Performance of Work-Optimal PRAM
Simulation Algorithms on Coated Meshes

ViLLE LEPPANEN

Department of Computer Science, University of Turku, Lemminkdisenkatu 14—18, Datacity,
FIN-20520 Turku, Finland
E-mail: Ville.Leppanen@ cs.utu.fi

We study the effect of varying the multithreading level of processors in work-optimal PRAM simulation
algorithms on coated meshes. A coated mesh consists of a mesh connected routing machinery and P
processor & memory pairs that form a coat on the routing machinery. The algorithms studied are based
on greedy routing, sorting, improved virtual leveled network technique, combining queues method, and
synchronization wave. Our results show that increasing the multithreading level considerably improves
the simulation cost. The cost can be decreased below 5 routing steps per P simulated PRAM processors.
In case of one algorithm, even costs 1.1...2 are achieved.

Received August 8 1995, Revised December 3 1995

1. INTRODUCTION

Work-optimal simulation of PRAM models means that
a constant fraction of the aggregate power of processors
can be given to (arbitrary) PRAM computations. We
study the efficiency of five PRAM simulation algorithms
on a structure called coated mesh. This is interesting,
since (a) the coated mesh (rigid definition is given in
Section 1.1) is a very realistic architectural model of
parallel computation; (b) it allows work-optimal imple-
mentation of certain PRAM models by using Valiant’s
parallel slackness concept [15] (i.e., by using multi-
threading); (c) the PRAM models have been very
popular platforms in parallel algorithm design [5]; and
(d) although several work-optimal PRAM simulations
have been developed [4,9,10,11,15], relatively little
attention has been paid on the exact simulation cost
and the realisticness of proposed simulations.

The coated mesh is a mesh based routing machinery
that is ‘coated’ with processor & memory pairs. It is an
attractive architectural model, since due to constant
length connections it is truly scalable. As a mesh based
construction, it is very regular and has a natural layout.
The difference compared to an ordinary mesh is that the
mesh nodes are much more simpler in the coated mesh—
basically, they just forward packets. Ordinary meshes
cannot simulate PRAM models work-optimally because
of insufficient routing capacity compared to the diameter
[8]. The idea in introducing a P-processor coated mesh
with diameter § is to increase the routing capacity (from
O(P)) to O(PS). By using Valiant’s XPRAM framework,
this allows work-optimal PRAM simulation.

The capacity is obtained by having O(é) routing
machinery nodes per each physical processor. However,
the work and hardware complexity of routing machinery
nodes is seen negligible, since they are considerably

* This work was financially supported by the Academy of Finland.

simpler than processor&memory pairs. The same reason-
ing is used in the connection of p-direct butterfly [15] that
is analogous structure with the coated mesh. It uses the
butterfly instead of the mesh and has shorter logical
diameter but longer wires and more irregular physical
layout.

All algorithms, except one, that we study in this paper
can be proved to be work-optimal. However, the
presented proofs do not take increasing of the multi-
threading level (how many threads, or virtual PRAM
processors, per each real processor) properly into
consideration. In the following, we shall refer to the
multithreading level simply by /oad, and call overloading
the increasing of load. We show that overloading can be
used to significantly improve the efficiency of all the
studied simulation algorithms. This is due to the
simulation algorithms having parts whose cost is
independent of the load. Another major reason behind
improving is that relative cost of routing phases
decreases as the load increases. A routing machinery
whose capacity is O(6) times larger than P enables, in
principle, that random routing tasks complete in time
O(6 + load). The relative cost of routing phase O(&4lad)
thus decreases as the load increases. When load exceeds
the routing machinery capacity (per processor), the
relative cost can be expected to show asymptotic
behavior.

Is high multithreading level an unrealistic assumption?
Tera [3] and SB-PRAM [l1, 2] support 128 and 1024
threads per each physical processor, respectively.
Supporting even more is not unrealistic from hardware
point of view, since a thread basically requires only few
tens of words of memory. From algorithm design point
of view, the answer is not as clear. However, the facts
that several problems have work-optimal NC-class
PRAM-solutions [5] and parallel algorithms are often
developed in practice for large modeling problems
[13], suggest that high multithreading level is not an

THE COMPUTER JOURNAL,

Vor. 38, No. 10, 1995

¥20Z Iudy 60 U0 1senb Ag 0172 L9t/108/0 L/8E/81o1e/|ulWwoo/wod dno-ojwepede//:sdiy wolj peapeojumod

802 VILLE LEPPANEN

@ = processor @ memory module

= routing machinery node
FIGURE 1. A 2-dimensional coated mesh.

unrealistic assumption. Work-optimal NC-class algo-
rithms use polylogarithmic time. Since work-optimality
is defined with respect to sequential work (often
polynomial with respect to the size of problem), the
multithreading level is clearly high. Besides, the threads
can originate from several concurrently running PRAM
applications.

Next in Sections 1.1 and 1.2, we define the coated mesh
and the PRAM models, respectively. Then we give an
overview of the five PRAM simulation algorithms that
work on coated meshes. In Section 3, we show how
overloading improves their efficiency. A small com-
parison with work-optimal PRAM implementations
proposed for the p-direct butterfly is made in Section 4.
We draw conclusions in Section 5 and propose some
open problems.

1.1. Coated mesh

We call coated mesh a mesh based routing machinery (of
shape \/Q x /O or VO x /O x </0Q), which is coated
with processor&memory pairs (see Figure 1). The
processors are attached only to the nodes on the surface
of the routing machinery. Each node of the routing
machinery

e has a constant amount of local memory for computa-
tion and for storing packets;

e has at most A unidirectional links towards each
neighboring node;

e is capable of forwarding at most one packet from each
incoming edge (current size of output queue restricts
forwarding) in unit time;

e has a buffer of size g packets for each outgoing edge
(we assume only the ‘head’ of each output buffer to
reside at the receiving node); and

e is connected with bidirectional links to at most one
processor per direction.

We assume that each physical processor P; is attached
to a memory module M;. The routing machinery
we take to be either a /0 x /0 mesh or a
VO x /O x /O mesh. In the 3D (2D) case, there are
altogether P = 6Q2/ 3 (44/0) processor & memory pairs
on 6 (4) surfaces. We denote such a d-dimensional coated
mesh with CM(s? 9 A), where s is the side length—i.e.,
s? = 0. ByCM™(s%, g, A) we denote an extension, where
the queues are combining queues—i.e.,

e the edge queues can combine, without increasing the
size of the packet, in unit time an incoming packet
with another packet already in the queue and referring
to the same shared memory location (both packets
must be either read or write requests);

e there is enough memory attached to each edge to store
the necessary information to do decombining (split a
reply into two replies); and

e the queues can do the decombining.

The clockrate of the routing machinery might be
higher than that of the processors (by time multiplexing
the usage of a physical link, one can create more virtual
links). The routing machinery could be toroidal like that
used in the Tera machine [3]. This would shorten the
length of expected route.

1.2. PRAM models

The PRAM models consists of N processors and a
shared memory M of size m. Each processor has some
local memory, and it knows its own unique identifier
PID (Processor IDentifier). The PIDs are integers in the
range 0,1,...,N — 1. We denote the processors with
Py, Py,...,Py_;. A step of a PRAM processor consists
of a local operation, reading a shared memory location,
or writing to a shared memory location. The phases of a
step are executed synchronously, and each processor is
assumed to finish the current step before any of the
processors begins the next one. Here we discuss only the
following PRAM models.

EREW: Concurrent reading or writing of any shared
memory cell is forbidden. However, each shared
memory cell may be read and written during the
same step.

ARBITRARY CRCW : Concurrent read and write oper-
ations of the shared memory are allowed. If two or
more processors write to the same memory location in
a given step, then one of the values is selected
arbitrarily to become the new value. Nothing is
known about the selection.

THE COMPUTER JOURNAL,

VoL. 38,

No. 10, 1995

¥20Z Iudy 60 U0 1senb Ag 0172 L9t/108/0 L/8E/81o1e/|ulWwoo/wod dno-ojwepede//:sdiy wolj peapeojumod

PERFORMANCE OF WORK-OPTIMAL PRAM SIMULATION ALGORITHMS ON COATED MESHES 803

From now on, N denotes the number of PRAM
processors, P the number of real processors, and Q the
number of nodes in the routing machinery.

2. SIMULATION ALGORITHMS

The technique to simulate PRAM models on distributed
memory machines is well-known [11,15]. The shared
memory of the PRAM is mapped into the memory
modules of the coated mesh with a randomly chosen
hash function /, and each real processor is assumed to
simulate |[N/P] or [N/P] PRAM processors. The only
problem in the simulation is how to efficiently route read
and write requests (caused by references to the shared
memory) and replies in the routing machinery while
preserving the atomic consistency of the PRAM.

In Sections 2.1 and 2.2, we give high level descriptions
of two EREW simulation algorithms. In Section 2.3, we
describe a sorting based CRCW simulation algorithm.
Then, in Sections 2.4 and 2.5 we give two CRCW
simulation algorithms, which are based on the com-
bining queues method and on the virtual leveled network
technique.

2.1. Two-phase EREW simulation

We do the simulation of an N-processor EREW PRAM
on a P-processor coated mesh with Algorithm 2.1. It
attaches two intermediate targets for each packet: one
from pile of nodes attached to source and target
processors. A pile of nodes related to some processor is
a set of routing machinery nodes that form the closer half
of an array of nodes perpendicular to the processor. The
related processor is connected to one of those nodes.
Each routing machinery node belongs to at most d piles.

We route packets from first intermediate target to the
second with a greedy routing algorithm R, that ‘corrects’
the current coordinates of packets one by one in a
predetermined order of axis (X, Y, Z). On arrival to the
second intermediate target, the packets are forwarded
greedily along removal edges to their target processor.
Besides ordinary bidirectional connections, the coated
mesh is assumed to have unidirectional removal edges
from each routing machinery node towards all the
processors whose pile it belongs. The algorithm uses
queuing discipline Qy; (farthest-first) to determine, which
packet is sent first in case there are many candidates.

We assume that each processor can receive all the
packets destined to it during one simulation round, and
all the nodes can store the packets injected to the routing
machinery before actually beginning a routing phase.
For simplicity, N/P is an integer in the following.

Algorithm 2.1 (2-phase EREW simulation) Each proces-
sor P; (i € {0,1,..., P — 1}) simulates PRAM processors
Pinspij (J€{0,1,...,N/P —1}).

1. Translate instructions to packets, choose a random
intermediate target from target pile for each packet,
and inject packets evenly to the routing machinery.

2. Route the packets to targets via their second inter-

mediate target by using R, and Qy.

Execute the memory accesses and generate replies.

Ensure that all packets have been received.

. Inject replies to the routing machinery.

. Route replies 10 targets via the original intermediate
nodes by using R, and Q.

7. Ensure that all packets have been received and update

registers.

A coated mesh CM(VN?, O(log N), 2) (respectively a
CM(¥/N?,0(log N),2)) can provably [9] simulate with
Algorithm 2.1 an N-processor EREW PRAM work-
optimally by using at most 36 + o(1) (78 + o(1)) routing
steps per P =4,/Q (P = 60Q%) PRAM processors, with
high probability. By ‘high probability’ we mean probability
1 — N7 for any fixed k (the choice of k affects o(1)).
Expression ‘x routing steps per P simulated processors’ tells
the cost of each PRAM operation. In the following, we shall
call this the relative cost of simulation algorithm
G(N, P,d, q), or simply the relative cost.

A relative cost of 36, or more, is too high. A method to
improve it is overloading—having N > Q. The relative
cost of injection phases (Phases 1 and 5) is almost
independent of Q and N. For N > Q their expected
relative cost is close to 2 and with high probability it is
less than 3. The synchronization phases (Phases 4 and 7)
are independent of N—i.e., their relative cost decreases
as N increases. However, due to difficulties of exactly
analyzing routing situations, where N > Q, we provide
experimental results in Section 3. (Notice that the routing
capacity of CM(/Q“, 4, A) can be up to QdA.)

TN

2.2. Continuous EREW simulation

Assume the coated mesh to be of type CM(s?,q,4).
There are two logical networks: one for delivering the
requests and another for delivering replies. The logical
networks are analogous, and in both of them, each node
is connected with 2 bidirectional links to each neighbor.
Besides the normal bidirectional connections and
removal edges, there are unidirectional injection edges
towards the center along each axis.

The purpose of having 4 bidirectional connections
between neighboring nodes is to build a virtual acyclic
directed graph (VDAG) from processors to memory
modules and vice versa. Such a VDAG can be used to
implement more sophisticated synchronization mech-
anism: synchronization wave [2,11]. The idea is that
when a source has sent all its packets on their way, it
sends a synchronization packet. Synchronization packets
from various sources push on the actual packets, and
spread to all possible paths that the actual packets could
go. When a (logical) node receives a synchronization
packet from one of its inputs, it waits, until it has
received a synchronization packet from all of its inputs,
then it forwards the synchronization wave to all of its
outputs. While waiting, the node forwards other packets.
The synchronization wave may not bypass any actual

THE COMPUTER JOURNAL,

Vor. 38, No. 10, 1995

¥20Z Iudy 60 U0 1senb Ag 0172 L9t/108/0 L/8E/81o1e/|ulWwoo/wod dno-ojwepede//:sdiy wolj peapeojumod

804 VILLE LEPPANEN

packets and vice versa. When a synchronization wave
sweeps over a VDAG based routing machinery, all nodes
(and processors) receive exactly one synchronization
packet via each input link and send exactly one via each
output link.

The injection and removal edges together with R,
routing protocol define a VDAG for both logical
networks in a natural way. The VDAG nature of routing
prevents deadlocks. The synchronization wave approach
makes PRAM simulation more flexible: The processors
and memory modules may process arriving packets
freely and the atomic consistency is preserved as long as
the synchronization wave reflects between the memory
modules and processors. Obviously, the processors can
achieve a high utilization level.

Algorithm 2.2 (Continuous EREW simulation)

1. Translate instructions to packets and attach two
randomly chosen intermediate targets for each: one
from source pile and the other from target pile.

2. Inject the packets, and a synchronization packet after
them, to the routing machinery via injection edges.

3. Route the packets to first intermediate target by using
injection edges, then to second intermediate target by
using normal connections (with R, and Qyr), and finally
to the target by using removal edges. The synchroni-
zation wave proceeds as explained.

4. Execute the memory accesses, generate replies, and

inject them to the reply network. Also let the

synchronization wave reflect to the reply network.

Route replies as normal packets.

6. On arrival to the target, update registers, fetch next
instruction, and repeat the above. Let the synchroni-
zation wave reflect to the request network.

“

All the above steps are executed simultaneously in
pipelined manner.

By using the virtual leveled network routing results
proved in [7] Algorithm 2.2, can be proved to function
work-optimally, if 4 is chosen randomly from a class of
polynomial hash functions and g = Q(s). The latter
requirement is due to transforming the VDAG to a
virtual leveled network by adding virtual nodes to edges.
The virtual edges can be simulated simply by having
larger buffers. Whether the results in [7] can be extended
to VDAGs so that g remains a constant is an open
problem. Our experimental results suggest that constant
size buffers are sufficient in practice.

2.3. Sorting based CRCW simulation

Algorithm 2.3 is obtained by ‘embedding’ a CRCW on
EREW simulation algorithm [5] into Algorithm 2.1. It
works on a CM(s?,¢,2) as Algorithm 2.1 but requires
that the routing machinery nodes can do many
elementary operations in addition to forwarding
packets.

Algorithm 2.3 (CRCW using sorting)

1. Translate instructions to packets and inject them to
the routing machinery.

2. Sort packets according to the target.

3. Nodes save packets temporarily and find a repre-
sentative for each group of packets with the same
target.

4. Route each representative to the target processor via a

random node on the target pile with R, and Q.

Execute memory accesses and build replies.

Ensure that all packets are routed to their target.

Inject replies to the routing machinery.

Route replies back to the creators of representatives

with Ry and Qyy.

. Ensure that nodes have received all replies.

10. Spread received values to processors having the same

target and build replies to the original requests.

11. Sort new replies according to the injection point of the

original request.

12. Route replies to processors and update registers.

o N

A=l

The representative of a group of ARBITRARY write
requests is obtained by choosing one (e.g., the first) of the
requests. In [9], we have proved that with Algorithm 2.3 a
coated mesh CM(\/_JVZ, O(log N),2) (respectively a
CM(¥/N3,0(log N),2)) can simulate an N-processor
ArBITRARY CRCW PRAM work-optimally with relative
simulation cost at most 66 + o(1) (153 + o(1)), with high
probability. The results are based on Kunde’s sorting
results [6]. Again, we have difficulties in characterizing
exactly the effect of overloading on the relative simu-
lation cost when N > Q.

2.4. Combining queues methods

Algorithm 2.1 can be almost used for CRCW simulation
simply by replacing the normal queues with combining
queues. The following Algorithm 2.4 shows how Algo-
rithm 2.1 needs to be modified.

Algorithm 2.4 (CRCW with combining queues)

Assume the coated mesh type CM* (/N ¥, 0 (log N), 2).
Only the differences to Algorithm 2.1 are shown.

2. Route the packets to their target via a random node on
target pile by using combining on route and storing
information on nodes for decombining (when and where
the combined packets came).

6. Repeat the routing process of Phase 2 in reverse order
and do decombining on route.

7. Update registers.

Algorithm 2.4 can clearly simulate ARBITRARY CRCW
model. Although experimental results in Section 3
indicate Algorithm 2.4 to behave very well, the algorithm
is not known to be provably work-optimal.

THE COMPUTER JOURNAL,

VoL. 38, No. 10, 1995

¥20Z Iudy 60 U0 1senb Ag 0172 L9t/108/0 L/8E/81o1e/|ulWwoo/wod dno-ojwepede//:sdiy wolj peapeojumod

PERFORMANCE OF WORK-OPTIMAL PRAM SIMULATION ALGORITHMS ON COATED MESHES 805

2.5. Improved virtual leveled network

In a (directed) leveled network, each directed edge
connects a node on some level i to another node on
level i + 1. A leveled network is assumed to consist of L
levels. Mesh as such is not a leveled network, but it can
be seen as a virtual leveled network [7]. Our reason to
embed a virtual leveled network to a mesh is due to the
routing results proved in [7] that can be used to derive
PRAM simulation results. Notice that only the routing
machinery is seen as a leveled network, not the whole
coated mesh.

We do not use the virtual leveled network construction
presented in [7] for toroidal multidimensional arrays as
such, since it has depth L = 2d/Q — d in the d-dimen-
sional case. Next, we describe how that construction can
be improved to have depth L =d+/Q + O(d) even
without the toroidal connections. The idea is to move
the entry points, though which packets enter from
plateau i to plateau i + 1, from the side to the middle
of each axis.

Imagine the mesh to consist of 2d virtual plateaus—
each node is simulating 2d virtual nodes. For simplicity
assume that /Q = 1mod2, and let T = (J/Q —1)/2.
In the following, 1<j<d. Denote mesh node
(X1, X2,...,%4) on plateau s, where 0 < x; < /O and
1 <5< 2d, with (s, (x),x5,...,x4)). On plateau 2i — 1,
there is a directed edge from (2i — 1, (x},...,x;,...,Xz))
to (2i—1, (xp,...,x;+1,...,x4)), if x;, <Y, and to
(2i=1,(xp,...,x;— 1,...,x4)), if x; > Y. Similarly,
there is a directed edge from node (2i,(x;,...,x;...,
x4)) to node (24, (xy,...,x;— 1, ...x4)), if 0 < x; < 7,
or to node (2i,(xy,...,x;+ 1,...x5)), if T<x;<
/O — 1. From plateau 2i to 2i + 1 packets enter via
connections between nodes (2i,(x},x,,...,x;)) and
(2i+ 1, (x1,%3,...,x4)) for all 0 <x; < /0 and 1<
i <d. Similarly, node (2i—1,(xy,...,xi_;, Y,Xi1,
...yXg)) is connected to (2i,(xy,...,xi_1, T,Xi4,

.,xg)) foralll <i<d.

It is relatively easy to prove that by using

13) d
fL(sv (x17x2’ .. "xd)) =s—1+ Za(xk) + Zﬂ(xk)1
k=1 k=1

where a(x) = |x — 1| and B(x) =T — a(x), to define
level numbers for virtual nodes, the whole construction
turns out to be a leveled network. If /Q = Omod2, entry
points T = /Q/2 and T, =7, — 1 should be used
instead of Y. In fact, the depth of the above construction
can be reduced by modifying the way packets enter from
plateau s to plateau s + 1.

Clearly, there is a unique path from a node on plateau
1 to any node on plateau 2d. We call R;,, a routing
algorithm that routes packets from level to level
according to above described improvement; keeps all
the packets passing through (virtual) nodes sorted
according to key {random rank, destination address}
(queuing discipline Q,,); uses ghost packets as in [7];

and combines packets with the same target whenever
they meet on route. We denote a coated mesh capable of
the above operations with CM* (/0" ¢, A). Although in
R,,;, each node simulates 24 virtual nodes, it is not
troublesome, since the communication needs are
balanced so that the capacity of normal bidirectional
connections is sufficient. The following algorithm is
derived from Algorithm 2.1 by using our improved
virtual leveled network construction.

Algorithm 2.5 (R;,;, based CRCW simulation)

2. Route the packets to random intermediate node on
target pile with Ry, and Q,, by using combining on
route and storing information on nodes for decombining
(when and where the packets came). Thereon route
packets to target processors along removal edges.

6. Repeat the routing process of Phase 2 in reverse order
and do decombining on route.

7. Update registers.

As a consequence of [7, Theorem 2.1 l]zit can be shown
that Algorithm 24 on CM°®(v/N°,0(1),3) and
CM*(V/N? 0(1),3) can simulate an N-processor
ARBITRARY CRCW work-optimally by using O(1)
routing steps per P simulated PRAM processors.
However, no exact expression for the relative cost is
known to us.

3. EXPERIMENTAL COMPARISON

In our experiments, we used meshes of side length 10, 30,
and 50 for the 3D coated mesh (Q = 1000, 27000, 125000
and P = 600, 5400, 15000), and 50 and 150 for the 2D
coated mesh. We varied the overloading factor b =%
between 1 and 120, although we made experiments only
onvalues1,2,3,4,5,6,7,8,9, 10, 20, 30, 40, 60, and 120
of b. The load of each processor (which is
Load =% = b\/0/4 for the 2D coated mesh, and
b/Q/6 for the 3D coated mesh) was at most 200 in the
3D case, and at most 750 in the 2D case. Altogether,
about 30 000 routing experiments were conducted on
more than 300 different parameter value combinations of
q, Q, b, and the simulation algorithm. For each
experimented parameter combination, at least 30 experi-
ments were made. The curves shown later are Bezier
splines drawn via the measured points.

We measured the efficiency of simulation algorithm A
in terms of measured relative simulation cost
G(s® b, q, A). We made our experiments on randomly
generated patterns (EREW), and patterns produced
randomly on the basis of distributions of Figure 2
(CRCW). The distributions of Figure 2 are, of course,
only a tiny fraction of all possible distributions but we
believe them to be representative enough.

Some of the algorithms described in Section 2 have a
phase where a global ensuring that all packets have
reached their destination is required. We assume this to
be implemented so that after 7, routing steps a global
check over the routing machinery is calculated, and if

THE COMPUTER JOURNAL,

VoL. 38, No. 10, 1995

¥20Z Iudy 60 U0 1senb Ag 0172 L9t/108/0 L/8E/81o1e/|ulWwoo/wod dno-ojwepede//:sdiy wolj peapeojumod

806 VILLE LEPPANEN

| 99%] & [T 11 ﬂI]Il].
[20%] Jod | | | | I ¢ [ax5%] 20x2% [30x1% B

FIGURE 2. Distributions used in combining experiments. A gray

area means randomly chosen targets, and the white areas each represent

an amount (proportional to the area) of read requests with a common

target memory location. An expression like ‘16 x 5%’ is a shorthand for
16 areas of size 5%.

A:
B:
C:

some packets are still in the routing machinery, the
checking is repeated after T, — T routing steps. A global
check can be calculated in time /Q + O(1). Time T,
should be chosen so that only a small fraction of typical
routing tasks require second checking. We have found
T, = ‘average routing time + 2x standard deviation of
the routing time’ to be a good measure. In the cost
calculation, T, is simply the maximum measured routing
time.

3.1. Experiments with buffer size

Proofs related to the algorithms described in Section 2 do
not give good exact bounds for the buffer size. Some
buffers being occasionally full during the routing process
does not decline the overall routing capacity signifi-
cantly. One is tempted to believe that small buffer size is
adequate in practice. On the other hand, it is not clear
how big role the buffer size has in the cost of the whole
construction.

Figure 3 describes simulation experiments made with
Algorithm 2.1. As can be seen, the curves for different
buffer sizes almost overlap each other: obviously buffers
of size 4 are adequate. Queues with higher capacity seem
to make the routing to succeed faster, but the effect is
quite negligible. On the basis of Figure 3, we conclude
that the effect of overloading factor b on relative
simulation cost is much larger than that of buffer size
g. Similar observations were made for all other simula-
tion algorithms. For simplicity, we mainly use ¢ = 4 in
the following.

G 10x10x10 coated mesh, g=2,4,8,16.
80

60 \\
40

20 N ——

0 10 20 30 40 b

FIGURE 3. Influence of buffer size on the simulation cost. The curves
are from the highest to the lowest: G(10°,5,2, Alg.2.1),
G(10%,b,4, 4lg.2.1), G(10°,5,8, Alg.2.1), and G(10° 5,16, 4lg.2.1).
Large buffers will not significantly improve the relative simulation cost.

G
80

70
60 \
50
40
30
20—
10

0 5 Io 15 20 25 30 35 a0°

EREW on 3D coated mesh (a).

I——

FIGURE 4. Algorithm 2.1 on 3D coated mesh. The shortest curve is
G(50°,b,4, 4lg.2.1), and the two almost overlapping curves are
G(10%,b,4, Alg.2.1) and G(30°, b, 4, Alg.2.1) (the latter is in the middle).

3.2. EREW simulation results
3.2.1. Algorithm 2.1

In our experiments with Algorithm 2.1, we assume that
after the injection phase each mesh node has exactly b
packets with randomly chosen targets. The routing itself
was done with Qg, and R, using the principle that the
incoming queues of each node are processed in cyclic
order (by selecting a random starting point each time),
and only the first packet of each queue is moved to the
target queue, if there is room for that packet. We were
only interested of Qy, because of its simplicity.

Figures 4 and 5 describe routing experiments made
with EREW simulation Algorithm 2.1. The message is
clear: overloading significantly improves the efficiency up
to b~ 5...6 in both cases. After that the relative cost
improves slowly. Surprisingly, the curves are not
completely independent of Q. The larger the mesh the
better the efficiency with fixed ¢ and b. Also increasing g
has a positive effect on the relative cost. The results with
the same ¢ and b seem to yield better results in the 2D
case. However, the relative simulation cost mainly
depends on b.

As can be seen in Figures 4 and 5, the relative cost of
Algorithm 2.1 can be pushed below 10 both for the 2D

G
40

35 \
30
25

20
15

EREW on 2d coated mesh (a).

10 ~—]

5 DEE——

O " "
5 10 15 20 25 30 35 40b

FIGURE 5. Algorithm 2.1 on 2D coateq mesh. The overlapping
curves are G(502,b, 4, Alg.2.1) and G(150°,b,4, Alg.2.1) (lower).

THE COMPUTER JOURNAL,

Vor. 38, No. 10, 1995

¥20Z Iudy 60 U0 1senb Ag 0172 L9t/108/0 L/8E/81o1e/|ulWwoo/wod dno-ojwepede//:sdiy wolj peapeojumod

PERFORMANCE OF WORK-OPTIMAL PRAM SIMULATION ALGORITHMS ON COATED MESHES 807

and 3D coated meshes. In fact at b = 40, we measured
relative costs 4.9 and 8.8 for a CM(150%,4,2) and a
CM(30* 4,2), respectively. We achieved even better
results by increasing q. At ¢ = /2 and b = 120, relative
costs 3.4 and 6.3 were achieved for a CM(50%,¢,2) and a
CM(10°,4,2), respectively. Our experiments suggest that
by using only small buffers and properly overloading the
coated mesh, about 7-8-fold speedup over the results of
[9] can be achieved (36 — S and 78 — 9). By using larger
buffers, over 10-fold speedups seem achievable.

Overloading decreases the relative cost, since the
relative cost of synchronization phases (Phases 4 and 7
of Algorithm 2.1) is approximately 2/b. The relative cost
of injection phases is almost independent of b—the cost
of them is approximately 2-3. The cost of routing
depends on /oad and the diameter of routing machinery
6, and is approximately (c; x load + 8)/load. When load
is very high, the relative cost of synchronization phases is
negligible and the cost of injection phases is just over 2.
Therefore it seems that ¢, ~ 1 but the same does not
seem to hold for c;.

3.2.2. Algorithm 2.2

In the test setting of Algorithm 2.2, the processors
initially have load packets with randomly chosen targets.
The two intermediate targets are chosen randomly as
explained in Algorithm 2.2, and again queuing discipline
Qpyo is used. Synchronization wave separates consecutive
steps, and a PRAM step is taken to be completed when
last part of the synchronization wave (related to that
PRAM step) leaves the processors. That moment is used
to measure the time to simulate a PRAM step.

Figures 6 and 7 show EREW simulation results
obtained from experiments made with Algorithm 2.2 in
2D and 3D cases. Again the main observation is that
efficiency improves considerably as b increases, up to
b =~ 10. The reasons behind the phenomenon are the
same as before. Since the relative cost of synchronization
wave is small, the relative cost of simulation decreases
rapidly below 2—3 when b increases.

On a CM(50?,4,4) we measured relative cost 1.32 at
b = 40. Doubling the size of queues yielded relative cost

G
20

17.5
15H

12.5\
10

7.5\
5 &

10 20 30 40 50 60

EREW on 2D coated mesh (b).

2.

5
0

FIGURE 6. G(50%,b,4, Alg.2.2).

G
60

EREW on 3D coated mesh (b).

50

4 0 5

30

20

10

- b
0 10 20 30 40 50 60

FIGURE 7. G(10°,b,4, 4lg.2.2).

1.17 at the same point. On a CM(50%,32,4) we even
measured relative cost 1.09 at point b = 80. Obviously in
the 2D case, the relative cost quite freely approaches 1 as
b and g are increased. In the 3D case, a C.M(103,4, 4)
yielded relative cost 2.7 at b = 36 whereas doubling the
queue size improved to relative cost to 2.1. On a
CM(10%,32,4) we even measured relative cost 1.68 at
point b = 180. Although in the 3D case, the cost
decreases below 2, it seems not to freely approach 1.
The reason is that in the 3D case the routing
machinery bandwidth turns out to be insufficient. The
bisection width of CM(s%,¢,A) is (at most) As?!.
However, Algorithm 2.2 uses the connections of
CM(S8% q,4) for six different purposes. When routing
packets form the first intermediate target to the second
by using only normal bidirectional connections, the
bisection width of that part of the algorithm is only s*~'.
On average half of the packets produced by the other
half of the processors cross the bisection. Therefore the
bisection width should be at least 2ds” "' /(2 - 2). In the
2D case this holds but not in the 3D case. In fact,
the bisection width argument suggests the relative
cost of Algorithm 2.2 to converge towards 3/2 on

c/G EREW: Alg 2.1 versus Alg 2.2.

b
0 2.5 5 7.5 10 12.5 15 17.5 20

FIGURE 8. Algorithm 2.1 versus Algorithm 2.2. The curves (higher
and lower) are
G(50%,b,4,41g.2.1) G(10%,b,4, Alg.2.1)
G(50%,5,4, 41g.2.2) " G(10%, 5,4, 4lg 2.2)’
respectively.

THE COMPUTER JOURNAL,

VoL. 38, No. 10, 1995

¥20Z Iudy 60 U0 1senb Ag 0172 L9t/108/0 L/8E/81o1e/|ulWwoo/wod dno-ojwepede//:sdiy wolj peapeojumod

808 VILLE LEPPANEN

CM(s3,q, 4)—the bisection bandwidth should be some-
how increased.

Algorithm 2.2 gives clearly better results than Algorithm
2.1 but it also requires approximately twice as complex
routing machinery. Is it still better if this is accounted?
Figure 8 shows that Algorithm 2.2 is more than twice as
good as Algorithm 2.1 in terms of relative cost. On the
other hand, a CM (s, ¢, 2A) is less than twice as costly as a
CM(sd,q, A) in terms of hardware, and therefore Algo-
rithm 2.2 is truly better than Algorithm 2.1.

3.3. CRCW simulation results

The purpose of sorting in Algorithm 2.3 is to transform
CRCW style routing problem into EREW style problem.
Therefore, we estimated the cost of Algorithm 2.3
directly on basis of EREW experiments made with
Algorithm 2.1 (all except routing phases are determin-
istic). The cost of Algorithms 2.4 and 2.5 were estimated
by conducting a set of experiments with patterns of
Figure 2. Destination for packets were then chosen by
first generating a distribution and then assigning a target
for each packet randomly according to the distribution.
Basically, all the same assumptions concerning pro-
cessing of queues are as in the previous section. Further,
the routing machinery nodes are assumed to ‘precom-
bine’ packets with the same target—after or during the
injection phase but before the routing phase.

Comparison of the three CRCW simulation algo-
rithms is made in Figures 9 and 10 by showing the curves
for measured relative cost. The measured relative cost is
now calculated as an average over all the experiments
made with patterns of Figure 2.

First impression of Figures 9 and 10 is that over-
loading clearly improves the efficiency. In the 2D case,
the increase of b seems to provide a relatively modest
improvement after b ~ 5...6. The same point for the 3D
coated meshes seems to be b~ 7...9.

In both cases, the relative simulation cost decreases
below 5 for Algorithm 2.4. At point b=10 a

G

60 CRCW on 2D coated mesh.

50

40

30

20
0 : b
10 20 30 40 50 60

FIGURE 9. CRCW simulation cost on 2D coated mesh. Two highest

curves (overlapping almost completely) are G(SOZ, b,4,Alg.2.3) and

G(150%,b,4, Alg.2.3). The lowest curve is G(50%,b,max(3,5), Alg.2.4),
and G(502,b,max(3,%), Alg.2.5) is in the middle.

G CRCW on 3D coated mesh.
120l
100
80
60
40 k
20 K\
0 20 40 60 80 100 12(?

FIGURE 10. CRCW simulation cost on 3D coated mesh. The curves
are from the highest to the lowest: G(10% b,4,4lg.2.3),
G(103,b,max(3,%), Alg.2.5), and G(10°, b, max(3,%), Alg.2.4).

CM™(50?,b/2,2) achieved relative cost 6.0, and at
point b =60 cost 3.1. Similarly, a CM™(10°,5/2,2)
achieved relative costs 10.5, 5.1, and 4.0 at points
b = 10,40, and 120, respectively. Algorithm 2.5 did not
quite achieve the same cost. On a CM*(50%,b/2,3) we
measured relative costs 7.5, 5.6, and 4.3 at points b = 10,
20, and 60. For a CM®(10*,5/2,3), we measured relative
costs 14.7 and 7.1 at points b=10 and b = 60,
respectively. The sorting based Algorithm 2.3 was clearly
the worst. At best it achieved relative cost 13.2 on a
CM(50%,4,2) at point b = 40, and relative cost 21.7 at
point b = 120 on a CM(10*,4,2).

We also observed that pattern A produces the worst
result for almost all methods. Obvious conclusion is that
the more we have packets to combine the faster we can
solve the routing problem.

We conclude that overloading can be used to improve
the efficiency of Algorithm 2.3 by 5-7-fold. In many
cases, the improved virtual leveled network technique
proves out to be better than the sorting based solution.
However, the combining queues method seems to be
even more effective: it seems to cost about as much as an
EREW simulation based on Algorithm 2.1! An obvious
remaining question is that can one modify the combining
queues method to work on Algorithm 2.2?

3.4. Summary of observations

The larger the buffers the better the simulation time.
For relatively small values of b (e.g., b < 10), buffer
size ¢ =4 gives good results. Values b > 10 will not
significantly improve the relative cost. As expected, the
relative cost in simulation algorithms is almost
independent of the side length /Q. The smaller
dimensionality d the better relative cost with respect
to b, since the routing capacity with respect to the
expected work (expected length of route x number of
packets) is better the smaller the d.

In the EREW case Algorithm 2.2 is nearly optimal, but
in the CRCW case all the algorithms leave a lot to hope
for. Sorting based solution is too costly. The combining

THE COMPUTER JOURNAL,

Vor. 38, No. 10, 1995

¥20Z Iudy 60 U0 1senb Ag 0172 L9t/108/0 L/8E/81o1e/|ulWwoo/wod dno-ojwepede//:sdiy wolj peapeojumod

PERFORMANCE OF WORK-OPTIMAL PRAM SIMULATION ALGORITHMS ON COATED MESHES 809

queues method works very well, but the simplicity of
CM® over CM™ makes the virtual leveled network based
approach more attractive.

4. MESH VERSUS BUTTERFLY

The original stimulus to study the coated meshes was to
find alternatives for butterfly based work-optimal
PRAM constructions [1,2,12,15]. In [9], we presented
such constructions for the coated meshes, although the
constant factors left a lot to hope for. The advantage of
P-direct butterfly over the coated meshes is a small
graph-theoretic diameter O(log P), which also allows the
overloading factor to be asymptotically smaller. How-
ever, the problem with the butterfly is its physical
layout—the largest physical distance between two
nodes is of the same order for both interconnection
types: some connections between logical neighbors must
necessarily be of length Q(+v/P/log P) in any 3D layout
of P-direct butterfly [9]. In fact, Thompson’s VLSI area-
time complexity result [14] implies wire length bound
Q(P/log> P) for any 2D VLSI layout. Naturally,
physical layouts for the butterfly are not as regular as
for the mesh.

On the other hand, in order to avoid some timing and
load balancing issues one might have to operate on the
condition of the length of longest wires. This would
restrict the exploitable clockrate and/or scalability. The
effect of long wires can be reduced by scattering buffers
on long wires at regular intervals, and by pipelining the
communication over long wires. This increases the
logical diameter and at the same time changes the
whole structure towards the mesh.

The coated meshes do not have such severe layout
problems. Yet, given sufficient amount of parallel
slackness, the coated meshes can be made to simulate
PRAM models with relatively small cost. In [2], the
relative cost was made very close to 1 for the P-direct
butterfly by using many hardware improvements. Those
improvements could also be applied to the coated meshes
to further improve the efficiency.

Mn(P)/Bn(P)
4

2 //
1
log P

5 10 15 20

FIGURE 11. Ratio of routing machinery sizes. Denote by
Bn(P) = P(log P+ 1) the number of routing machinery nodes in an
ordinary P-direct butterfly implementation. Respectively, denote by
Mn(P) = (P/6)"* the size of a P-processor 3D coated mesh routing
machinery. Surprisingly, Mn(P) < Bn(P) for P < 2'5.

Interesting questions that remain are the size of
routing machinery, the hardware complexity of nodes
and processors, and the amount of parallel slackness
required. We would very much like to see a hardware
comparison between the 3D coated mesh and the P-
direct butterfly. The sufficient parallel slackness Load
was concluded to be approximately 10 x /Q/6 for the
3D coated mesh. For 0 = 10%, this is less than 200, and
for P =108, it is approximately 650. Thus, even for a
relatively large 3D coated mesh the amount of parallel
slackness should not be a serious obstacle.

An interesting aspect is the number of nodes in the
routing machinery (=extraneous hardware). If no
attempt to integrate nodes is made, then the routing
machinery of the P-direct butterfly has P(logP + 1)
noc%es, whereas the 3D coated mesh implementation has
(£)? nodes. It is quite surprising to notice that the 3D
coated mesh actually has less nodes for P < 2'3 Even,
when P = 2%, the ratio of nodes is only 3.3:1 in favor of
the butterfly construction (see Figure 11). Unfortunately,
for the 2D coated mesh the corresponding ratios are
clearly worse.

5. CONCLUSIONS

We have provided experimental evidence that EREW
and CRCW PRAM models can be simulated on the 2D
and 3D coated meshes with relative cost clearly below
10—even below 5—routing steps. In the EREW case,
Algorithm 2.2 was found to be nearly optimal, giving
relative costs below 2—even relative cost 1.1 was
achieved. Of the three CRCW simulation algorithms
we found the combining queues based algorithm to be
the best in terms of the number of required routing steps.
We leave as an open problem the question whether or not
this holds when the hardware requirements (implied by
the algorithms) are taken into account. We also would
like to know whether the combining queues method can
be beaten?

ACKNOWLEDGEMENTS

The author would like to thank anonymous referees for
helpful comments and Martti Penttonen also for
encouragement.

REFERENCES

[1]1 F. Abolhassan, R. Drefenstedt, J. Keller, W.J. Paul, and
D. Scheerer. On the Physical Design of PRAMs. The
Computer Journal, 36(8):756-762, 1993.

[2] F. Abolhassan, J. Keller, and W.J. Paul. On the Cost-
Effectiveness of PRAMSs. In Proceedings, 3rd IEEE
Symposium on Parallel and Distributed Computing, ACM
Special Interest Group on Computer Architecture, and
IEEE Computer Society, pages 2-9, 1991.

[3]1 R. Alverson, D. Callahan, D. Cummings, B. Koblenz,
A. Porterfield, and B. Smith. The Tera Computer
System. ACM SIGARCH Computer Architecture News,
International Conference on Supercomputing 1990,
18(3):1-6, September 1990.

THE COMPUTER JOURNAL,

Vor. 38, No. 10, 1995

¥20Z Iudy 60 U0 1senb Ag 0172 L9t/108/0 L/8E/81o1e/|ulWwoo/wod dno-ojwepede//:sdiy wolj peapeojumod

810

VILLE LEPPANEN

(3]

(6]

8]

&)

(10]

L.A. Goldberg, Y. Matias, and S. Rao. An Optical
Simulation of Shared Memory. In SPAA’'94, 6th Annual
Symposium on Parallel Algorithms and Architectures, Cape
May, New Jersey, pages 257-267, June 1994.

R.M. Karp and V. Ramachandran. Parallel Algorithms
for Shared-Memory Machines. In Algorithms and Com-
plexity, Handbook of Theoretical Computer Science,
Volume A, pages 869-932. Elsevier Science Publishers
B.V., 1990.

M. Kunde. Concentrated Regular Data Streams on Grids:
Sorting and Routing Near to the Bisection Bound. In
Proceedings, 32th Annual Symposium on Foundations of
Computer Science, pages 141-150, 1991.

F.T. Leighton, B.M. Maggs, A.G. Ranade, and S.B. Rao.
Randomized Routing and Sorting on Fixed-Connection
Networks. Journal of Algorithms, 17(1):157-205, July 1994.
V. Leppdnen and M. Penttonen. Simulation of PRAM
Models on Meshes. In Proceedings, Parallel Architectures
and Languages Europe, PARLE'94, Lecture Notes in
Computer Science 817, pages 146—158, July 1994.

V. Leppdnen and M. Penttonen. Work-Optimal Simu-
lation of PRAM Models on Meshes. Nordic Journal on
Computing, 2(1):51-69, 1995.

F. Meyer auf def Heide. Hashing Strategies for Simulating
Shared Memory on Distributed Memory Machines. In

(11]
(12]

(13]

(14]

(15]

F. Meyer auf der Heide, B. Monien, and A.L. Rosenberg,
editors, Proc. of Parallel Architectures and Their Efficient
Use, First Heinz Nixdorf Symposium, LNCS 678, pages
20-29. Springer-Verlag, 1992.

A.G. Ranade. How to Emulate Shared Memory. Journal
of Computer and System Sciences, 42:307-326, 1991.
A.G. Ranade, S.N. Bhatt, and S.L. Johnsson. The Fluent
Abstract Machine. In Proceedings, 5th MIT Conference on
Advanced Research in VLSI, pages 71-93, 1988.

H.J. Siegel, S. Abraham, B. Bain, K.E. Batcher,
T.L. Casavant, D. DeGroot, J.B. Dennis, D.C.
Douglas, T-Y. Feng, J.R. Goodman, A. Huang, H.F.
Jordan, J.R. Jump, Y.N. Patt, A.J. Smith, J.E. Smith,
L. Snyder, H.S. Stone, R. Tuck, and B.W. Wah.
Report of Purdue Workshop on Grand Challenges in
Computer Architecture for the Support of High
Performance Computing. Journal of Parallel and Dis-
tributed Computing, 16(3):199-211, 1992.

C.D. Thompson. Area-Time Complexity for VLSI. In
Proceedings, 11th Annual ACM Symposium on Theory of
Computing, pages 81-88, 1979.

L.G. Valiant. General Purpose Parallel Architectures.
In Algorithms and Complexity, Handbook of Theo-
retical Computer Science, volume A, pages 943-971,
1990.

THE COMPUTER JOURNAL,

VoL. 38,

No. 10, 1995

¥20Z Iudy 60 U0 1senb Ag 0172 L9t/108/0 L/8E/81o1e/|ulWwoo/wod dno-ojwepede//:sdiy wolj peapeojumod

