An Efficient Construction Algorithm for a Class
of Implicit Double-Ended Priority Queues

JINGSEN CHEN

Department of Computer Science, Luled University, S-971 87 Luled, Sweden
Email: jingsen@sm.luth.se

Priority queues and double-ended priority queues are fundamental data types in Computer Science, and
various data structures have been proposed to implement them. In particular, diamond deques, interval
heaps, min-max-pair heaps, and twin-heaps provide implicit structures for double-ended priority queues.
Although these heap-like structures are essentially the same when they are presented in an abstract
manner, they possess different implementations and thus have different construction algorithms. In this
paper, we present a fast algorithm for building these data structures. Our results improve over previously

fast known algorithms.

Received April 5, 1995, revised November 14, 1995

1. INTRODUCTION

A priority queue is a set of elements on which two basic
operations are defined: inserting a new element into the
set; and retrieving and deleting the minimum element of
the set. A double-ended priority queue (priority deque, for
short) provides insert access and remove access to both
the minimum and maximum elements at the same time.
They have been useful in many applications [1,9,11].
Various data structures have been developed for
implementing priority queues and priority deques
efficiently. In particular, diamond deques [5], interval
heaps [15], min-max-pair heaps [11] and twin-heaps [9]
provide implicit structures for mergeable priority deques.
These heap-like structures, however, possess different
implementations and thus have different construction
algorithms. By mergeable we mean that the merge
operation on the corresponding data structure that
implements the queue can be performed in sublinear
time. In this paper, we show how these data structures
relate to each other and develop a fast algorithm for
building the structures.

2. PRELIMINARIES

An implicit data structure describes the structural
relationships among the elements by formulas and
declarations on the elements’ indices; no additional
space is needed except for the input data and the size of
the input.

The most elegant implicit data structure for imple-
menting priority queues is the heap. A (min-)heap [17] is
a binary tree with the following properties. (i) It has the
heap shape: all levels are complete, except possibly the
last level where all leaves occupy the leftmost positions;
(i) It is min-ordered: the key value associated with each
node is not smaller than that of its parent. The minimum
element is then at the root. A (max-)heap is defined
similarly. A heap on n elements can be represented by an

array of length » such that the left and right children of
an element in array position i are stored in positions 2i
and 2i + 1, respectively, while its parent is in position
| £]. The root of a heap is in position 1.

The simplest way of implementing priority deques
would be to build a min-heap and a max-heap
simultaneously on the same set of elements. Besides the
doubling of space requirement, this implementation may
have a worst-case time complexity for priority deque
operations twice as high as it should. However, if we
decrease the sizes of these two heaps and keep them in a
suitable way, then deque operations can be supported
efficiently.

More precisely, a twin-heap [9] on n elements is a
binary tree with a hole at the position of the root. The left
and right subtrees of the root are a min-heap of size [%]
and a max-heap of size L%J , respectively. Any node in the
min-heap is less than the corresponding element in the
max-heap. Figure 1 gives a twin-heap on 12 elements and
its Hasse diagram. In this paper, we shall use the Hasse
diagram [2] of a twin-heap to present the relationships
among its elements.

Twin-heaps have the same asymptotic efficiency as
heaps: a twin-heap can be constructed in linear time,
and both the minimum and maximum elements can be
found in constant time and deleted in logarithmic time,
while new elements can be inserted in logarithmic time.
Moreover, twin-heaps also permit sublinear-time merge
operations similar to heaps [12]. Different represen-
tations of the twin-heap have been proposed, such as
the diamond deque [5], the interval heap [15], and the
min-max-pair heap [11]. In Section 4, we will show that
these data structures are based on the same idea and
present a unifying view of the structures. In what follows,
the term deque (structure) will denote these structures.
For the sake of simplicity, we shall assume that all the
elements are distinct and drawn from a totally ordered
domain.

THE COMPUTER JOURNAL,

Vor. 38, No. 10, 1995

¥20Z Iudy 01 uo 1senb Ag 9921 9t/818/0L/8E/8101e/|ulWwoo/wod dno-ojwepede//:sdiy wolj peapeojumod

IMmpLICIT PRIORITY DEQUES 819

3
hole
21
46
53 50
23 26 46 35 32 50 53
60
Twin-heap Hasse diagram

FIGURE 1. A twin-heap and its Hasse diagram.
3. CONSTRUCTION COMPLEXITY

In this section, we show how to construct deque
structures fast. A lower bound of 1.5n comparisons for
finding both the minimum and maximum in an n-element
set [9] applies to our construction problem. Moreover, an
information-theoretic argument improves this lower
bound to approximately 2.07n comparisons [4], and
this lower bound holds in the average case as well, where
we assume that every possible input is equally likely.

A trivial algorithm for constructing deque structures
would be one that first computes the median of the
element-set [6, 13] and then builds the min-heap and the
max-heap separately by fast known heap construction
methods in [7, 10]. Such an algorithm requires 4.625n and
3.02n comparisons in the worst and average cases,
respectively. Improved worst-case upper bounds of 3.5n
comparisons [5] and 3n comparisons [11, 15] have also
been established. A natural question, of whether these
bounds can be surpassed, arises. We answer this question
in the affirmative by giving a construction algorithm that
has a worst-case complexity of 2.4083n + O (log2 n) com-
parisons. The result is achieved by first designing fast
algorithms for creating deques of smaller sizes, and then
using these small structures as building blocks for the
deque construction problem. We shall first build a
binomial tree [16] on input elements and then convert it
into the desired structure; this idea has been applied to
the other heap-like structures [7, 14]. First, we show how
to build a deque on 14 elements from a binomial tree of
size 16 efficiently.

LEMMA 1: A (min-) binomial tree on 16 elements can be
transformed into a deque structure of size 14 plus one
ordered-pair of elements in at most 11 comparisons.

Proof: To establish the deque-ordering on 14
elements from a binomial tree of size 16, we begin with
a comparison between x and y. If x < y, then we have the
poset P, else we have Q; see Figure 3.

If x < y, we construct the desired structure D from P
by (see Figure 3):

1. Letting the white nodes in P be the ordered-pair of
elements of D;

2. Transforming the black-circle nodes in P into a deque
D of size 6 (the black-circle nodes in D); (Cost: 3
comparisons)

3. Constructing another deque structure Déz) of size 6 on
all the square nodes in P; (Cost: 2 comparisons) and

4. Inserting the element z of P into the partial order
generated so far to create a deque D of size 14. (Cost:
5 comparisons)

Hence, the total number of comparisons for trans-
forming P into a deque structure of size 14 plus one
ordered-pair of elements is at most 3 + 2 + 5 = 10. For
the case when y < x (i.e., the case when the poset Q
appears; see Figure 3), we perform similar transforma-
tions. In this case, the number of comparisons needed to
build the deque Dél) on the black-circle nodes is 4 and
onl?/ one comparison is needed to construct the deque
Dgz on all the square nodes. Hence, the cost is the same
as that for P. Therefore, the total cost to build a deque
structure of size 14 plus one ordered-pair of elements
from a binomial tree of size 16 is at most 1 + 10. O

Since a binomial tree of size 16 can be built in 15
comparisons, a deque structure and an ordered-pair of
elements can be created in at most 11+ 15=26
comparisons. Notice that the ordered-pair of elements
in Lemma 1 can be reused to save one comparison. A
recursive application of Lemma 1 to large deque
structures works. This can be done by first constructing
a binomial tree on all the input elements and then
applying Lemma 1 recursively. Call a deque of size n a
Sull structure if the leaves of the deque occur at the last
level only; i.e., n=2""' —2for h > 0.

LEMMA 2: A full deque of size n can be built in at most
2.4083n + O(logn) comparisons in the worst case.

Proof: Since a binomial tree of size 2* can be built in
2k 1 comparisons, we only need to show that the cost,
T(2%), to transform a (min-) binomial tree on 2* (k > 4)
elements into a deque of size 2 — 2 is at most 1.4083 x 2
comparisons.

The algorithm for transforming a binomial tree B of
size 2% (k is even and k > 4) into a deque D on 2¥ -2
elements plus one ordered-pair of elements works as

N T

as
az

ay
ap

FIGURE 2. Transform binomial trees into full deques.

THE COMPUTER JOURNAL,

VoL. 38, No. 10, 1995

¥20Z Iudy 01 uo 1senb Ag 9921 9t/818/0L/8E/8101e/|ulWwoo/wod dno-ojwepede//:sdiy wolj peapeojumod

820 J. CHEN

FIGURE 3. Constructing a deque of size 14 via a binomial tree.

follows. Denote the longest chain in the binomial tree by
Q, Ax_1,---,a2, 4y, ay (see Figure 2).

ALGORITHM 3 Trans(B, D, k)

1. If k = 4, then convert the binomial tree B rooted at a;
into a deque D of size 2K — 2 plus one ordered-pair of
elements, using the method provided in the proof of
Lemma 1, and stop.

2. If k>4, then call Trans(By_,Dy_1,k — 1), where
By _, is the binomial tree rooted at a; _;

3. Combine the ordered-pair of elements produced by the
previous step with all the subtrees of ay (except the
pseudo-singleton x;. (see Figure 2) and the deque Dy, _
built) to create a binomial tree By _, of size 2 ~'; (Cost:
k — 2 comparisons)

4. Call Trans(Bj_,Di_ 1,k — 1);

5. Insert the element x into the partial order created so
far to form a deque D of size 2K — 2 plus one ordered-
pair of elements.

To analyse this algorithm, notice that the algorithm
above (except for Step 3) can be understood as first
transforming two binomial trees each of size 2¥=1into
two deques each of size 2=V 2 in turn and then
inserting an element into the structure in order to
produce a deque on 2K —2 elements. Moreover, to
insert x; into the structure, (k —2) comparisons are
needed to find the path of maximum children [3, 7], and
[log(2k — 2)] comparisons are required to do a binary
search on the path of 2k — 3 nodes. Together with
Lemma 1, we have then

T(16)=11 and
T(2X)=2-T2 Y+ (k — 2+ [log(2k — 2)]) + (k — 2)

=2-T(2* ") +2(k - 1)+ [log(k — 2)],

which gives

for 4 <ky<k. Let ky=4. Hence, with a simple
computation using the computer algebra system, viz.

Maple [8], we know that

T(2*) == T(16) 4 2 L

< 1.408207 x 2¢
The result follows. O

Analogous to heap constructions [7], the construction
complexity of full deques gives an upper bound on the
cost for building deques of arbitrary sizes. In fact, for
any deque on n elements, all subdeques hanging off the
siblings of the elements lying on the path from the root of
the min-heap to the last leaf of the min-heap are full
deques, which can be created in at most 2.408207n
comparisons by applying the above algorithm to each of
them. These subdeques can be converted into a deque of
size n in 2.408207n 4+ O(log® n) comparisons. This is
done by performing merge operations in turn on these
full subdeques in a bottom-up fashion, which leads to an
O(log? n) additional term. More precisely, we know that

LeEMMA 4: If the cost to construct a full deque structure
of any size m is f(m) € O(m), then building an n-element
deque takes at most f (n) + O(log> n) comparisons.

Combining Lemma 2 and Lemma 4 yields

THEOREM 5: A deque structure of size n can be con-
structed in at most 2.4083n + (’)(log2 n) comparisons in the
worst case.

As will be shown in the next section, the priority deque
structures known in the literature, viz. the diamond
deque [5], the interval heap [15], and min-max-pair heap
[11], are the same structure as the deque. Hence,
Theorem 5 improves over previously known construc-
tion algorithms [5, 15, 11].

4. VARIANTS OF TWIN-HEAPS

In this section we show that many of the double-ended
priority queues described in the literature are in fact
twin-heaps. Notice that twin-heaps can be implemented

THE COMPUTER JOURNAL,

Vor. 38, No. 10, 1995

¥20Z Iudy 01 uo 1senb Ag 9921 9t/818/0L/8E/8101e/|ulWwoo/wod dno-ojwepede//:sdiy wolj peapeojumod

IMPLICIT PRIORITY DEQUES 821

as implicit data structures. To see this, let D[1..n] be an
array representing a twin-heap of size n. One way to
describe the twin-heap property is as follows. An array D
is a twin-heap if:

o D[HJ] < Dli] for 1 < i< [}§]

2l o <<n

e Dli|<Dli+ for 1 <i< || (if it exists; other-
wise, < D[| 5]+ [41]])

Hence, D[1] is the minimum element and D[[%] + 1] is
the maximum. This scheme is essentially the same as the
one suggested in [9].

Another approach to implement the twin-heap
implicitly is to let the entries of D satisfy: For any odd
1 <i<n,

e D[i] < min{D[2i + 1], D[2i + 3]}
e D[i+ 1] = max{D[2i + 2], D[2i + 4]}
e D[i] < D[i + 1] if any.

The array D with this representation is called a diamond
deque [5].

Consider now an array H[1...[%]]: Every element
H[i] (1<i<[%]) holds two values H[i].min and
Hl[i].max with H[i].min < H[i].max, where H[[2]]
contains only one value H[[%]].min if n is an odd

number. For 1 <i< [%],

o H[|i]].min < H[i].min
o H[|%]|].max > Hl[i].max if any.

Such a representation is called either an interval heap [15]
or a min-max-pair heap [11]. Notice that if we expand
H[1...[%]] to an array D[1...n] by

H[i].min = D[2i — 1] and

Hlilmax =DP2i] (ifany) V1<i<[7]
then we obtain a representation of the diamond deque.
Application of this data structure to computational
geometry can be found in [15].

In summary, all the above structures can be considered
the same when they are presented in an abstract manner.

5. CONCLUSIONS

We consider the problem of efficiently constructing
implicit data structures for a class of double-ended

priority queues. By viewing the structures systematically,
we develop a fast construction method, which improves
upon the previously best known worst-case upper
bounds for solving the problem.

ACKNOWLEDGEMENT

The author would like to thank the referees for very
useful comments.

REFERENCES

[1] Aho, A. V., Hopcroft, J. E. and Ullman, J. D. (1974) The
Design and Analysis of Computer Algorithms. Addison-
Wesley, Reading, Massachusetts.

[2] Bogart, K. P. (1983) Introductory Combinatorics. Pitman
Publishing Inc., Boston, Massachusetts.

[3] Carlsson, S. (1987) The deap—A double-ended heap to
implement double-ended priority queues. Information
Processing Letters, 26, 33-36.

[4] Carlsson, S., Chen, J. and Strothotte, Th. (1989) A note
on the construction of the data structure ‘Deap’.
Information Processing Letters, 31, 315-317.

[5] Chang, S. C. and Du, M. W. (1993) Diamond deque: A
simple data structure for priority deques. Information
Processing Letters, 46, 231-237.

[6] Floyd, R. W. and Rivest, R. L. (1975) Expected time
bounds for selection. Communications of the ACM, 18,
165-172.

[71 Gonnet, G. H. and Munro, J. 1. (1986) Heaps on heaps.
SIAM Journal of Computing, 15, 964-971.

[8] Heck, A. (1993) Introduction to Maple. Springer-Verlag,
New York, Inc.

[9] Knuth, D. E. (1973) The Art of Computer Programming,
Vol. 3: Sorting and Searching. Addison-Wesley, Reading,
Massachusetts.

[10] McDiarmid, C. J. H. and Reed, B. A. (1989) Building
heaps fast. Journal of Algorithms, 10, 352-365.

[11] Olariu, S., Overstreet, C. M. and Wen, Z. (1991) A
mergeable double-ended priority queue. The Computer
Journal, 34, 423-427.

[12] Sack, J.-R. and Strothotte, Th. (1985) An algorithm for
merging heaps. Acta Informatica, 22, 171-186.

[13] Schoénhage, A., Paterson, M. and Pippenger, N. (1976)
Finding the median. Journal of Computer and System
Sciences, 13, 184—199.

[14] Strothotte, Th., Eriksson, P. and Vallner, S. (1989) A note
on constructing min-max heaps. BIT, 29, 251-256.

[15] van Leeuwen, J. and Wood, D. (1993) Interval heaps. The
Computer Journal, 36, 209-216.

[16] Vuillemin, J. (1978) A data structure for manipulating
priority queues. Communications of the ACM, 21, 309-
314.

[17] Williams, J. W. J. (1964) Algorithm 232: Heapsort.
Communications of the ACM, 7, 347-348.

THE COMPUTER JOURNAL,

VoL. 38, No. 10, 1995

¥20Z Iudy 01 uo 1senb Ag 9921 9t/818/0L/8E/8101e/|ulWwoo/wod dno-ojwepede//:sdiy wolj peapeojumod

