HASE: A Flexible Toolset for Computer
Architects

R. N. IsBeTT, P. E. HEYWoOD AND F. W. HOWELL

Computer Systems Group, Department of Computer Science, University of Edinburgh,
Edinburgh, EH9 3JZ UK

HASE is a Hierarchical computer Architecture design and Simulation Environment (HASE) which
allows for the rapid development and exploration of computer architectures at multiple levels of
abstraction, encompassing both hardware and software. The components of a computer system lend
themselves naturally to being modelled as objects, so HASE has been implemented in an object-oriented
language. Within HASE there are graphical entity design and edit facilities, entity library creation and
retrieval mechanisms, an animator, and statistical analysis and experimentation tools for deriving system
performance metrics. HASE uses an object-oriented database management system (ObjectStore) to
make the design objects and the entity library persistent. For each architecture model HASE allows many
experiments with varying parameters to be performed. The database facilities provided through HASE
manage not only the results of each experiment, but also their relationship to the state of the architecture
model that produced these results, including all input and output parameters and their values during the
experiment. This paper describes the design of HASE, some of the varied projects which have used it, and
the future direction of the system.

Received July 26, 1995, accepted November 8, 1995

1. INTRODUCTION

The Purdue Workshop on Grand Challenges in Com-
puter Architecture for the Support of High Performance
Computing [1] identified four ‘Grand Challenge Pro-
blems in Computer Architecture’. HASE, the Hierarch-
ical computer Architecture design and Simulation
Environment developed at the University of Edinburgh,
is a tool which addresses the fourth of these: ‘to develop
sufficient infrastructure to allow rapid prototyping of
hardware ideas and the associated software in a way that
permits realistic evaluation’. Sophisticated VLSI design
tools have been in existence for a number of years but it is
only recently that attention has been focused on
providing higher level simulation and animation tools
for computer architects. Thus the HASE project has
aimed to address two major problem areas: high level
simulation and visualization of computer architectures,
and simulation of parallel systems.

The hierarchical nature of computer architecture and
design has been well understood for many years, e.g. Bell
and Newell’s PMS, ISP and RTL levels [2]. HASE allows
the designer to move freely between these levels and to
select the appropriate simulation level for different parts
of the system in order to strike a balance between
simulation accuracy and processing time. To meet all the
aims for the environment, however, attention also had to
be focused in the area between the domain of hardware
simulators and general purpose simulation packages.
Hardware simulators are typically inappropriate for
dealing with software layers and general purpose
simulation packages are not normally designed with
hardware in mind. The usual approach to this problem is

to write project-specific simulators in a language such as
C + +. This provides a high degree of flexibility, but also
an amount of wheel re-invention.

Many commercial CAD tools are moving progres-
sively towards higher levels of abstraction, and the use of
hardware description languages such as VHDL and
Verilog for hardware system simulation is becoming
widespread. Since much effort has been invested in
developing these toolsets it would be convenient to
extend them to higher levels of simulation. However,
most are not particularly suited to this task at present. In
[3], for example, external C routines were written to
compensate for VHDL’s deficiencies in this respect.

Specialized tools include Ptolemy [4] at Berkeley which
defines a framework for simulating and prototyping
heterogeneous systems, and work at the University of
Florida has involved simulating microprocessor-based
parallel computers using processor libraries [5]. At
UMIST the SES/workbench [6], a general queuing
model tool, has been adapted to simulate the ARM
processor [7]. At the Illinois Institute of Technology
Chicago a prototype version of MIES [8] has been
developed to visualize Register Transfer Level descrip-
tions and a newer version is currently being implemented
in an object oriented programming language.

At the same time, there has also been interest in
developing mathematical formulations for modelling
discrete event systems, most notably Zeigler’'s DEVS
formalism [9] together with its primarily non-graphical
implementation, DEVS-Scheme.

The ideas for HASE grew from a simulator built for an
MC88000 system [10], written in occam and run on a
Meiko Computing Surface at the Edinburgh Parallel

THE COMPUTER JOURNAL,

VoL. 38, No. 10, 1995

¥20Z Iudy 01 uo1senb Aqg 961 L9t/SS2/0L/8E/8101e/|UulWwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod

756 R. N. IBBeTT, P. E. HEYwooD AND F. W. HowELL

Computing Centre. However, since the components of a
computer can be treated very naturally as objects, HASE
itself has been developed using object oriented simula-
tion languages, the first prototype [11] using DEMOS
[12] and the current version Sim + + [13]. Sim + + is
essentially a superset of C + + which includes a set of
library routines to provide for process oriented discrete
event simulation and a run time system for multi-
threading many objects in parallel and keeping track of
simulation time.

In the same vein, HASE now also uses an object-
oriented database management system, ObjectStore [14].
The environment includes a design editor and object
libraries appropriate to each level of abstraction in the
hierarchy, plus instrumentation facilities to assist in the
validation of the model. HASE also provides model
exploitation facilities based on [15] and [16] allowing
performance measurements to be derived from simula-
tion runs. The system can thus be set up to return event
traces and statistics which provide information at the
PMS level, for example, about synchronization, com-
munication and memory latencies.

The user interface to HASE is via an X-Windows/
Motif graphical interface. Many complex systems of
interacting components can be more easily understood as
a picture rather than as words. In computer architecture
the dynamic behaviour of systems is frequently of interest
and HASE allows users to view the results of simulation
runs through animation of the design window.

The first sections of this paper present an overview of
HASE, the database organization and the HASE
libraries. Then follows a description of the design of a
system within HASE including test software to execute
on the model architecture. This is followed by a
description of the Sim + + code generated by HASE,
and of the way a simulation is run. Later sections
describe the various ways to view the results of a
simulation, gather statistics and perform experimenta-
tion on the model architecture. Finally we present some
of the projects which have used HASE and consider
possible future developments.

2. OVERVIEW OF HASE

Figure 1 shows an overview of the HASE system. The
core of each project undertaken using HASE is the
Architecture Description. In the case of a multiprocessor,
for example, this description consists of a collection of
Processor, Memory and Interconnection Network enti-
ties. Each entity is a multi-faceted object having an
instance name, an icon (usually a bitmap), a textual
description, a list of its parameters, a list of ports and a
pointer to its Sim + + simulation code. The design phase
of a project involves selecting the appropriate entities
from a library, or alternatively creating them, and linking
them together to form the required system. Each entity’s
behaviour is described in the corresponding Sim + +
method (the body). Once the- design is complete the

Entity Library Program Description
N
f111] L
-
Architecture Source of
Description test program

a) Assembler

b) Direct
Execution

Metrics

‘ ANIMATOR

bl

FIGURE 1. Overview of the HASE system.

description is compiled to produce the simulation code
for that system.

To run a simulation, it is necessary to provide
appropriate inputs. Thus test programs for the archi-
tecture can be written (in assembler, or any HLL with a
compiler for the chosen processor), and the architecture,
along with its program, can then be simulated. The
output from the simulation run can then be used to
animate the design, and thus provide visual feedback
data to the designer, or to obtain performance metrics.

3. DATABASE ORGANIZATION

HASE includes an object-oriented database manage-
ment system based on ObjectStore in order to allow all
architecture design projects and the entity libraries to be
maintained persistently. A major advantage of this
approach is that in addition to its purely repository
functionality, ObjectStore can also be used to manage
the relationships and connectivity between objects.
Furthermore, the use of object-oriented database tech-
nology provides the opportunity to exploit advanced
transaction processing capabilities, such as nested
transactions and rollback, and to facilitate the explora-
tion of alternative paths while fine-tuning a model.

The database management system also allows versions
of simulation models and experiments to be maintained
so that an experimental program can proceed on an
existing version of the model while subsequent versions

Tue COMPUTER JOURNAL,

Vor. 38, No. 10, 1995

¥20Z Iudy 01 uo1senb Aqg 961 L9t/SS2/0L/8E/8101e/|UulWwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod

HASE: A FLEXIBLE TOOLSET FOR COMPUTER ARCHITECTS 757

are under development. By integrating a C + +-based
object-oriented database management system with the
existing HASE environment, most of the problems
associated with impedance mismatch have been avoided.
All HASE environment utilities are C 4+ + based and all
relevant classes are coherent throughout the environment.

Figure 2 shows how the databases are organized. The
user startup file contains environment variable defini-
tions for the default library databases and the user
specific project directory containing subdirectories for all
individual projects. Each user can have a number of
project databases, each holding a number of projects,
and a number of personal entity libraries in addition to
having access to the public HASE entity library.

A project in HASE is interpreted to be the set of all
entities, ports, links, parameters, etc., comprising the
simulation model, together with their associated Sim + +
code, bitmaps, etc., and the set of all experiments
performed on the model. For each architecture model,
a set of experiments may also be stored. Experiments
typically involve changing the value of one of the
parameters of a component of the architecture and
running the same simulation for each parameter value.
The database supports this experimentation facility by
storing not only the results of each experiment, but also

user startup file

their relationship to the state of the architecture model
that produced the results, including all input and output
parameters and their values during the experiment.

4. LIBRARIES

Libraries in HASE are repositories for entities, the basic
components of the Architecture Description. Each
modular, reusable entity can be archived to a library
for shared or later use or retrieved from a library for
inclusion in an architectural model. The storage of pre-
designed (and pre-tested) entities in the library means
that HASE offers a reliable and convenient method for
rapid prototyping.

The HASE Entity Library is a global read-only
library, selected from possibly many shared libraries
containing related entities. As a means of initially
populating and supplementing this library for a specific
site, entities from all projects migrate to a temporary
holding area where the site database administrator
determines which entities merit inclusion into a parti-
cular HASE Entity Library. The User Entity Library is a
user’s personal catalogue of entities. The number of
libraries is virtually limitless, with the library in use
defined as the most recently selected library.

N 1
pathnames to databases —t—— | |
pathnames to slubdirectories :

| project database 2 |
|
project database 1 |
Sim++ code files :
event traces r _________ 'I |
- |
l project 1 version 3 I |
———————— |
] project 1 version 2 : ~ : |
- |
project 1 version 1 | experiment 2 : |
: experiment 1 | '
design = entity tree of 3 | :
eg:;t;es inputs ' |
ﬁnks parameter settings |
arameters simulation levels |
p - outputs/metrics |
event list |
|
|
[1 |
1 N |
project 2 version 1 : r : :
. . i I |
design = entity tree of : experiment 1 1 |
eggt;es | inputs | |
ﬁnks | parameter settings : |
I simulation levels =
parameters |_y outputs/metrics
event list p—
r-————"""""/""/"/ "/ /T Ty =" —1
1 |
User entity library 1 :

HASE entity library

FIGURE 2. HASE database organization.

THE COMPUTER JOURNAL,

VoL. 38, No. 10, 1995

¥20Z Iudy 01 uo1senb Aqg 961 L9t/SS2/0L/8E/8101e/|UulWwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod

758 R. N. IBBETT, P. E. HEYWooDp AND F. W. HowELL

The design of a HASE Entity Library corresponds to
the different levels of abstraction for the archived
entities, e.g. PMS or RTL. An entity’s hierarchy can be
easily perused from within the library and can be included
in the architectural model at various levels. The utilities
are flexible enough to allow the user to map to other
decomposition methodologies when creating the User
Entity Library.

5. DESIGN

The basic constituent of the project is the Architecture
Description which is a collection of entities with ports for
data transmission across links to other entities or levels
of decomposition. The architecture can be designed
either top down by subdividing an entity into its
constituent components or bottom up by grouping a set
of components into a compound component. An
example of a compound entity is a multiprocessor
array, for which several different templates are available
as library components. Currently available are one-
dimensional array templates, several two-dimensional
array templates with differing (pre-defined) indexing
schemes, a three-dimensional torus and an Omega
Network which can be instantiated for simulation at
any hierarchical level. Indeed any entity can in principle
be simulated at any specified hierarchical level. Figure 3

shows an example design window taken from an M.Sc.
project [17] which has modelled the Stanford DASH
architecture and its cache coherency protocols [18].

The DASH architecture consists of sets of processing
nodes, grouped together in clusters of four and
connected together via a common bus. Each node
consists of an R3000 processor with a primary and
secondary cache. As well as connecting the nodes
together, the bus also provides access to memory which
is shared between the processors and which forms part of
the global address space of the system as a whole.
Clusters are themselves connected together by a dual
interconnection network. Figure 3 shows a four-cluster
network in which the bold interconnection lines repre-
sent the request (?) and response (=) networks. The
system is modelled as a three-level entity hierarchy. On
the left of the figure two clusters are shown represented at
the highest level, while the lower right hand cluster has
been expanded to show the middle level (the dotted lines
around a cluster of entities indicates expansion from a
higher-level entity). The top right cluster has been further
expanded to show the lowest level design of two of the
nodes and also the lowest level design of the Directory
Control logic, the subentities of which are responsible for
ensuring inter-cluster cache coherence.

The HASE Architecture Description created in the
design window describes the physical composition of the

PE hase A
| Fie Ubrary Design Parameters Build Results Statistics Help |
Dunbarer FaRRmO AR AR ST a8
Experiment: finall7

A
—a

FIGURE 3. An example architecture in the HASE design window.

THeE COMPUTER JOURNAL,

VoL. 38, No. 10, 1995

¥20Z Iudy 01 uo1senb Aqg 961 L9t/SS2/0L/8E/8101e/|UulWwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod

HASE: A FLEXIBLE TOOLSET FOR COMPUTER ARCHITECTS 759

architecture. The behavioural aspects of the architecture
are described by the corresponding Sim + + body
methods. Sim + + is essentially C + + with functions
to communicate events between entities. These events are
sent to and received from ports which are the entity’s link
with the rest of the simulation. Entities may also have a
variable number of parameters, which can be strings,
integers, floating point numbers, enumerated types,
structures, ranges, instructions or arrays.

To simulate a multi-processor system (say), the first
task is to create an Architecture Description for it. The
required entities (processors, memories, interconnection
networks) are selected from a library, from a pre-defined
HASE template or are custom designed. All entities can
be further customized or modified from within HASE,
including, but not limited to, additional subdivision
(decomposition), grouping, and adding parameters. The
required ports, including the link parameter are also
added. The link parameter represents the data packet,
message, instruction, etc., to be transmitted to/from the
port over the link.

An entity may be defined at several different abstrac-
tion levels. The external interface (the set of ports) at
each level must be identical, but at the lower level the
entity may be composed of a set of interconnected ‘sub-
entities’. The abstraction level to be used for each entity
is chosen at simulation time. Particular entities may be
simulated at a lower level while leaving the rest at a
higher level.

The entities are linked together to create the system to
be simulated and each entity’s behaviour is described in
the Sim + + body method.

Global parameters can be defined for the system to be
modelled. As the term implies, global parameters are
accessible to all entities, for instance, the dimensions of a
compound entity array.

The evaluation of an architecture normally involves

the execution of test programs. An interface between
simulations and a ‘software level’ is also needed for
parallel programming or for investigating computational
models. Several different approaches can be used within
HASE; interpreting assembler, execution driven simula-
tion, and interpreting a simple higher level language.

5.1. Instruction sets

One of the uses of HASE parameters is to store
instruction sets. Instructions are typically divided into
several different ‘classes’, such as load/store instructions,
ALU operations, branches, etc. To deal with the
resulting variety of instruction formats, HASE provides
a special type of parameter, TInstrParam. For example,
in
struct TInstr {
TIClass iclass;
union {
char Name [20];
Tmem_format mfield;
Tbra_format ffield;
Topr_format ofield;
Tfopr_format ffield;
int Word;
};
};
the instruction class, iclass, is an enumerated type that
indicates the type of the operands. The appropriate
operand format (one of Name, mfield, bfield, ofield,
ffield, Word) is used. The simulation code can then access
the parsed instruction by checking the instruction class
and referring to the elements of the relevant field. HASE
can automatically produce a parser to load in data types
which have been defined, e.g. to initialize a memory.
Higher level instruction formats can also be defined as
HASE TlInstrParam parameters. For example, a simple

if (stopping == 0) switch (Instr.OpCode)

/¥ ‘ev’ = ‘event’ */

printf("%s executed STOP instruction\n", sim_name());

{
case COMPUTE:
sim_hold(Instr.time, ev);
break;
case SEND:
send_DATAPKT(TO_NET, ‘‘TO_NET’’, Instr.Pkt);
sim_hold(SendTime, ev);
break;
case RECV:
sim_wait(ev);
SIM_GET(DataPacket,pkt,ev);
sim_hold(RecvTime, ev);
break;
case STOP:
stopping = 1;
break;
}

FIGURE 4. Sim + + switch statement.

THE COMPUTER JOURNAL,

Vor. 38, No. 10, 1995

¥20Z Iudy 01 uo1senb Aqg 961 L9t/SS2/0L/8E/8101e/|UulWwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod

760 R. N. IBBeTT, P. E. HEYwoop AND F. W. HowELL

$class_decls

// Headers for extra functions

int MPI_Send(void *,
int,
MPI_Datatype,
int,
int,
MPI_Comm) ;
int MPI_Recv(...);

/*
/*
/%
/*
/*
/*

data buffer */

number of data elements */
type of each data element */
destination of message */
message tag */

communicator */

// Any other function calls in the interface

$class_defs

// Implementation of the extra functions

$body
#include ¢ ‘theactualcode.c’’

FIGURE 5. Message passing interface code.

language might have compute, send, receive and stop
constructs. These could be stored in memory and
interpreted by a simple processor entity.

The simulation code can perform a switch statement
on this field to determine the format of the commands.
The Sim + + code segment in Figure 4 illustrates this last
point.

Externally created code can be linked in with a HASE
simulation. This enables the functionality of test
programs on the simulated architecture to be used.
Typically an interface is defined for the HASE object so
the simulation can trap the desired function calls.
Example applications include message passing interfaces
and low level I/O on a simple computer system.

The basic form of the interface is as shown in Figure 5.
In this example, the file theactualcode.c is standard MPI
code making use of the functions. ‘MPL_Send’ and
‘MPI_Recv’. In the simulation, these call the member
functions which can be implemented in terms of the
Sim + + primitives. In this way, standard code may be
linked in with the simulation and can be used as a
realistic workload.

Other ways of implementing this are possible, such as
making the functions globally linked in rather than
making them methods of the Sim + + object. It is even
possible to link in Fortran 77 functions.

6. CODE GENERATION

Sim + + breaks down the simulation into an initializa-
tion and an execution phase. For inclusion in the code
pertaining to both phases, HASE generates a Sim + +
header file called (ProjectName).h. For the initialization
phase, HASE generates the Sim + + initialization file
init.c; for the execution phase, it generates the Sim + +
entity constructors and bodies.

The behavioural specification for each entity at any
given level of simulation is provided by the user in the
(entityName).sim files. From these files and the Archi-
tecture Description HASE generates the Sim + + code
required for the simulation. HASE also generates the
makefile for compiling and linking the various component
files.

e The Sim + + body method. Each entity in the model
architecture needs a Sim + + body method for the
specified level of simulation. If the entity is a
compound entity, the default simulation level can be
toggled. It is necessary for HASE to know at which
level of decomposition the simulation will occur.
HASE will then use the Architecture Description and
the corresponding set of (entityName).sim files to
generate the appropriate Sim + + code. The body can
be constructed and edited off-line (external to HASE),
or within the Design Window Edit Body function.

e The project header file. HASE generates a Sim + +
header file for the Sim + + program ((Project Name).h)
which contains parameter and event declarations,
global constants, entity initialization structures, class
definitions and declarations.

e The initialization file. HASE generates the Sim + +
initialization file for the Sim + + program, called
init.c, which contains the instances of the entities and
allocates and initializes global data. The auxiliary
functions for writing states to the trace file also reside
in this file.

o The Sim + + code. HASE generates the (EntityName).c
file for each type of entity in the Architecture Descrip-
tion based on information extracted from the entities
themselves and the user defined (entityName).sim files.

o The SMakefile. The Sim + + makefile SMakefile used
to compile and link the Sim + + code is also generated
by HASE.

Dependency lists and compilation directives are
constructed for init.c, the additional global functions
file global_ fns.c (if it exists), and all (entity Name).c files.
The link directive to form the executable is also written
to SMakefile.

7. SIMULATION

Running a simulation involves the execution of the
Sim + + program produced by HASE in conjunction
with the user specified (entity Name).sim files.

Menu options under Build (Figure 3) within HASE
trigger the generation of Sim + + code, compilation,

THE COMPUTER JOURNAL,

VoL. 38,

No. 10, 1995

¥20Z Iudy 01 uo1senb Aqg 961 L9t/SS2/0L/8E/8101e/|UulWwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod

HASE: A FLEXIBLE TOOLSET FOR COMPUTER ARCHITECTS 761

execution of the simulation and reading of the trace
file.

A debug version of the simulation may also be
compiled. This version of the code includes a simple
routine which inserts commands to trace the current line
number into the (entityName).sim file prior to compila-
tion. Selecting this option pops up a window displaying
the (entityName).sim file. This allows the program
execution to be viewed alongside the animation.

8. DISPLAYING THE RESULTS

HASE provides two tools for viewing the results of a
single simulation execution, an Animator and a Timing
Diagram. Both assist in verifying the validity of the
Architecture Description.

The Animator uses the event sequence held in an event
trace file produced during a simulation run (normally the
most recent) to provide the user with a visual display of
activity in the system. It allows the data flowing between
components to be visualized in a variety of ways, e.g.
through moving icons showing individual instructions
flowing down the stages of a pipeline or changes to the
contents of a register bank when an instruction is
executed. The important benefit of the animator is that
it lets the user check that the model produces correct
results. It is also useful as a presentation aid.

Animation is produced automatically from the simula-
tion model with no need for the user to write explicit
animation code. The simulation primitives for sending
messages between components generate the trace infor-
mation needed by the animator. It is also possible to
animate a component’s icon by providing different
bitmaps for the different states. If a component has a

Press PLAY to start...

[Display Messages

A

PLAY REWIND STOP

FIGURE 6. The animation controller.

Tining Diagram

thepc.CPU:state
thepc .BCACHE :statel
thepc \MBUS :state
thepc.DRAM:state
thepc .HBUS :state
thepc.SVGA:state
thepc.SCSI:state
thepc .ETHERNET : stal
thepc.LOCAL :state
thepc.EISA:state

IIIIIlIHIII]]IIHlllllllllllIlH1l]lll

O time:17801.5
X time:16512.3 17000.0 18000.0 19000.0 20000
Xto 0:1289.3 N
[KEYS BUSY I
EisaState: !!
EISA_IDLE
EISA_BUSY [l

FIGURE 7. Example of a timing diagram.

state defined by the enumerated parameter BUSY,
ROUTING, IDLE, animation is achieved by providing
X bitmap files BUSY.btm, ROUTING.btm, IDLE.btm.
Any number of a component’s state variables may be
displayed in this way. Variables may be ‘dragged’ onto
the screen display using the component editor (or
alternatively they may be left out of the animation
altogether). Enumerated variables can be displayed
either as the text value, or using bitmaps. The values of
integer and string parameters are displayed as a text
label. These values are updated whenever the user’s
simulation code calls the built-in function dump_state().

Manipulation of the animation of the architecture is
handled through an Animation Controller (Figure 6)
where time, speed and message display are handled as
well as the standard ‘tape’ functions of PLAY,
REWIND and STOP.

The Timing Diagram display (Figure 7) shows how the
states of the currently displayed entities vary over the
course of the simulation run. Only the enumerated
parameters of each entity are regarded as the state.
Different colours/patterns are allocated for each different
state. Devotees of project management will recognize the
display as a Gantt chart. Time measurements may be
taken with two measuring bars, O and X and marked
regions can be expanded to show finer detail.

There are additional single run Data Collection
Utilities available through Sim + + that are not currently
integrated with HASE, but still available to the user for
manual inclusion in the simulation code.

9. METRICS

In general, the behaviour and validity of the project
model are verified by single run results and the
performance of the model is observed for subsequent
tuning through experimentation with the model.

An experiment comprises repeated simulation runs
varying input parameter values to produce output
parameters from which performance statistics and
other metrics may be gathered. General facilities are

THE COMPUTER JOURNAL,

Vor. 38, No. 10, 1995

¥20Z Iudy 01 uo1senb Aqg 961 L9t/SS2/0L/8E/8101e/|UulWwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod

762 R. N. IBBeTT, P. E. HEYWOOD AND F. W. HOWELL

provided for monitoring the values of particular state
variables but more complex metrics may be obtained by
explicitly writing Sim + + code.

Within the HASE environment the architect of the
model defines the set of input parameters and also
specifies a number of output parameters that could be
monitored during the experiment. Users of the model can
then determine which input parameters to assign values
to in order to make certain observations regarding the
performance of the model. The set of input or free
parameters is a subset of the parameters of the model,
chosen as being either external stimuli or interesting
variable factors. The set of output parameters is the
results obtained after applying the input parameters to
the model. From the set of input parameters, single, sets
of or a range of values can be specified.

The experimenter must decide what kind of statistical
analysis should be performed on the partial results and
view the final results to observe the performance of the
model for the defined experimental state. HASE includes
facilities for selection from a set of statistical functions
and input of the confidence coefficient, interval width
and maximum number of iterations. HASE also allows
for and manages multiple experiments per model.

10. PROJECTS USING HASE
10.1. The ALAMO project

The ALAMO project (Algorithms, Architectures &
Models of Computation: Simulation Experiments in
Parallel Systems Design) aims to address the first of the
Purdue Grand Challenges [1], ‘to identify one “‘universal”
or a small number of “fundamental” models of parallel
computation that serve as a natural basis for program-
ming languages and that facilitate high performance
hardware implementations’. The project involves an
investigation of the use of the H-PRAM model of
computation [14] as a bridging model for parallel
computation, i.e. an interaction platform for parallel
software and hardware, via simulation. Algorithmic
skeletons are written in an H-PRAM notation, compiled
on to simulation models of parallel architectures created
in HASE, and the performance metrics of various
hardware architectures investigated. The goal is to
determine the properties of cost-effective (cheapest
possible) systems based on scalable architectures to
provide efficient support of the H-PRAM model.

10.2. Parallel performance prediction

As an approach to satisfying the need for appropriate
tools for developing concurrent applications for multi-
processors, HASE has been applied to parallel program
development based on the MPI message passing inter-
face. The ease of interfacing software layers to simula-
tion models has made it straightforward to link actual
code to models of an architecture. This approach to
software development has also been investigated else-

where using Proteus [20] and the WWT [21]. The
advantages of using a simulation model for software
development include repeatability. availability, variety,
removal of Heisenbugs, ease of visualization and
generality. At the design stage of parallel software it is
better to have a simple method which is reasonably
accurate than an accurate one which is unusable.
Because of this, models have been calibrated using an
MPI characterization routine which measures the
performance of all MPI operations on an architecture.
The focus has been on obtaining a quick first-cut design
rather than on developing perfect models.

An interesting spin-off benefit of this project is that
because Sim + + uses simple co-routines rather than
Unix processes, the performance of a parallel MPI
program running under HASE can be three to four times
better than the same program running under a standard
MPI distribution on the same workstation. The absolute
improvement depends on the amount of context switch-
ing the program causes (since the context switch time for
co-routines is faster than for processes).

10.3. An on-line teaching system for computer
architecture

This project has produced a demonstration to aid
students in the understanding of computer architecture.
The demonstration involves playing back a pre-run
simulation of the DLX architecture [22] which both
animates the diagram of the architecture and displays a
sequence of text windows which explain what is
happening in the simulation. The simulation deals with
hazards, multicycle operations, scoreboarding, etc.
There is also a facility to enable students to create and
animate their own programs.

11. CONCLUSIONS AND FUTURE
DIRECTIONS

This paper has described a flexible environment for
computer architects which has the following character-
istics:

e Hierarchy: each part of a system can be both designed
and simulated at the appropriate abstraction level.

e Flexibility: no system can anticipate all the needs of
potential application areas; HASE has therefore been
designed to be as flexible as the most common
alternative—writing a simulation from scratch in a
programming language.

e Software support: a simulation in HASE may involve
both the hardware and software aspects of the systems
under investigation i.e. HASE facilitates software/
hardware codesign [23]; this is possible because soft-
ware libraries can be linked into a simulation model.

e Component reuse: a major aim has been to make it
easy to construct components which can be used in
many different projects.

o Graphics interface: The X-Windows/Motif graphical

THeE COMPUTER JOURNAL,

Vor. 38, No. 10, 1995

¥20Z Iudy 01 uo1senb Aqg 961 L9t/SS2/0L/8E/8101e/|UulWwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod

HASE: A FLEXIBLE ToOLSET FOR COMPUTER ARCHITECTS 763

interface allows the user to view the results of
simulation runs through animation of the design
drawings.

HASE has already been used for a number of projects
and users have commented on the relative ease with
which they have been able to create their architectures.
Further projects are in progress or are about to start.
These include an extension of the on-line teaching system
for computer architecture, simulation of a sparse vector
processor and investigations of cache performance.
Work on multiprocessor systems will include investiga-
tions of multiprefix algorithms and dynamic routing
algorithms on mesh interconnection networks, and the
evaluation of multiprocessor interconnection networks.
In this project each of the different networks under
investigation will be instantiated in a testbed consisting
of a set of processor and/or memory components
attached to the network. The processors will be relatively
simple models, limited to generating network activity.
The output from the various simulation runs will be used
to visualize the effects of hotspots, for example, and to
produce overall performance measures such as through-
put and latency.

A number of possibilities for expanding the capabil-
ities of HASE are also being considered. These include
the incorporation of VHDL definitions and formal
specifications as additional facets of HASE entities,
and the incorporation of a flexible compiling system to
allow experimentation with new instruction sets on
meaningful example programs. In its simplest form
such a compiler would offer modular flexibility in its
back-end for generating code targetted at a pre-defined
set of instruction sets. The ultimate in flexibility would be
a compiler capable of compiling to an arbitrary
instruction set, given the specification of that instruction
set. Tools to support experimental compilation at some
point on the spectrum between these two extremes will be
investigated as part of related compiler research cur-
rently being undertaken at Edinburgh.

As well as providing a powerful tool for architecture
research, HASE is also proving to be a valuable testbed
for new ideas in modelling support environments. So far
this work has concentrated on adding features to allow
experiments involving replicated runs, and thus the
exploration of parameter spaces, to be automated [24].
This is proving attractive in increasing the productivity
of users, removing the need to repeat runs and collect
results manually.

Further use of HASE is required before its run-time
performance can be fully assessed, but it seems likely that
improvements will be needed. One technique which is
already being explored involves exploitation of concur-
rency mechanisms in the database to deliver results from
multiple runs in parallel from a network of work-stations
[25]. This should increase the speed of the system and
allow more extensive simulations of more detailed
models to be undertaken.

ACKNOWLEDGEMENTS

HASE is being developed as part of the ALAMO project
supported by the UK EPSRC under grant GR/J43295.
The authors would like to thank a number of colleagues,
especially Paul Coe, Rob Pooley, Peter Thanisch, Nigel
Topham and Lawrence Williams, who have provided
constructive comments and input to this paper, and also
all the students who have used HASE throughout its
development for their comments and contributions.
F.W.H. has been supported by an EPSRC Postgraduate
Studentship.

REFERENCES

[1] Siegel, H. J., Abraham, S. et al. (1992) Report of the
Purdue Workshop on Grand Challenges in Computer
Architecture for the Support of High Performance
Computing. J. Parallel and Distributed Comput., 16,
199-211.

[2] Bell, C. G. and Newell, A. (1971) Computer Structures:
Readings and Examples. McGraw-Hill, New York.

[3] McHenry, J. T. and Midkiff, S. F. (1994) VHDL
modelling for the performance evaluation of multi-
computer networks. In Proc. MASCOTS-94. 1EEE
Computer Society Press, New York.

[4] Buck J, Ha, S., Lee, E. A. and Messerschmitt, D. G.
(1992) ‘Ptolemy: a framework for simulating prototyping
heterogeneous systems. Int. J. Comp. Sim., 155-182.

[5] George, A. D. (1993) Simulating microprocessor-based
parallel computers using processor libraries. Simulation,
60, 129-134.

[6] Sheehan, K. and Esslinger, M. (1989) The SES/sim
Modelling Language, Society for Computer Simulation,
San Diego, CA.

[71 Evans, D. G. and Morris, D. (1992) Applying modelling to
computer systems. In Proc. IFIP ‘CODES Workshop’,
Munich

[8] Nestor, J. A. (1993) Visual register-transfer description of
VLSI microarchitectures. IEEE Trans. VLSI, 1, 72-76.

[9] Zeigler, B. P. (1990) Object-Oriented Simulation with
Hierarchical, Modular Models. Academic Press, San
Diego CA.

[10] Robertson, A. R. and Ibbett, R. N. (1991) Simulation of
the MC88000 Microprocessor System on a Transputer
Network. In Proc. EDMCC2. Springer-Verlag, Berlin.

[11] Robertson, A. R. and Ibbett, R. N. (1994) HASE: a
flexible high performance architecture simulator. In Proc.
HICSS-27, Hawaii.

[12] Birtwistle, G. M. (1985) Demos. Discrete Event Modelling
On Simula. Prentice-Hall, Englewood Cliffs, NJ.

[13] Sim+ + User Manual (1992) Jade Simulations Interna-
tional Corp., Calgary, Canada.

[14] ObjectStore Release 3.0 User Guide (1993) Object Design
Incorporated, Burlington, MA.

[15] Hillston, J. E. (1992) A tool to enhance model explor-
ation. In Proc. Sixth Int. Conf. on Modelling Techniques
and Tools for Computer Performance Evaluation,
Edinburgh.

[16] Pooley, R. J. (1991) The integrated modelling support
environment a new generation of performance modelling
tools. In Computer Performance Evaluation Modelling
Techniques and Tools, Elsevier Science Publishers,
Amsterdam.

[17] Williams, L. M. (1995) Simulating DASH in HASE, M.Sc.
Dissertation, Department of Computer Science, Univer-
sity of Edinburgh.

[18] Lenoski, D. E., Laudon, J., Joe, T., et al. (1992) The

THE COMPUTER JOURNAL,

Vor. 38, No. 10, 1995

¥20Z Iudy 01 uo1senb Aqg 961 L9t/SS2/0L/8E/8101e/|UulWwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod

764 R. N. IBBeTT, P. E. HEYWOOD AND F. W. HOWELL

DASH prototype: implementation and performance. In tecture, A Quantitative Approach. Morgan Kaufmann,

Proc. 19th Int. Symp. on Computer Architecture, Queens- San Mateo, CA.

land, Australia. [23] Razenblit, J. and Buchenreider, K. (eds) (1995) Codesign:
[19] Heywood, T. and Ranka, S. (1992) A practical hierarch- Computer-aided software[hardware engineering. 1EEE

ical model of parallel computation I: the model. J. Parallel Press, New York

and Distributed Comput., 16, 212-232. [24] Heywood, P.E., Pooley, R. J. and Thanisch, P. (1995)
[20] Brewer, E. A. and Weihl, W. E. (1993) Developing parallel Object-oriented database technology for simulation

applications using high-performance simulation. In Proc. experiments. In Proc. Second United Kingdom Simulation

IEEE Workshop on Parallel and Distributed Debugging, Society Conf., North Berwick.

San Diego, CA. [25] Heywood, P.E., MacKechnie, G., Pooley, R. J. and
[21] Burger, D. C. and Wood, D. A. (1995) Accuracy vs. Thanisch P. (1995) Object-oriented database technology

performance in parallel simulation of Interconnection applied to distributed simulation. In Proc. EUROSIM

Networks. In Proc. ACM/IEEE Int. Parallel Processing Congr., Vienna..

Symp. (IPPS), Santa Barbara, CA. [26] Lomow, G., Cleary, J. et al. (1988) A performance study
[22] Hennessy, J. and Patterson, D. (1990) Computer Archi- of time warp. Distributed Sim., 19, 50-55.

THE CoMPUTER JOURNAL, VoL. 38, No. 10, 1995

¥20Z Iudy 01 uo1senb Aqg 961 L9t/SS2/0L/8E/8101e/|UulWwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod

