and to the support software.

2. Their degree, i.e. four, makes them suited to
implementation using transputers and to applica-
tions in areas such as image processing.

3. They are incrementally extensible, making the
provision of additional computing power simply a
matter of adding one or more extra processors.

4. Meshes map naturally onto chordal rings. Alternative
mappings are available, but the efficiency will depend
on the application.
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However, applications involving binary trees are
restricted to five levels (containing 31 nodes).
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