
BOOK REVIEWS 79

concerns, Lambda Calculi is a very good book and is a
timely addition to the theoretical computer scientist's
bookshelf.

MIKE JOY

Warwick University

AMOS R. OMONDI

Computer Arithmetic Systems. Prentice Hall Interna-
tional. 1994. ISBN 0 13 334301 4 £22.95. 520pp.
softbound.

Computer systems are built from various sub-modules
and peripheral devices. One of the vital elements is the
computer arithmetic module. This excellent book deals
with the various arithmetic operations, different asso-
ciated algorithms and their detailed analysis. Cost-
performance comparison of different algorithmic
models have also been shown.

Case studies of different actually implemented units
have been discussed in each chapter. Annotated biblio-
graphic notes provide the readers with material for
further studies. And the chosen set of exercises makes
sure that the fundamentals do get absorbed.

This book consists of 8 chapters. There is a functional
division of the contents into three parts.

Chapters 1 to 4 cover the basic algorithms and
associated hardware details for fixed point number
systems. One point may be noteworthy: coverage of
topic in the Chapter 1 does touch upon the generalized
number systems, including an introduction to floating
point numbers and a more general title for this chapter
might have been more apt.

Chapters 5 to 7 cover the floating point number
concepts, associated operations and the hardware
details.

Originality, clarity of expression and depth of knowl-
edge stand out very clearly in this book. The case-studies
giving the practical implementation details of the
theoretical algorithms and particularly some different
unusual implementations (for very fast operations in
both fixed and floating point number systems) place the
book at two levels simultaneously : it can be treated as a
text book as well as excellent reference material for
further research in the respective fields.

Chapter 8 deals with unconventional number systems
and associated arithmetic, namely—

a. the residue number system with its unique carry-
lessfast addition, subtraction, multiplication;

b. the decimal number system and arithmetic; and
c. redundant signed-digit number systems and arith-

metic.

An extensive bibliography has been compiled at the
end.

The appendices on pipelining with respect to high
performance computers, shifter design and the separate
copy of the design library are well appreciated. But I
strongly feel that the appendices and design library
should be amplified and recompiled into a separate
volume which emphasises real-world designs and acts as
a perfect complement to the book being reviewed.

I enthusiastically recommend this book as an useful
addition to any academic or highly design-oriented
scientific library. Moreover, this book will also be
extremely suitable as a textbook for many universities.

S. SANYAL

Tata Institute of Fundamental Research, Bombay

JENS PALSBERG and MICHEAL I. SCHWARTZBACH

Object-Oriented Type Systems. John Wiley. 1994. ISBN 0
471 94128 X £24.95. 180pp. hardbound.

Object-oriented languages have often seemed removed
from the mainstream. Although we can all accept simple
notions of 'class' and 'object with methods' belonging to
it as covered in many introductory courses, the necessary
various (and varied) extensions to this concept to
construct a generally acceptable language appear to
lack a comprehensive conceptual model. Partly this is
due to the variation in terminology between (say) C++
and Smalltalk exacerbated by discussions as to what
being 'object-oriented' really means, and to the role (or
otherwise) of types and by the 'our language does it this
way' effect. It is also due to very real theoretical problems
which mean that the progression from untyped Smalltalk
to typed languages like Eiffel is sufficiently complicated
to result in the latter containing type insecurities. Indeed
the whole situation has echoes of the Lisp vs. Algol
debate (recall Pascal's early type insecurities concerning
function types). Indeed, languages like ML have become
popular to a large extent because they offer the type
security of Pascal with much of the flexibility of their
weakly typed counterparts.

Palsberg and Schwartzbach centre their book around
their BOPL (Basic Object Programming Language) and
extensions thereto adding types, inheritance and gener-
icity. BOPL is easy to understand and has a simple
evaluation mechanism (although I disapprove of the
authors following the trend to present such a machine
only informally in English). Moreover, extensions for
inheritance and genericity are defined by source-to-
source transformation into the original BOPL. This has
the great advantages of simplicity and of exposing
otherwise non-obvious semantic choices which are
normally glossed over by language designers who have
dismissed (or even overlooked) alternatives. In particu-
lar, the interaction between inheritance and recursion is
well exposed.

THE COMPUTER JOURNAL, VOL.38 , No. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/79-a/353897 by guest on 10 April 2024



80 BOOK REVIEWS

Type systems are defined in a similar style—a typed
program is one whose type annotations satisfy certain
invariants. Type inference is viewed as the minimum
solution of constraints derivable from the program.
Types are denned as sets of classes which a value might
belong to; operations accepting any class derived from
an original class are seen as accepting the cone consisting
of the set of all such derived classes. The syntactic
explanations of inheritance and genericity above can be
thus shown to be type correct in a pleasing manner.
Palsberg and Schwartzbach successfully (to my mind)
argue the need to explain object-oriented semantics as
discussed rather than to force-fit the ideas to a A-calculus
meta-language (note also that Abadi and Cardelli have
since proposed a calculus of objects which shares a
similar aim but focuses on more theoretical issues
concerning typing). This action encourages them to
propose that genericity be explained by substitution of
classes in others rather than by the notion of application
which they successfully criticise. The overall effect is that
of having secrets explained.

By way of (slight) criticism, I would have welcomed
more explanation of C++, particularly the role of
v i r t u a l and non-virtual member functions which
could have justified late binding rather better than its
proclamation in Section 2.2.5. Moreover, the authors'
claim of the leniency of C++ assignment between
pointers to class and derived-class is not supported by
the C++ annotated reference manual (Ellis and
Stroustrup). If another chapter were to be added I
would strongly suggest one on multiple inheritance and
sharing—I believe the authors' methods would cast light
here just as well as they have succeeded for types,
inheritance and genericity. I personally would also be
interested in discussion of the way in which ML-style
polymorphism differs from object-polymorphism espe-
cially given the problems of the former with mutability
which is at the heart of object-orientation—but this
would probably have resulted in a very different book.

In addition to the book itself, the main translations
and algorithms have all been implemented and made
available to the public at large via ftp. I found these easy
to obtain and use (daimi. aau. dk warns one to use the
new file server at ftp.daimi.aau.uk) but one needs to
have access to Scheme.

This is a book which I would commend to those from
outside the object-oriented community (and many
inside) who wish to understand the range of object-
oriented language design possibilities and understand the
semantic choices in detail. I welcome its emphasis on type
security which is achieved without the excess formalism
sometimes found. I concur with the authors' assessment
of its utility for final year undergraduate teaching and I
would further recommend it for anyone interested in
semantics and types of object-oriented languages. In
addition to the technical content, the English is
indistinguishable from that of many a native speaker
(with the notable exception of the use of 'overwrite' for

'override'), the authors have taste in graphic design
as befits camera-ready copy and there are very
few, unimportant, typographical errors. I enjoyed
reading it.

ALAN MYCROFT
Laboratoire d'Informatique, Ecole Polytechnique

(on leave from Computer Laboratory,
Cambridge University)

J.G. TURNER and T.L. MCCLUSKEY
The Construction of Formal Specifications. McGraw-Hill.
1994. ISBN 0 07 707735 0 £21.95. 420pp. softbound.

Formal methods seem to be assured a place in the
Computing Science curriculum. Some universities base
their degrees entirely on formal methods; others offer a
single course on formal methods, in final year. That
reflects growing commitment in industry to the applica-
tion of formal methods at various stages in the design
cycle.

Applied to the early stages of the design cycle formal
methods provide a notation for requirements capture.
Formalising requirements forces the customer to decide
at the very start of the development process what he
wants, when a change of mind is far less costly; the result
acts as a contract between customer and system
developer whose properties may be either derived by
proof or observed by prototyping. Applied to the latest
stages of the design cycle, formal methods provide
techniques for producing correct code: for the correct
termination of loops, invocation of procedures, and so
on. In between those extremes of abstraction they offer
criteria for ensuring the functional correctness of one
description with respect to a more abstract one. The
lower-level description whilst chosen to incorporate
bottom-up constraints and efficiency concerns must
meet those criteria to be valid.

Thus crucial to formal methods is a formal descrip-
tion, or specification, at a given level of abstraction. How
it is constructed depends on its location in the
development cycle; techniques for requirements capture
are quite different from those for downcoding into a
programming language.

This book is about the construction of specifications.
However it considers description only at the level of
requirements capture, and discusses neither the develop-
ment cycle nor criteria for a specification to meet a more
abstract one (though the VDM terminology for that,
reification, is mentioned once by name). Without some
treatment of such issues it is difficult to see what to make
of a specification once it has been constructed! In what
way does it constrain its refinements? Readers of this
book must presumably rely on intuition for that, which
seems to undermine the whole benefit of formality.

THE COMPUTER JOURNAL, VOL.38, No. 1, 1995

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/38/1/79-a/353897 by guest on 10 April 2024


