A Review of Object-oriented Approaches in
Formal Methods

ANTONIO RUI1Z-DELGADO*, DAVID PIiTTT AND COLIN SMYTHE]

Centre for Satellite Engineering Research, University of Surrey, UK
t Department of Mathematics and Computing Science, University of Surrey, UK
1 Department of Computing Science, University of Sheffield, UK
* Present address: Mercury Communications, Lakeside House, Cain Road, Bracknell,
Berkshire RG12 1XL, UK
E-mail: a.delgado@mcl.co.uk

This paper presents a survey of recent approaches in the application of the object-oriented paradigm to
formal specification. The complexity of current information systems demands the use of a higher degree
of formalism in the development process. Formal languages such as Z, VDM and Lotos have been used
extensively in academic environments and research projects; however, their utilization in the ‘real world’
is still relatively small. The use of object-oriented concepts has now been suggested as a good solution to
the lack of expressiveness that characterizes most of these languages. Several approaches addressing this
issue have appeared in the literature recently, including extensions to most existing languages. In this
paper we review some of these techniques and discuss problems and issues relevant to the combination of

formal methods and object orientation.

Received February 16, 1995, revised November 8, 1995

1. INTRODUCTION

One of the recognized strengths of the object-oriented
paradigm is that a common core of basic ideas can
support modelling at all levels of abstraction, from
conceptual description of real world entities to imple-
mentation of software applications in computer
languages. In its general applicability lies much of its
strength and there are few areas of computer science that
have not been influenced in one way or another by the
object-oriented paradigm.

The latest addition to the list of disciplines ‘touched’
by the object approach is what has become to be known
in the literature as formal methods. By formal methods
we mean the set of activities—specification, reasoning,
refinement—that add mathematical rigour to the
development, analysis and operation of computer-
based systems. In many respects, formal methods suffer
from the same kind of problems that have always
characterized the object-oriented paradigm. Many
people talk about them, but few know what they are
and even less actually use them. Just as happened with
object-orientation, formal methods are often presented
by devotees as ‘the’ solution to the increasing complexity
of current information systems, but the reality shows
that the majority of the available methods are still only
used in academic environments.

Both object orientation and formal methods have
evolved separately, and it is only recently that some
researchers have started to investigate the benefits of
their possible integration. Indeed, as pointed out [1],
many aspects of the object-oriented paradigm are similar
to those typically found in formal methods. The

description of class behaviour in an implementation-
independent fashion, the use of inheritance to indicate
subtype relations or the reliance on well understood
mathematical abstractions such as sets, sequences and
functions are mechanisms that formal methods prac-
titioners will be most familiar with. Yet, despite these
similarities there has been little work on their possible
integration in the past. In 1991 both OOPSLA [1] and
ECOOP [2], the world leading conferences on object
orientation, held discussion panels addressing the issue.
These events somehow represented the recognition by
the research communities that convergence was
necessary.

This paper reviews the work done by various groups in
this new area of object-oriented formal specification. We
are not so much interested in comparing the capabilities
offered by different languages or assessing their degree of
‘object-orientedness’. A collection of case studies from
different object-orientated extensions can be found in
Lano and Haughton [3]. The application domain of the
methods surveyed is diverse and so are the requirements
imposed on the language, which makes any comparison
task difficult. Our purpose is to show that object-oriented
notions are useful in a formal development environment.

The rest of the paper is structured as follows. Section 2
discusses some general issues in the combination of
formal methods and object orientation. The value added
by the paradigm in a specification context is summarized
in eight points. An informal survey of the state-of-the-art
in object-oriented formal specification is then presented
in Section 3. The idea is to give the reader a global view,
covering the most important approaches reported in the
literature over the last 3—4 years. Short descriptions are

THE COMPUTER JOURNAL,

VoLr. 38, No. 10, 1995

¥20Z Iudy 60 U0 1senb Aq 2121 9t/222/01/8E/8191e/|ulWwoo/wod dnosojwepede//:sdiy wolj peapeojumod



778 A. Ruiz-DELGADO et al.

given for each approach, highlighting their distinctive
points. Finally, some concluding remarks are presented
in Section 4. Familiarity with formal methods and object
orientation is assumed throughout the paper.

2. ASYNERGETIC COMBINATION

The cross-breeding of formal methods and object
orientation may take place coming from either of
both ends. Object-orientation people need formal
techniques in order to support their methodologies
with a sound formal basis and formal methods people
use object-oriented engineering concepts to make their
mathematical models easier to handle.

2.1. The object-orientation perspective

From an object-oriented point of view a number of
benefits are to be gained with the adoption of formal
methods:

e The description of languages and models using a
formal notation way enhances considerably our own
understanding of them. Better development methods
are produced if formal techniques are used by their
designers.

e There are plenty of complex dependencies between
object-oriented notions which can be studied if our
object model has a formal definition.

e In order to promote the reuse of software components
advocated by object orientation, we have to describe
unambiguously what those components do (Interface
Specification). This will facilitate the development of
libraries at both the conceptual and design level.

e Notations with formal semantics are necessary for the
development of better CASE tools.

e The use of formal techniques will ultimately make
possible the automatic verification of the software
produced with object-oriented methods.

For examples of how formal notations can be introduced
into current object-oriented analysis and design
methods, see Wilson [4] or di Giovanni and Iachini [5].

There are also a number of approaches combining
object-oriented programming languages with formal
techniques. Cheon and Leavens have developed interface
specification languages for Smalitalk [6] and C++ [7],
using Larch, an algebraic specification language. Wills
[8, 9] combines Smalltalk with VDM in Fresco, an
environment for the specification and implementation of
object-oriented software components. SPECS-C++ [10]
is a model-based executable specification language for
C++ classes, which also follows the VDM style.

2.2. The formal methods perspective

For the formal methods community the rationale of the
combination is obviously different. Their intention is to
bring powerful and well-studied software engineering
mechanisms into their languages, in order to make them

more ‘user-friendly’. The slow adoption of formal
methods in the industry has been mainly caused by two
reasons. First, potential formal methods users need a
good mathematical background to understand not only
the underlying models (logic, set theory, algebra, etc.)
but also in many cases the syntax of a formal language.
Second, most languages lack adequate structuring
constructs to model complex problems. They all seem
to work fine on a small scale but when it comes to deal
with complex systems they prove totally impractical.

The use of concepts borrowed from the object-
oriented paradigm has now been widely recognized as a
possible solution to the problems mentioned above.
Many formal specification languages have now been
either extended or re-interpreted within an object-
oriented framework. There are also other languages
that have been designed following the paradigm from the
beginning. They all try to benefit from the inherent
simplicity and the excellent structuring capabilities of
object-orientation in a fully formal fashion (Figure 1).

The following eight points summarize the added value
provided by the object-oriented paradigm in a formal
methods environment.

1. Object-oriented concepts can make formal specification
languages more attractive and easy to use. The
distinction between objects and classes advocated by
the paradigm allows the specifier to distinguish clearly
between the actual entities in the system structure
(objects) and the templates where common features of
similar objects are defined (classes). A more concise
specification is achieved by factoring out common-
alties. Similarly, the natural separation of abstraction
levels induced by the distinction between internal
behaviour of an entity and external communication
through well defined interfaces (encapsulation) pro-
duces cleaner specifications, easier to refine and to
manipulate.

2. Object orientation fills the gap between structural
(static) and behavioural (dynamic) specifications.
Two different aspects of a system can be subject to
specification. We may be interested in describing how
the system is structured, its components and their

Abstraction Inheritance

Encapsulation Composition
Polymorphism\ /ommunications

Formal Notation

Formal Semantics

Inference Rules

v

00O Formal Method

FIGURE 1. Incorporation of object-oriented features into formal
methods.

THE COMPUTER JOURNAL,

VoL. 38, No. 10, 1995

¥20Z Iudy 60 U0 1senb Aq 2121 9t/222/01/8E/8191e/|ulWwoo/wod dnosojwepede//:sdiy wolj peapeojumod



A REVIEW OF OBJECT-ORIENTED APPROACHES IN FORMAL SPECIFICATION 779

interrelations. Or we may want to describe its
operational behaviour, as seen by an external user.
Traditionally, the specification of both aspects had to
be carried out separately, often using different
formalisms. The language Lotos, for instance, uses
process algebra and ACT-ONE, respectively. This is
not the case with object-oriented languages as one of
the key notions of the paradigm is the integration
within class descriptions of data and behaviour. In
fact, object orientation can provide the framework for
the balanced integration of various specification styles
and problem solving mechanisms: data abstraction,
semantic classification, state transitions, declarative
specification of behaviour, message passing, etc.

. Concurrency can be seen as a logical consequence of the
inherent distributed nature of the object model. The
specification of concurrency has always been an area
of great concern within the formal methods com-
munity. Systems where a number of different activities
are being carried out at the same time are difficult to
handle. The object-oriented paradigm perceives the
world as a collection of loosely coupled agents
executing activities in parallel and working in
cooperation. This view makes objects the natural
unit for concurrency control.

. Reuse of specifications can be achieved using
inheritance. Much has been talked about the import-
ance of reuse at all levels in the development process.
The utilization of inheritance as a ‘code sharing’
mechanism, which is so useful in programming, can
also provide the basis for specification reuse.

. Refinement relations can be established through class
specialization. A basic class specification can be
augmented with more and more details, producing
descriptions of the same entity at different levels of
abstraction (top-down specification style). Starting
from an initial solution satisfying some basic require-
ments, further properties can be imposed without
violating those that have already been established
(Rules for determining which form of inheritance
leads to refinement and laws of refinement preserva-
tion are explicitly dealt with in Lano and Haughton
[11] and other references [12,13].) This form of
inheritance is sometimes called semantic inheritance,
as opposed to the purely syntactic mechanism
described above.

. Object composition provides for bottom-up specifica-
tion styles. The concept of composition is also known
in the object-oriented literature as aggregation. This
structuring technique corresponds to a ‘part-of’
relationship, which allows us to define the inner
structure of a complex object in terms of smaller
objects that work in cooperation provide the desired
functionality.

. Object orientation not only simplifies the actual writing
of specifications but also can help in the formal
reasoning stages. The inherent modularity of the
object-oriented approach can be exploited to facilitate

the construction of mathematical proofs. It is natural
to think that what holds for a class must also hold for
every subclass (reuse of proofs!), but this has to be
carefully studied and formalized in conjunction with
the inheritance mechanisms supported by the
language. The same can be said about composition
of objects and its implications on the proof system.
What properties can be inferred from the properties
of the components? It all depends on the type of
compositionality and its formal definition. The
question becomes particularly difficult when concur-
rency between components is involved. (Jones [14]
shows how the object-orientated paradigm provides a
way of controlling interference and defining granu-
larity that results in fewer and more tractable proof
obligations.) Experience in the use of formal methods
shows that the specification style determines con-
siderably the amount of effort needed in the formal
reasoning phase. Many specifiers structure their
descriptions with a proof-oriented mind so that
reasoning becomes easier. At later stages the specifi-
cation can be refined to reflect more the real structure
of the final implementation. The election of the
adequate objects and classes is fundamental in this
respect as they will constitute the basic units in the
proof model. Static properties will usually involve
only one class, whereas dynamic properties require
reasoning about the combined behaviour of several
classes.

8. An object-oriented formal method can be integrated
smoothly in the whole development cycle. Many
organizations have already adopted some of the
current (informal) object-oriented analysis and
design methodologies and have therefore become
familiar with the paradigm. The introduction of a
higher degree of formality would be much easier if
specification languages were based on the same
principles.

3. OVERVIEW OF OBJECT-ORIENTED
FORMAL SPECIFICATION LANGUAGES

For our purposes, object-oriented specification
languages are those which provide at least the three
basic object-oriented features (i.e. objects, classes and
inheritance) and are based on a semantic model that
allows formal manipulation of the specification. The
underlying model is usually a well known mathematical
framework, such as algebra, first-order logic, temporal
logic, set theory, etc. In many cases variations or
mixtures of different formalisms are used. A summary
of approaches and their formal basis is shown in Table 1.

Note that we have only considered languages whose
primary purpose is formal specification. Certain object-
oriented programming languages like Eiffel [15] and
POOL [16] claim to offer specification capabilities, but
since this is not their main objective we have not
included them. Equally, popular object-oriented design

THE COMPUTER JOURNAL,

Vor. 38, No. 10, 1995

¥20Z Iudy 60 U0 1senb Aq 2121 9t/222/01/8E/8191e/|ulWwoo/wod dnosojwepede//:sdiy wolj peapeojumod



780 A. Ruiz-DELGADO et al.
TABLE 1. Summary of object-oriented specification languages and their formal underlying model
Name Formal Model
TROLL Logical framework called Object Specification Logic
CSML Algebraic semantics. Development method based on Jackson System Development
EAM Entity-Relationships model and Abstract Machines
DisCo Joint Actions and Statecharts
COLD Operational semantics
MONDEL Operational semantics. Formal verification method based on Coloured Petri Nets
Object-Z History-based formal semantics, integrated in the set-theoretic model of Z
OOST Set theory and Relational Neutral Systems (‘Rest stays unchanged’ semantics)
OOZE Algebraic semantics derived from the underlying OBJ system
Z++ Z-based semantics for objects and operations. Algebraic for classes and inheritance
MooZ Z (transformational semantics)
LOOPN Based on Coloured Petri Nets
CO-OPN Timed Petri Nets and Distributed Transition Systems
VDM++ VDM (transformational semantics)
SDL92 SDL (transformational semantics)

methodologies such as Booch [17] and Rumbaugh et al.
[18] cannot be strictly considered formal methods
because they only provide informal notations.

We have classified object-oriented specification
approaches in two main groups. The first one is formed
by new languages that have been designed from
inception following the paradigm. The second com-
prises approaches that are more or less based on
well-established specification techniques.

3.1. New languages

Within the group of new languages we will concentrate
first on a family of new techniques for the object-oriented
specification of a particular kind of software systems, i.e.
Information Systems (IS). The history of object orienta-
tion in IS development is quite long, there are plenty of
(informal) requirement analysis techniques based on the
object paradigm. The need for a higher degree of
formality has now been widely recognized and a
number of new specification languages have appeared.

Describing a complex dynamic IS may requires the
modelling of some aspect of the real-world by storing
information about entities, their relationships and the
activities that change these relationships. The emphasis is
on formally modelling a real-world phenomena and its
environment. Since this is an area of research that has
grown out of database analysis and design, there is a
strong influence of abstract data type (ADT) theories.
The ADT theory views objects as values. Every single
object in the system is characterized by a unique
identifier drawn from the carrier specified in the object
class schema.

CSML—Conceptual Model Specification Language
[19]—and TROLL [20-22] are good examples of current
research in the area of formal description of IS. CSML
has been developed at Vrije Universiteit Amsterdam. It is
property-oriented (as opposed to model based) and
allows the description of object classes using structural
and behavioural specifications. Reasoning about both

aspects is done separately, using standard equational
logic. The language is supported by a development
method [23], based on the Jackson System Development.
The language TROLL is very similar in scope and
modelling power. However, It provides, a better
integration of static and dynamic aspects into class
specifications. It also allows the specification of temporal
behaviour using built-in predicates for enabledness and
occurrence of events, and temporal connectives. The
concepts underlying the language are based on the work
done in the IS-CORE (Information Systems—COrrect-
ness and REusability) project, sponsored by the
European Commission. EAM [24] is another language
for IS formal specification. It couples ERC+ (an object-
based Entity-Relationship model) with the Abstract
Machines approach. Systems are described in terms of
elementary machines, also called classes, which augment
ERC+ entity and relationships types with invariants and
behaviour modelling

The remaining approaches in this section can be
broadly termed as languages for specification and design
of distributed and/or reactive computer systems. The
abstraction level of the descriptions generated with these
languages is generally lower than the conceptual models
developed with IS specification languages. Here, the
intention is to describe the structure and behaviour
required from a concrete, implementable system.

The group headed by Kurki-Suonio at Tampere
University of Technology in Finland has been involved
for some time in the development of DisCo—Distributed
Co-operation [25,26]—a language for the specification
of concurrent and reactive systems. Apart from being
object oriented, the approach is also characterized by its
authors as action oriented [27]. What makes this technique
different from others is that instead of describing the
behaviour of individual objects, the specification focus on
the joint actions that the objects are to accomplish in
cooperation. The semantic model is state-oriented and
permits the direct application of temporal logic for the
specification of safety properties [28].

THE COMPUTER JOURNAL,

Vor. 38, No. 10, 1995

¥20Z Iudy 60 U0 1senb Aq 2121 9t/222/01/8E/8191e/|ulWwoo/wod dnosojwepede//:sdiy wolj peapeojumod



A REVIEW OF OBJECT-ORIENTED APPROACHES IN FORMAL SPECIFICATION 781

The language COLD—Common Object-oriented
Language for Design [29]—and its related methodology,
SPRINT ([30], originated at Philips Research Labora-
tories in The Netherlands. They are the result of an
effort to introduce formalism and rigour into current
object-oriented design methods. The language offers
good support for the specification of dynamic behaviour
by allowing the use of different styles: axiomatic,
pre-/post-conditions, algorithmic. However, it lacks
some structuring features normally expected from an
object-oriented language. This is due to the fact that
COLD has been adapted to the object paradigm at a
later stage.

The language MONDEL [31], on the other hand,
offers capabilities that make it truly formal and object-
oriented. MONDEL is the product of a joint research
project led by von Bochmann at BNR and the Computer
Research Institute of Montreal in Canada. Although its
intended areas of application are distributed systems and
communication protocols [32], the approach is general
enough to be used in many other areas. The style of the
specifications is essentially algorithmic, but there is also
provision for declarative assertions. The language is
executable and has formally defined semantics. A
development methodology based on the Entity-Relation-
ship model and a formal verification technique [33] using
Coloured Petri Nets are also proposed in the MONDEL
project.

The area of real-time systems specification is the main
target of the language ENVISAGER, developed by the
GTE Laboratories and Arizona State University. Real-
time systems are those which have to respond to external
input stimuli within a finite and specified time. Adequate
expression of timing constraints is therefore necessary
for the specification of such systems. ENVISAGER [34]
is an operational language and uses a variation of
temporal logic for description of time varying properties
of systems. Objects react to events and communicate
through asynchronous message passing. Timing con-
straints specify the maximum, minimum or absolute time
between two events of interest.

3.2. Incorporation of object orientation into existing
languages

The second group of languages reviewed is formed by
object-oriented dialects of well known formal description
techniques. The language Z [35] has received a lot of
attention (see Stepney et al. [36] for a survey), but other
techniques such as Lotos [37], Petri Nets [38] and VDM
[39] have also been ‘affected’ by the object-oriented
paradigm. Three different approaches are possible:

e Re-interpretation of the language by giving a set of
guidelines that allow us to specify the system in an
object-oriented fashion. The advantage of this
approach is that proof systems and tool support
available for the original languages can still be used.
However, on the other hand, the extent to which they

follow the object-oriented paradigm may be very
limited.

e Extension of its syntax with additional constructs.
The formal semantics of the new constructs are
normally mapped to the semantics of the non
object-oriented version (transformational semantics).

e Full transformation into an object-oriented language.
This involves the definition of a new language based
on its precursor, but not necessarily compatible with
it. Syntax and semantics have to be redefined.

We will first look at object-oriented re-interpretations in
the next subsection and continue with a review of proper
extensions and modifications.

3.2.1. Object-oriented interpretations

The interpretation of formal languages in an object-
oriented manner has been an active area of work in the
formal methods group led by Cusack, at BT Labs, in the
UK. This group developed a set theoretic model that
incorporated the basic structural ideas of the object-
oriented paradigm [40, 41]. In this basic model classes,
inheritance and polymorphism are expressed in terms of
partial specifications (class templates), instantiation
rules, incremental modification of class templates and a
preorder on the set of class templates which ‘maps into’
the set-theoretic inclusion hierarchy of classes. They
claim that by identifying these four concepts in a target
specification language, it is possible to interpret the
language according to the paradigm. The model has
subsequently been used to provide object-oriented
interpretations of CSP [42], Lotos [43] and Z [44,45].
This work was later improved and formalized in the ISO
Reference Model for Open Distributed Processing (ODP)
[46].

Another approach to the object-oriented specification
in Lotos is described in Mayr [47]. The behaviour of an
object is specified as a Lotos process and gates are used
to model the interfaces. Communicating objects can be
specified as a parallel composition of processes. This
contrasts with Black [48] who sets out an empirical
formalism for a state-base specification entity called an
object and then seeks its interpretation in Lotos. The
difficult task of describing inheritance, a key concept in
object-orientation, using Lotos constructs seems to be
the main problem to overcome [49].

The style proposed by Hall [50] consists of some
conventions for writing an object-oriented specification
using standard Z. Modelling of object states, use of
object identities, expression of the state of the system in
terms of the objects it contains and definition of
operations in terms of single objects are some of the
conventions proposed. Whysall and McDermid [51]
describe another approach to specifying objects in Z
which is particularly appropriate if the specifications are
to be used for subsequent refinement and proof. Objects
are described separately by so-called export and body
specifications. The export specifications are algebraic in

THE COMPUTER JOURNAL,

Vor. 38, No. 10, 1995

¥20Z Iudy 60 U0 1senb Aq 2121 9t/222/01/8E/8191e/|ulWwoo/wod dnosojwepede//:sdiy wolj peapeojumod



782 A. Ruiz-DELGADO et al.

style and describe the overall behaviour of the object
independent of the internal details. These export
specifications can thus be used to reason about the
behaviour of the object. The body specifications are
model-oriented specifications of the constituents parts of
each object, in particular their state and methods. These
body specification are used as the basis for subsequent
refinement.

3.2.1. Object-oriented versions

Out of all the object-oriented versions of Z, Object-Z
[52, 53] is probably the most complete. It originated at
the University of Queensland, in Australia, and now is
being used in several projects elsewhere. In Object-Z,
state and operation schemas are encapsulated into
classes. The formal model is based upon the idea of a
class history [54]; a history is a sequential record of the
operations, together with the underlying operation
states, undergone by an object. A class is subsequently
modelled by the set of all possible histories that an object
of that class can undergo. By a simple extension of the Z
type framework, it is possible to treat classes as types,
and hence consider the declaration of variables of a class
type.

The language OOST—Object-oriented Set-Theoretic
[55, 56]—is another specification language similar to Z in
that it is based on ZF set theory. OOST takes full
account of the fundamental issues of concurrency,
synchronization, communication and interference. A
very important role is played by the special rule of
historical inference, whereby only the minimal effect
(change of state) need actually be specified for each
possible event. The Relational Neutral Systems [57] gives
a semantic model for the analysis of potential behaviour
of OOST classes instances. This model, based on
relationships between class events and state, provides a
formal framework for the reasoning of overlapping
occurrences of events.

In contrast to Object-Z and OOST, which keep the set-
theoretic semantic model, OOZE—Object-oriented Z
Environment [58]—adopts a semantics based upon order
sorted, hidden sorted algebra. They argue that reasoning
about complex set-theoretic specifications is much more
difficult than algebraic based ones. The model-based
features of Z are maintained but the underlying model is
different. This allows them to use the property proof
facilities provided by their OBJ3 system [59]. Other Z
versions are Z++ [60] and MooZ [61]. The semantic
model of Z++ [62] is a combination of algebra, for
classes and inheritance, and Z, for methods and objects.
Special emphasis is placed on providing proof rules for
inheritance as a way of expressing refinement.

Petri Nets are probably one of the most widely used
specification techniques. Two object extensions have
been found in the literature, LOOPN (Language for
Object-oriented Petri Nets) [63] and CO-OPN (Con-
current Object-oriented Petri Nets) [64]. The former

extends the capabilities of Coloured Petri Nets with some
object-oriented features. The main innovation is the
definition of token types and modules as classes, with
inheritance and polymorphism facilities. The language
has been used for specifying and simulating communica-
tion protocols. CO-OPN is a much more elaborate
approach. Its inventors have combined a modular
algebraic specification language to describe data types.
and algebraic nets to specify object concurrent beha-
viour. The semantics of the model [65] is defined using
the notion of, which gives a formal framework for
specification refinement.

With respect to VDM, the only extension we are aware
of is VDM++ [66]. This approach claims to provide the
usual object-oriented modularity, as well as synchroniza-
tion and parallelism. Its semantics are defined by
mapping VDM++ constructs to the standard VDM
syntax. There are still no formal rules to deal with
concurrency and object constructs.

Finally, SDL [67], the language used by the ITU
(International Telecommunications Union) for the
formal specification of telecommunication standards,
has now been extended to encompass object-oriented
notions. The new version, called SDL92 [68], tries to
keep changes to a minimum. The modifications intro-
duced concentrate mainly on the provision of a general-
ization and specialization mechanism for both block and
process constructs. A much clearer distinction is also
made between type definitions and their instantiation.

4. FINAL REMARKS

The review presented in the previous section certainly
gives us an idea of the amount of research that is
currently being done on the combination of formal
methods and object-orientation. However, are object-
oriented formal languages any better that conventional
ones? It is not easy to answer this question since the
majority of the approaches reviewed are still very much
under development and there is not much experience in
their practical use. There is, however, little doubt among
formal methods researchers and practitioners that
object-orientation adds a new dimension to their
models, bringing them closer to ‘real world’. At this
point, we should not forget that a trade-off exists
between the number of features provided by a language
and the ability to manipulate mathematically the
specifications produced with it. The adoption of the
object paradigm brings powerful abstraction and struc-
turing mechanisms but at the same time creates some
additional problems. Classes, inheritance, composition
and other usual constructs need to be formally defined
and integrated within the semantic model of the language
if we want to use them in a truly formal methodology.
This represents a major challenge for the language
designers.

The popularity of the object-oriented paradigm itself
can be also a source of potential problems. The number

THE COMPUTER JOURNAL,

VoL. 38, No. 10, 1995

¥20Z Iudy 60 U0 1senb Aq 2121 9t/222/01/8E/8191e/|ulWwoo/wod dnosojwepede//:sdiy wolj peapeojumod



A REVIEW OF OBJECT-ORIENTED APPROACHES IN FORMAL SPECIFICATION 783

of interpretations and the ever increasing and sometimes
contradictory terminology makes it difficult to integrate
or even compare different approaches. Attempts to
introduce formalism into the paradigm have often been
hindered by this: anarchy of terms and concepts.
Although standardization communities and other inter-
national initiatives are working on the provision of
agreed formal definitions, the diversity of views and
models is still an ongoing problem.

ACKNOWLEDGEMENTS

The financial support provided to the first author by the
European Commission through the research programme
Human Capital and Mobility is acknowledged.

REFERENCES

(1]

(3]

(4]

(3]

(6]

(7]
(8]

]
(10]

(1]

(12]

(13]

(14]

de Champeaux, D., America, P., Coleman, D., Duke, R.,
Lea, D. and Leavens, G. (1991) Formal techniques for OO
software development. In Proc. Object-Oriented Program-
ming, Systems and Languages Conf. (OOPSLA’91), pp.
166-170. ACM Press, New York.

Hogg, J. (1992) Object-Oriented Formal Methods
(Report on ECOOP91 Workshop W3). OOPS
Messenger.

Lano, K. and Haughton, H. (1993) Object Oriented
Specification Case Studies (Object Oriented Series).
Prentice-Hall, Englewood Cliffs, NJ.

Wilson, J. (1993) Formal methods and object oriented
analysis. Br. Telecom Technol. J. (Special Issue on Object
Oriented Technology and its Applications), 11, 18-31.
diGiovanni, R. and Iachini, P. L. (1990) HOOD and Z for
the development of complex systems. In Bjorner, D.,
Hoare, C. and Langmaack, H. (eds), VDM '90: VDM and
Z: Formal Methods in Software Development, LNCS 428,
pp. 262-289. Springer-Verlag, Berlin.

Cheon, Y. and Leavens, G. T. (1994) The Larch/Smalltalk
interface specification languages. ACM Trans. Software
Eng. Methodol., 3, 221-253.

Cheon, Y. and Leavens, G. T. (1994) A quick overview of
Larch/C++. J. Object-Oriented Program., 76, 39—49.
Wills, A. (1991) Capsules and types in Fresco: Smalltalk
meets VDM. In Proc. ECOOP91, Eur. Conf. on Object-
Oriented Programming, LNCS 512, pp. 59-76. Springer-
Verlag, Berlin.

Wills, A. (1992) Formal Specification of Object-Oriented
Programs, Ph.D. thesis, University of Manchester.
Wahls, T., Baker, A. L, and Leavens, G. T. (1994) The
Direct Execution of SPECS-C++: A Model-Based
Specification Language for C++ Classes, Technical
Report 94-02b, Department of Computer Science, lowa
State University.

Lano, K. and Haughton, H. (1992) Reasoning and
refinement in object-oriented specification languages. In
Proc. ECOOP’92, Eur. Conf. on Object Oriented
Programming, LNCS 615. Springer-Verlag, Berlin.
Whysall, P. and McDermid, J. (1991) Object-Oriented
Specification and Refinement. In Morris, J. and Shaw, R.
(eds), Proc. 4th Refinement Workshop, Workshops in
Computing, pp. 151-184. Springer-Verlag, Berlin.

Bailes, C. and Duke, R. (1991) The ecology of class
refinement. In Morris, J. and Shaw, R. (ed.), Proc. 4th
Refinement Workshop, Workshops in Computing, pp. 185—
196. Springer-Verlag, Berlin.

Jones, C. (1993) Reasoning about interference in an
object-based design method. In FME’93: Industrial-

(15]

(16]

(17]

(18]

(19]

(20]

(21]

[22]

[23]

[24]

[25]

(26]

(27]

(28]

(29]

(30]
(31]

(32]

(33]

Strength Formal Methods, LNCS 670, pp. 1-18.
Springer-Verlag, Berlin.

Meyer, B. (1988) Object Oriented Software Construction.
Prentice-Hall, Englewood Cliffs, NJ.

America, P. (1987) POOL-T: a parallel object-oriented
language. In Yoneza, A. and Tokoro, M. (ed.), Object-
Oriented Concurrent Programming, pp. 199-220. MIT
Press, Cambridge, MA.

Booch, G. (1991) Object Oriented Design with Applica-
tions, Benjamin-Cummings, London.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and
Lorensen, W. (1991) Object Oriented Modeling and
Design. Prentice-Hall, Englewood Cliffs, NJ.

Wieringa, R. (1990) Equational Specification of Dynamic
Objects. In Meersman, R., Kent, W. and Khosla, S. (eds),
Object-Oriented Databases: Analysis, Design, and
Construction (DS-4), pp. 415-438. North-Holland,
Amsterdam.

Jungclaus, R., Saake, G., Hartmann, T. and Sernadas, C.
(1991) Object Oriented Specification of Information
Systems: The TROLL Language, Technical Report
91-04, Technische Universitdt Braunschweig, Germany.
Saake, G., Jungclaus, R. and Ehrich, H.-D. (1992) Object-
oriented specification and stepwise refinement. In Meer,
D., Heymer, V. and Roth, R. (eds), Proc. IFIP TC6 Int.
Workshop on Open Distributed Processing (IFIP Trans.
Cl), pp. 99-121. North-Holland, Amsterdam.
Hartmann, T. and Jungclaus, R. (1991) Abstract descrip-
tion of distributed object systems. In Tokoro, M.,
Nierstrasz, O. and Wegner, P. (eds), Proc. ECOOP9]
Workshop on Object-Based Concurrent Computing, LNCS
512, pp. 227-244. Springer-Verlag, Berlin.

Wieringa, R. J. (1991) Steps towards a method for the
formal modeling of dynamic objects. Data and Knowledge
Eng., 6, 509—540.

Auddino, A. (1994) Formal modelling of objects and
subsystems in an information systems framework. In
Proc. 4th Euro-Japanese Seminar on Information Model-
ling and Knowledge Bases. 10S Press, Amsterdam.
Jarvinen, H.-M. and Kurki-Suonio, R. (1991) DisCo
specification language: marriage of actions and objects. In
Proc. 11th Int. Conf. on Distributed Computer System, pp.
142-151. IEEE Computer Society Press, New York.
Jarvinen, H.-M., Kurki-Suonio, R., Sakkinen, M. and
Systd, K. (1989) Object-oriented specification of reactive
systems. In Proc. 12th Int. Conf. on Software Engineering,
pp- 63-71. IEEE Computer Society Press, New York.
Kurki-Suonio, R. B. R. (1988) Distributed cooperation
with action systems. ACM Trans. Programming
Languages Syst., 10, 513-554.

Jarvinen, H.-M. and Kurki-Suonio, R. (1990) The DisCo
Language and Temporal Logic of Actions, Technical
Report 11, Tampere University of Technology, Software
Systems Laboratory.

van der Linden, F. (1993) An Object-Oriented Approach to
SPRINT, Technical Report RWR-508-re-92413, Philips
Research Laboratories, The Netherlands.

van der Linden, F. (1993) Object-Oriented Specification in
COLD, obtained from the author.

von Bochmann, G., Barbeau, M., Lecomte, L., Williams,
N., Erradi, M. and Mondain-Monval, P. (1991) Mondel:
An Object-oriented Specification Language, Technical
Report CRIM-91/10-03, CRIM/BNR/Universit¢ de
Montreéal.

von Bochmann, G., Poirier, S. and Mondain-Monval, P.
(1992) Object-oriented design for distributed systems: the
OSI directory example. In Proc. IFIP Int. Conf. on Upper
Layer Protocols, Architectures and Applications.
Barbeau, M. and von Bochmann, G. (1991) Formal

THE COMPUTER JOURNAL,

VoL. 38,

No. 10, 1995

¥20Z Iudy 60 U0 1senb Aq 2121 9t/222/01/8E/8191e/|ulWwoo/wod dnosojwepede//:sdiy wolj peapeojumod



784

A. Ruiz-DELGADO

et al.

(36]

(371

(38]
139]
(40]
(41]
(42]

(43]

[44]

[45]

(46]

(47]

(48]

(49]

(50]

(51]

(52]

Verification of Object-Oriented Specifications
Colored Petri Nets, obtained from the authors.
Diaz-Gonzalez, J. and Urban, J. (1991) Language aspects
of ENVISAGER: an object-oriented environment for the
specification of real-time systems. Comp. Languages, 16,
19-37.

Spivey, J. (1989) The Z Notation: A Reference Manual,
International Series in Computer Science. Prentice-Hall,
Englewood Cliffs, NJ.

Stepney, S., Barden, R. and Cooper, D. (eds) (1992)
Object Orientation in Z, Workshops in Computing.
Springer-Verlag, Berlin.

Bolognesi, T. and Brinksma, E. (1987) Introduction to the
ISO specification language LOTOS. Computer Networks
ISDN Syst., 14, 25-29.

Peterson, J. (1981) Petri Net Theory and the Modelling of
Systems. Prentice-Hall, Englewood Cliffs, NJ.

Jones, C. (1986) Systematic Software Development Using
VDM. Prentice-Hall, Englewood Cliffs, NJ.

Cusack, E. (1988) Fundamental aspects of object oriented
specification. Br. Telecom Technol. J., 6, 76—81.

Cusack, E. (1991) Refinement, conformance and
inheritance. Formal Aspects Comput., 3, 129-141.
Cusack, E. (1990) Formal object oriented specification of
distributed systems. In Proc. Workshop on Specification
and Verification of Concurrent Systems, pp. 71-81.
Springer-Verlag, Berlin.

Cusack, E., Rudkin, S. and Smith, C. (1990) An object-
oriented interpretation of LOTOS. In Vuong, S. (ed.),
Formal Description Techniques 11, FORTE'89, pp. 211-
226. North-Holland, Amsterdam.

Cusack, E. (1992) Object oriented modelling in Z for open
distributed systems. In de Meer, J. (ed.), Proc. Int.
Workshop on ODP. North-Holland, Amsterdam.
Rudkin, S. (1992) Modeling information objects in Z. In
de Meer, J. (ed.), Proc. Int. Workshop on ODP. North-
Holland, Amsterdam.

ISO/CCITT (1993) ISO/IEC JTC1 SC21 N7524 (CD
10746-2.2) RM-ODP Part 2: Descriptive Model.

Mayr, T. (1989) Specification of object-oriented systems
in LOTOS. In Turner, K. (ed.), Formal Description
Techniques, FORTE'88, pp. 107-119. North-Holland,
Amsterdam.

Black, S. (1989) Objects and LOTOS, Technical Report,
Hewlett-Packard Laboratories, Bristol.

Rudkin, S. (1992) Inheritance in LOTOS. In Park, K. and
Rose, G. (eds), Formal Description Techniques IV,
FORTE91, pp. 409-424. North-Holland, Amsterdam.
Hall, J. (1990) Using Z as a specification calculus for
object-oriented systems. In Bjorner, D. Hoare C. and
Langmaack H. (ed.), VDM'90: VDM and Z: Formal
Methods in Software Development, LNCS 428, pp. 290—
318 Springer-Verlag, Berlin.

Whysall, P. and McDermid, J. (1991) An Approach to
object-oriented specification using Z. In Nicholls, J. (ed.),
Z User Workshop: Proc. 4th Ann. Z User Meeting,
Workshops in Computing, pp. 193-215. Springer-Verlag,
Berlin.

Carrington, D. A., Duke, D., Duke, R., King, P., Rose, G.
and Smith, G. (1990) Object-Z: an object oriented
extension to Z. In Vuong, S. (ed.), Formal Description
Techniques II, FORTE'89, pp. 281-296. North-Holland,
Amsterdam.

Using

(53]

(54]

(53]

(56]

[57]

(58]

[59]

(60]

(61]

(62]

(63]

(64]

[65]

(66]

(67]

(68]

Duke, R., King, P., Rose, G. and Smith, G. (1991) The
Object-Z specification language. In Korson, T,
Vaishnavi, V. and Meyer B. (eds), Technology of Object-
Oriented Languages and Systems: TOOLS 5, pp. 465-483.
Prentice-Hall, Englewood Cliffs, NJ.

Duke, D. and Duke, R. (1990) Towards a semantics for
Object-Z. In Bjorner, D., Hoare, C. and Langmaack, H.
(eds), VDM’90: VDM and Z: Formal Methods in Software
Development, LNCS 428, pp. 242-262. Springer-Verlag,
Berlin.

Schuman, S. and Pitt, D. (1987) Object-oriented sub-
system specification. In Meertens, L. (ed.), Program
Specification and Transformation, pp. 313-341. North-
Holland, Amsterdam.

Schuman, S., Pitt, D. and Byers, P. (1990) Object-Oriented
Process Specification, Technical Report CS-90-01,
Department of Mathematical and Computing Sciences,
University of Surrey.

Pitt, D. and Byers, P. (1991) The Rest Stays Unchanged
(Concurrency and State-Based Specification), Technical
Report CS-91-07, Department of Mathematical and
Computing Sciences, University of Surrey.

Alencar, A. and Goguen, J. (1991) OOZE: an object-
oriented Z environment. In America, P. (ed.), Proc.
ECOOP91, Eur. Conf. on Object-Oriented Programming,
LNCS 512, pp. 88-95. Springer-Verlag, Berlin.

Goguen, J., Meseguer, J., Winkler, T., Futatsugi, K. and
Jouannaud, J.-P. (1992) Introducing OBJ3. Technical
Report SRI-CSL-92-03. Computing Science Laboratory,
SRI International, USA.

Lano, K. (1991) Z++: an object-oriented extension to Z.
In Nicholls, J. (ed.), Z User Workshop: Proc. 4th Annu. Z
User Meeting, Workshops in Computing, pp. 151-172.
Springer-Verlag, Berlin

Meira, S. and Cavalcanti, A. (1991) Modular object-
oriented Z specifications. In Nicholls, J. (ed.), Z User
Workshop: Proc. 4th Annu. Z User Meeting, Workshops in
Computing, pp. 173-192. Springer-Verlag, Berlin.

Lano, K. and Haughton, H. (1992) An Algebraic
Semantics for the Specification Language Z+ +. In
Proc. Algebraic Methodology and Software Technology
Conf. (AMAST’91), Springer-Verlag, Berlin.

Lakos, C. and Keen, C. (1991) Modelling layered
protocols in LOOPN. In Proc. 4th Int. Workshop on
Petri Nets and Performance Models, pp. 106—115. IEEE
Computer Society, New York.

Buchs, D. and Guelfi, N. (1992) Distributed system
specification using CO-OPN. In Proc. 3rd Workshop on
Future Trends of Distributed Computing Systems. pp. 26—
33. IEEE Computer Society, New York

Buchs, D. and Guelfi, N. (1991) CO-OPN: a concurrent
object oriented Petri net approach. In Proc. 12th Int. Conf.
on Theory and Applications of Petri Nets, Gjern, Denmark.
Diirr, E. and van Katwijk, J. (1992) VDM++: a formal
specification language for object-oriented designs. In
Proc. ComEuro 1992, pp. 214-219. IEEE Computer
Society Press, New York.

Saracco, R. and Tilanus, P. (1987) CCITT SDL: overview
of the language and its applications. Computer Networks
ISDN Syst., 13, 65-74.

CCITT (1991) Tutorial on Object-Oriented SDL.
Study group X (Maintenance of SDL) Contribution
D.74.

THE COMPUTER JOURNAL,

VoL. 38,

No. 10, 1995

¥20Z Iudy 60 U0 1senb Aq 2121 9t/222/01/8E/8191e/|ulWwoo/wod dnosojwepede//:sdiy wolj peapeojumod



