Book REVIEWS 837

‘COLD’ stands for ‘Common Object-oriented Lan-
guage for Design’, but do not be misled into thinking it is
object-oriented. It combines ‘a wide variety of notations
for property-oriented and model-oriented specification,

. in equational style, pre- and post-condition style,
inductive definitions, algorithmic definitions in func-
tional as well as imperative style’. It is, in a word, the
PL/I of formal development languages.

‘The book is self-contained and instead of going into
the formal semantics of the language, it will convey a
working knowledge of the meaning of the language
constructs via the examples, the explanations, and the
pictures’. Your reviewer has to report that this working
knowledge was not conveyed to him. Surely those that
use notations should be able to give their translations
into English, and not merely hope that we will latch on to
what they mean.

A sort, we are told, is a value set. Then (p. 89) we are
shown an array update definition with input a, n, i: a is
of the sort Array, n an index, and i an item. ‘a’ is an
‘object name’—not (p. 114) the name of an object, but a
‘logical variable’ (an unvarying pronoun) ‘of a static
nature’. This is, a is an (unchangeable) array value. The
post-condition of the array update function is val(a,n)
=i, i.e. i is item n of a. Surely this implies that a has
changed? But the specification of the update says that
only the val function, val(a,n), can change. So perhaps
a is unchanged, but val is changed? Or perhaps not: the
sort Array is defined as variable, i.e. not a sort at all.

The book appeals, of course, not to the missing
informal interpretation of its notation, but to the
deliberately omitted formal semantics, which ‘guarantee
that the design can be rigorously analysed’. The
motivating case study describes a vending machine: no
surprise there, except that it is the weirdest such machine
ever analysed; for instance, it is informed individually
about each valid coin. What is more, insertion of a valid
coin with a value less than the price of any selection stalls
the machine; and, while the initial statement of require-
ments says that each product has a price, the formal
specification allows multiple selections, at different
prices, for the same product.

Rigorously analysed, not: see your reviewer’s com-
ments on other formal development language texts
passim and ad nauseam.

ADRIAN LARNER
De Montfort University

MicHAEL G. HINCHEY AND STEPHEN A. JARVIS
Concurrent Systems. Formal Development in CSP.
McGraw-Hill. 1995. ISBN 0-07-707649-4. £19.95.
181pp. softbound.

Parallel systems are notoriously complicated, and the
myriad possibilities for interaction between components
makes such systems difficult to understand and reason
about. Communicating Sequential Processes (CSP) is an

abstract language for describing concurrent systems,
together with an underlying theory crafted to enable
specification, design, development, and verification
within a formal framework grounded in mathematics.
It controls complexity by abstracting away details of
components’ internal structure, focusing on the commu-
nication patterns between them. The language was first
proposed in 1978, and has proved extremely successful
as a formal method. The infrastructure required to
support its uptake in industry is developing: there is
now tool support for CSP analysis and verification, and
there are a range of courses available. However, in the 10
years since Tony Hoare’s classic book Communicating
Sequential Processes there has been a scarcity of books
on this subject. This is a gap that Hinchey and Jarvis aim
to fill.

This slim book, described on the jacket as ‘a tutorial
introduction with comprehensive reference material’ is
aimed at both the student and the research community.
The preface indicates that the tutorial material consists
of Chapters 1, 2 and 3 (introduction, language, semantic
models), and that the rest of the book is intended as a
reference. However, Chapter 3 consists essentially of a
large number of laws, and its material is not illustrated or
motivated, so it cannot really be considered as tutorial
material. The structure of the book is as follows: it covers
the language of CSP, its semantic models, variants, laws,
elements of CSP style, a case study, the occam program-
ming language, and finally refinement. This would
appear to cover the most important aspects of CSP,
though there are some startling omissions, the most
serious being the lack of any treatment of the semantics
of recursion, a topic that is absolutely central to CSP.

It is axiomatic that any academic text must be
technically sound, particularly one intended as a
reference. This is especially important in the area of
formal methods where emphasis is placed on its
mathematical basis. In addition tutorial material
should be written extremely carefully, since it must
withstand intense scrutiny by students wishing to gain an
understanding of the subject: precise and careful
explanations are essential, and proper and appropriate
use of terminology is expected. It is also common for
tutorial material to contain exercises. Regrettably, this
book has severe deficiencies in all these areas, which
renders it unsuitable as a tutorial or student text, and
especially unsuitable as a CSP reference.

The first severe problem with the book concerns the
extremely high number of technical errors. A single
technical flaw in an otherwise excellent book may be
forgiven, but Chapter S alone (Laws of CSP) contains
over 40 laws which are incorrect, incomplete, or simply
nonsensical. An example is the meaningless assertion
that the parallel operator is transitive. The errata slip
currently appearing with the book addresses only one of
these laws, replacing one incorrect law (P|||P = P) with
another (P|||P # P). Using the laws of this chapter it is
possible to prove, in more than one way, that P = Q for

THE COMPUTER JOURNAL,

Vor. 38, No. 10, 1995

¥20Z Iudy 01 uo1senb Ag €€ L9t/2€8/01/8E/8101e/|ulWwoo/wod dno-ojwepede//:sdiy wolj peapeojumod

838 Book REVIEWS

any processes P and Q. It is also possible to prove that
P # Q for any two processes, including the special case
P # P for any P! The rest of the book also contains its
share of errors, including some elementary mistakes in
the tutorial examples and in the chapter on semantic
models.

The other main problem with this book is that many
explanations throughout the text are confused or
incorrect. It would be pointless to list all those I found,
and instead I will confine myself to three typical
examples from the tutorial part of the book. Firstly,
Section 2.2.2 on ‘Process definition’ begins with the
extraordinary assertion that ‘a process is defined
recursively in the format (e — P)’. The rest of that
section is also nonsense, and does not even address its
topic on how processes are defined. A second example of
poor explanation is in Section 2.2.4 (Standard processes)
where ‘chaos’ or ‘bottom’ is described as denoting
‘livelock or deadlock; it is a process that can do or fail
to do anything, and at all costs must be avoided in
specifications’. This will not make much sense to readers
unfamiliar with the theory. A final example of confused
explanation may be found in Section 3.2 (Traces) where
it is claimed that a specification is strengthened by
introducing hiding, but weakened by introducing inter-
leaving. This does not make sense even with respect to
the authors’ own explanation, and cannot but confuse
the reader. As well as poor and incorrect explanations,
standard terminology such as ‘deadlock’, ‘livelock’, and
‘angelic non-determinism’, and even terms such as ‘total-
ordering’ are used incorrectly, or confusingly.

The treatment of refinement at the end of the book
is superficial and unsatisfactory. The definition of

refinement in CSP is given, but there is no guidance
presented on how or where it is to be used, except
the comment that it ‘is not a straightforward process’.
Given the subtitle of the book and the central role
that refinement plays in formal development, I would
have expected refinement to be treated in greater depth
than it is here. Furthermore, no notion of a refinement
relation between CSP and occam2 or Ada is presented.
Instead we find an ad-hoc translation of the case study of
Chapter 7 from CSP to occam2. The section on
refinement to Ada boils down to informal rules for
translating input and choice constructs into Ada. This
contrasts with the jacket description, which claims that
‘practical implementation in both Occam and Ada 9X
is discussed in depth’.

There are some good aspects of the book. It has been
very well typeset. The case study in Chapter 7 illustrates
some aspects of verification in CSP, though I was
disappointed with the number of typographical errors
and use of undefined notation, and could not help feeling
that this chapter would be more suited to a journal. The
CSP and occam bibliography is very extensive, though it
will require some work to keep it up-to-date in
subsequent editions.

In conclusion, this book contains an extraordinarily
high number of serious technical mistakes throughout
which render it unusable as a reference. Furthermore,
many of the explanations are confused or incorrect,
which also makes it unsuitable for teaching. Sadly, the
computer science community must wait a little longer for
another good book in this area.

S. A. SCHNEIDER
Royal Holloway, University of London

THE COMPUTER JOURNAL,

Vor. 38, No. 10, 1995

¥20Z Iudy 01 uo1senb Ag €€ L9t/2€8/01/8E/8101e/|ulWwoo/wod dno-ojwepede//:sdiy wolj peapeojumod

