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The LCF theorem prover provides a logic of domain theory and is useful for
reasoning about nontermination, general recursive definitions and infinite-valued
datatypes like lazy lists. Because of the continued presence of bottom (undefined)
elements, it is clumsy for reasoning about finite-valued datatypes and strict func-
tions. By contrast, the HOL theorem prover provides a logic of set theory (without
a notion of undefinedness) and supports reasoning about finite-valyed datatypes
and primitive recursive functions well. In this paper, a number of examples are
used to demonstrate that an extension of HOL with concepts of domain theory
combines the best of both systems. The examples illustrate how domain and set
theoretic reasoning can be mixed to advantage, allowing the full use of both. More-
over, a larger example presents a proof of correctness of the unification algorithm

which shows how the painful reasoning about bottom in LCF can be eliminated.

1. INTRODUCTION

The LCF system (Gordon et al., 1979; Paulson, 1987) is
a theorem prover which implements a version of Scott’s
Logic of Computable Functions, a first order logic of
domain theory. The LCF logic has a domain theoretic
semantics and provides the concepts and techniques
of fixed point theory to reason about nontermination
and arbitrary recursive (continuous) functions. For in-
stance, LCF has been successfully applied to reason
about lazy (infinite-valued) datatypes and lazy evalu-
ation. However, reasoning about obviously total (or
strict) functions and finite-valued datatypes is clumsy
in LCF (Paulson, 1984b).

By contrast, the HOL system (Gordon et al., 1993)
provides a version of Church’s higher order logic (simple
type theory), which has a set theoretic semantics. It has
no built-in notion of nontermination (or undefined ele-
‘ments) and all functions are total. It supports reason-
ing about finite-valued datatypes and primitive recur-
sive functions well, but has no support for non-primitive
recursive functions and non-wellfounded datatypes.

The HOL-CPO system (Agerholm, 1994c) attempts
to combine the best of both LCF and HOL within a
single system. It provides a formalization of central
concepts of domain theory in HOL along with a number
of proof functions and other tools to support the use of
the formalization in practice. One may view HOL-CPO
a8 an embedding of the LCF system in HOL.

Roughly speaking, HOL-CPO supports all LCF rea-
soning. However, it has advantages over LCF since (1)
it inherits the underlying higher order logic and proof
infrastructure of the HOL system, and (2) it provides
direct access to domain theory. These points are the
consequences of embedding semantics (as in HOL-CPO)
rather than implementing logic (as in LCF). The main

advantage of (1) is that we become able to mix domain
and set theoretic reasoning in HOL-CPO. In particu-
lar, by exploiting the set theoretic basis of higher order
logic, the continual and very annoying fiddling with the
bottom element in LCF (Paulson, 1985) can be essen-
tially eliminated.

In contrast to (2), domain theory is only present in
the underlying logic of the LCF system through axioms
and primitive rules of inference. For instance, there is
no semantic definition of the fixed point operator, nor of
the admissibility condition on predicates for fixed point
induction. The fixed point operator is axiomatized by
the fixed point property (an axiom) and fixed point in-
duction (a primitive rule of inference). Further, the

fixed point induction rule implements a syntactic check

for admissibility which is not complete.

By exploiting the semantic definitions of these con-
cepts in HOL-CPO, we have no such limitations. Fixed
point induction can be derived as a theorem from the
definition of the fixed point operator and reasoning di-
rectly about fixed points allows more theorems to be
proved than with just fixed point induction. Moreover,
syntactic checks for admissibility can be implemented as
in LCF, but admissible predicates not accepted by the
syntactic checks can be proved to be admissible from
the semantic definition manually, using the proof in-
frastructure of HOL.

In this paper, we focus on the advantages of (1). A
number of examples are presented to demonstrate that
HOL-CPO supports and extends both the HOL and the
LCF worlds. We define nonterminating and arbitrary
recursive functions in domain theory and reason about
finite-valued types and total functions in ‘set theory’
(higher order logic) before turning to domain theory.
The examples have already been done in LCF by Paul-
son which makes a comparison of the two systems pos-
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gible. The first two examples, on natural numbers and
lazy sequences, are described in Chapter 10 of the LCF
book (Paulson, 1987) and the third and larger exam-
ple is based on Paulson’s version of a correctness proof
of the unification algorithm (Paulson, 1985), originally
presented in (Manna et al., 1981). Before we turn our
attention to the examples we review the HOL, HOL-CPO
and LCF systems in each of the following three sections
respectively.

2. THE HOL SYSTEM

The HOL theorem prover (Gordon et al., 1993) is a
a mechanized proof-assistant for proving theorems in
higher order logic. The HOL logic, a version of Church’s
simple type theory, and all theorem proving support is
built on top of a functional programming environment
ML (Meta Language). Terms, types and theorems of
the logic are represented as datatypes in ML. Inference
rules are ML functions which take a number of theorems
(the premises) as arguments and produce a theorem as
a result (the conclusion); primitive inference rules are
constructors of the abstract datatype of theorems. A
proof is a derivation using a number of inference rules,
proved theorems and axioms (the HOL logic has 5 ax-
ioms and 8 primitive rules of inference).

Inference rules support forward proofs of theorems.
However, a more natural goal-directed (backwards)
proof style is also supported, by the subgoal package.
Proofs can be constructed by applying tactics interac-
tively, in order to reduce goal terms to truth. A tactic
is an ML function which typically implements the back-
wards use of one or more inference rules (and theorems).

The terms of the HOL logic may be variables, con-
stants, A-abstractions or applications. The usual logi-
cal connectives are represented as constants. All terms
must be well-typed; e.g. in applications ¢ t3, {; must
have a function type t; : @ — [ where £3 : a. Types
can be atomic types (like bool for the boolean truth
values), type variables (like « and (), compound types
(like @ x B for the product type), and function types.
Some built-in types are num for the natural numbers
and (a)list for finite lists of elements of any type c.

The HOL logic has a set theoretic semantics (Gordon
et al., 1993, Chapter 15). All types denote sets and the
function type denote total functions of set theory.

Among its more unusual notions, the HOL logic pro-
vides a choice operator ¢ which can be used to select
some element of a type such that a predicate holds, e.g.
ez. P[z]. If this is not possible, i.e. if the predicate is ev-
erywhere false, then it returns an arbitrary value of the
type; any type must be non-empty. There is a built-in
HOL constant called ARB which equals ex : a. T, where
T is the boolean value for truth, and always gives an
arbitrary but fixed value of any type a.

The HOL logic is organized in hierarchies of theo-
ries which contain collections of types, constants, def-
initions, axioms, and theorems. Once theorems have

been proved, they can be saved and used over and over
again. The purpose of the HOL system is to provide
tools for constructing such theories.

Theories can be extended with new constants and
types by giving definitions and axioms. Definitional ex-
tension preserves consistency of the HOL logic, because
new constants and types are defined in terms of existing
ones. Axiomatic extension may not be safe in this sense
and is usually not accepted in the HOL community. The
present developments are purely definitional.

In general, it is not easy to define recursive functions
and types since one must first prove their existence in
the logic. However, HOL supports certain concrete re-
cursive finite-valued datatypes and primitive recursiye
functions on these types, due to the type definitién
package (Melham, 1989). Though definitional exteé-
sions, which have not been automated, can sometlm&
require a lot of work, the HOL system supports exten-
sions well, through its expressive underlying logic and
the meta language ML which can be used to prograga
special-purpose proof functions and other tools. 2

HOL has a large collection of built-in types, th@-
rems and proof tools to support all kinds of reaso:

The presence of these is important since then one dO_BS
not have to start from scratch when a new extensién
is considered. For instance, the predicate sets libragy
(Melham, 1992) was used in the present development.
Sets are represented as subsets of HOL types by pre@
cates of type a — bool It provides set notation and tEe
usual operations on sets. In particular, we shall use:a
universal set constructor UNIV : o — bool which equﬁs
the always true predicate Az. T and therefore contmm
all elements of any underlying HOL type a.

3. HOL-CPO

11689€/LclLic

In this section we provide an overview of the formaliza-
tion of domain theory and some of the associated togls
(Agerholm, 1994a; Agerholm, 1994c). This extensidn
of HOL, called HOL-CPO, constitutes an integrated sy$-
tem where the domain theory constructs look almast
primitive (built-in) to the user. Many facts are provéd
behind the scenes to support this view. In order to read
the paper, it is not necessary to know the semantic dé—
initions of the domain theory which is used. Therefore,
the presentation below shall be very brief. More details
can be sought in (Agerholm, 1994c). A good introduc-
tion on domain theory is provided in (Winskel, 1993),
on which the formalization is based.

3.1. Basic Concepts

Domain theory is the study of complete partial orders
(cpos) and continuous functions. These notions are in-
troduced in HOL by their semantic definitions. A com-
plete partial order is a pair which consists of a set and
a relation satisfying the predicate

cpo : (& — bool) X (a — a — bool) — bool.
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If (A, R) is a cpo then the underlying relation R is a
partial ordering (reflexive, transitive and antisymmet-
ric) on all elements of the underlying set A and there
exists a least upper bound (lub) for all non-decreasing
sequences X : num — « of elements in A; here, non-
decreasing means that R(Xn)(X(n + 1)) holds for all
n. Such sequences are called chains (or w-chains).

In the literature, a cpo is usually thought of as a set
with an associated ordering relation. We can provide
much the same useful notion in HOL by introducing
relp to stand for the underlying relation of a cpo D and
using t € D to say that a term ¢ is an element of the
underlying set of D.

Note that we do not require cpos to have a so-
called bottom (or undefined) element, i.e. a least ele-
ment botp € D such that relpbotp z for all z € D.
Cpos which have a bottom are called pointed cpos and
satisfy the HOL predicate pcpo. In the following, a cpo
may or may not contain a bottom element unless we
say explicitly that it is pointed.

A continuous function from a cpo D to a cpo E
is a HOL function f : @ — [ such that the term
cont f(D, E) is true (o and 3 are the underlying types
of D and FE, respectively). It must be monotonic with
respect to the underlying relations and preserve lubs of
chains in the sense that f applied to the lub of a chain X
in D is equal to the lub of the chain f(X n)in E. In ad-
dition, f must be determined by its action on elements
of the domain cpo D. This means that on elements
outside D it should always return the fixed arbitrary
value ARB. The determinedness restriction is necessary
to prove that continuous functions constitute a cpo and
is induced by the fact that we work with partial HOL
functions between subsets of HOL types (corresponding
to the underlying sets of cpos). Determinedness occurs
everywhere and is one of the main disadvantages of the
formalization. In particular, functions must be written
using a dependent lambda abstraction

(lambda D f)(z) = { fto) ifzeD

to ensure they are determined. Therefore, many func-
tions (like Fix and Ext below) become parameterized by
cpo variables, which are the free term variables of the
domains on which they work.

The conditions on complete partial orders and contin-
uous functions ensure the existence of a fired point op-
erator, called Fix, which is useful to define general (non-
primitive) recursive functions and other infinite values.
Applied to a continuous function f on a pointed cpo F,
it yields a fixed point of f:

[cont f(E, E);pcpo E] F f(Fix E f) = Fix E f.
In fact, it yields the least fixed point:

[cont f(E, E); pcpo E; z € E]
F(fz=2)=relg(FixE f)z.

Terms in square brackets are the assumptions of theo-

v

rems. The term Fix E f equals the least upper bound of
the chain L T f(L1) C f(f(L)) C ..., where L stands
for botg and C for relg. Fix is defined using the depen-
dent lambda abstraction and is therefore parameterized
by E above.

The proof principle of fixed point induction has been
derived as a theorem from the definition of the fixed
point operator:

[incl P E; cont f(E, E); pcpo E]
F P(botg) A (Vz. Pz = P(f z)) = P(Fix E f).

It can be used to prove properties of fixed points which
are stated as inclusive predicates. A predicate is an
inclusive subset of a cpo if it contains the lubs of chains
in the subset.

The theorems presented above may be read as infer-
ence rules, where the left-hand side of an implication
is interpreted as the premise(s) and the right-hand side
as the conclusion. The assumptions, i.e. the terms in
square brackets, may be interpreted as the side condi-
tions. The domain theory constructs in the side condi-
tions have complex (but straightforward) definitions in
higher order logic. Therefore, it would be arduous to
prove the conditions manually in HOL each time a theo-
rem is applied. A number of syntactic-based proof func-
tions have been implemented to automate such proofs.
These support the informal notations for cpos, typable
terms and inclusive predicates presented next.

3.2. Notations for Cpos and Pointed Cpos

Two special-purpose proof functions implement infor-
mal syntactic notations for cpos and pointed cpos.
These functions are called the cpo and pecpo provers.

A notation for cpos may be described as follows

D == discrete Z | lift D | f(D, E) | sum(D, E) | ...,

where Z is some HOL set and D and E are cpos. The
constructors of the notation are described below. The
notation can be extended with new constructions at any
time. A new constructor of the form C(Dy,...,D,) can
extend the notation in two ways. Either it abbreviates
a term which fits within the notation already, or a theo-
rem states that it yields a cpo if its arguments are cpos.

The discrete construction associates the discrete or-
dering (identity) with a set and is useful for making
HOL sets into cpos. For instance, the type of natural
numbers can be used to define the discrete cpo of nat-
ural numbers discrete(UNIV : num — bool) using the
universal set UNIV, which equals the predicate Az.T.
We can extend the notation with Nat by defining

F Nat = discrete UNIV.

A construction called lifting can be used to extend
a cpo with a bottom element. The bottom of a lifted
cpo lift D, where D is any cpo, is written as Bt and
all other elements are written as Lftd for some d € D.
The constants Bt and Lft are the constructors of a new
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datatype in HOL which associates a new element with -

any type. It is the underlying relation of the lifting
construction which makes Bt into a bottom of lift D.

Next, the continuous function space associates the
pointwise ordering relation with the set of all continu-
ous functions between two cpos. Assuming D and F
are cpos, their continuous function space is written as
cf(D, E). Therefore, the two statements f € cf(D, E)
and cont f(D, E) are equivalent, and we shall usually
use the former.

Finally, the sum construction takes the disjoint sum
of two cpos. It makes a copy of the elements of each
of the cpos, and the underlying ordering relations are
inherited. There is also a similar product construction,
in fact, but it is not used in this paper.

A notation for pointed cpos may be described by

E:.=liftD|f(D,E)|...,

where D is a cpo (see above) and F is a pointed cpo.
The continuous function space yields a pointed cpo if
just the range is pointed. The discrete construction
does not yield a pointed cpo, except if its set argument
is a singleton set. The sum construction never yields a
pointed cpo. Extensions are possible as above.

The syntactic notations allow us to use a term like

cf(cf(Nat, Nat), cf(Nat, lift Nat))

without proving it is a cpo or a pointed cpo. This is
done automatically by proof functions.

3.3. Notation for Typable Terms

A term is (rather informally) called cpo-typable or just
typable if it can be proved to be an element of some cpo.
An interface and a proof function called the type checker
implement a notation for typable terms. The interface
provides a more convenient external syntax for the user
than the internal one which is used by the type checker.
It consists of a parser and a pretty-printer which ex-
tend the built-in parser and pretty-printer of HOL. The
parser calculates and inserts certain cpo parameters on
function constructors like Fix £ which are parameter-
ized by the (free cpo variables of the) domains on which
they work, and the pretty-printer removes these param-
eters. The interface makes terms a lot easier to read and
write. A secondary purpose of the interface is to provide
a nicer syntax for the dependent lambda abstraction.

It is illustrated in Figure 1 how the parser and pretty-
printer interact with the type checker to implement the
notation for typable terms. If a term fits within the
notation, then the type checker can reconstruct the cpo
of the term.

The notation for typable terms may be described by

to=z|c|Az € D.t|tty,

where z is a variable of a restricted A-abstraction, ¢
is a constant which has been declared to the system,

parse l Y pretty-print

internal(t) — > | internal(t) € D
type check

FIGURE 1. Implementation of notation for typable terms.

and ¢, t; and ¢, are typable terms. The restricted M-
abstraction is translated into the dependent lambda
abstraction. The collection of built-in declared cory
stants can be extended by providing theorems which
state which cpos the constants belong to. In fact, ang
term can extend the notation in this way.

The buiit-in constants are Fix, Lift, and Ext (there
others which are not used in this paper):

+VE. pcpo E = Fix E € cf(cf(E,E), E)
FVD. cpo D = Lift D € f(D, lift D)
FVDE. cpoD = pcpo E =

Ext(D, E) € cf(cf(D, E), cf(lift D, E)).

The constant Lift is defined as a determined version of
the constant Lft, using the dependent lambda abstra¢;
tion. It takes an element d € D and produces an ele:
ment of the lifted cpo lift D. The constant Ext is used
for extending the domain cpo of a function to the lifted
domain in a strict way: &

[f € f(D, E); z € D]
I (Ext(D, E) f Bt = botg) A
(Ext(D, E) f (Lift Dz) = f z).

The disadvantage of the function constructors is thaf
they are parameterized by cpos; in order to be dete§
mined on their domains, they are defined using the de
pendent lambda abstraction. The parser supports the
omission of these parameters in terms which fit withia
the notation. However, it only works if constructors arg
actually applied to terms of the notation; their cpos ag
used to calculate the parameters (Agerholm, 1994c).

Let us consider an example. The following term ﬁ@
within the notation for typable terms:

Fix(Af € cf(D, lift Nat). Ad € D. Ext f (Liftd)).

0-olWapeoe//:sdny wé; pa

an

89¢/LclLie/8ElPIP

The parser inserts the parameters on the function con-
structors and generates the following internal syntax,
where also the internal version of the dependent lambda
abstraction is used:

Fix(cf(D, lift Nat)
(lambda
(cf(D, lift Nat))
(Af. lambda D(Ad. Ext(D, lift Nat) f(Lift D d)))).

Assuming that the variable D is a cpo, then the type
checker reconstructs the cpo of the term. The theorem
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it proves is pretty-printed as follows:

[cpo D]
F Fix(Af € cf(D,lift Nat). M\d € D. Ext f (Liftd)) €
cf(D, lift Nat).

The type checker uses the proof functions for cpos to
prove this fact.

3.4. Universal Cpos

The underlying set of a cpo is represented by a sub-
set of a HOL type. When this subset corresponds to
the whole type, then the cpo is called a universal cpo
and any element of that type is trivially an element
of the cpo. Discrete universal cpos are terms like Nat
which are defined using the discrete construction with
the universal set UNIV. The continuous function space
of discrete universal cpos is itself equal to a discrete
universal cpo. Hence, we trivially, and automatically,
obtain that operations like successor and addition are
continuous on the cpo of natural numbers:

F SUC € cf(Nat, Nat)
F 8+ € cf(Nat, cf(Nat, Nat)).

Of course, we also have I 0 € Nat. These theorems can
then be used to extend the notation for typable terms.

3.5. Notation for Inclusive Predicates

The inclusive prover implements syntactic checks for
inclusiveness. It automatically proves that a predicate
of the form mkpred ;, (Az. e[z]) is an inclusive subset of D
(mkpred makes the subset) provided D has finite chains
(e.g. if it is a discrete or a lifted discrete cpo) or e[z]
fits within the following notation

ex=b|ti=ts|VyeE ¢€y]|...,

where b is a boolean termm which does not contain z,
t; and t; are continuous in the variable z in the sense
that Az € D. t;[z] fits within the notation for typable
terms (i = 1, 2), e[y] is an inclusive subset of D in
the variable z, and finally, E is a non-empty cpo. The
implementation of the inclusive prover is based on the
description of the checks in the LCF system (Paulson,
1987, pp. 199-200).

4. THE LCF SYSTEM

The LCF theorem prover (Gordon et al., 1979; Paulson,
1987) is very similar to the HOL system; in fact, HOL
is a direct descendant of LCF. It has a meta language
ML (or Standard ML) in which the logic and theorem
proving tools are implemented. Theorems are imple-
mented by an abstract datatype for security and ax-
loms and primitive rules of inference are constructors
of this datatype. Derived inference rules are ML func-
tions. The subgoal package allows proofs in a backwards
fashion using tactics. Constants, axioms, theorems and
50 on are organized in hierarchies of theories.

4.1. Logic

The central difference between LCF and HOL lies in
their logics. The HOL system supports a version of
Church’s higher order logic (simple type theory), which
has a set theoretic semantics. The LCF system sup-
ports a version of Scott’s Logic of Computable Func-
tions, which is a first order logic of domain theory; it
has a domain theoretic semantics. The LCF logic differs
from higher order logic since it is first order and types
denote pointed cpos rather than just sets (cpos may
be viewed as sets with structure). Further, the func-
tion type denotes the continuous function space whereas
HOL functions are total functions of set theory.

Domain theory constructs are provided in LCF
through axioms and primitive rules of inference. For in-
stance, a certain constant of the logic denotes the fixed
point operator, due to an axiom which states it yields a
fixed point and due to the primitive rule of fixed point
induction which states it yields the least fixed point.
There is no semantic definition of the fixed point op-
erator. Similarly, the notion of inclusive predicate (for
fixed point induction) is not defined in LCF. It is only
present via an incomplete syntactic check performed by
fixed point induction in ML. Paulson provides an exam-
ple of an inclusive predicate which is not accepted for
fixed point induction in LCF (Paulson, 1984a).

Though this paper shall not make essential use of
the presence of semantic definitions in HOL-CPO, it is
still an important point to make. HOL-CPQO provides
fixed point induction and a syntactic check for inclu-
siveness as in LCF; in fact, the implementation of this
check is based on the description in (Paulson, 1987, pp.
199-200). But HOL-CPO allows more theorems to be
proved since it provides access to the semantic defini-
tions of the fixed point operator and inclusiveness. This
is useful when induction is not feasible or the check fails.
Furthermore, HOL-CPO is more trust-worthy since fixed
point induction and the inclusiveness check are derived
from the semantic definitions by proof in HOL. In con-
trast, the LCF check (and fixed point induction) is im-
plemented directly in ML.

4.2. Extensions

There are different traditions of extending theories in
LCF and HOL. In HOL, there is a sharp distinction
between definitional and axiomatical extensions. LCF
only supports axioms.

It is not always easy to know whether an LCF ax-
iom is safe or not since this must be justified in domain
theory (outside LCF). In particular, an axiom should
not violate the continuity of functions; functions are as-
sumed to be continuous since the function type denotes
the continuous function space. Paulson shows how easy
it is to go wrong (Paulson, 1987, pp. 116-117).

In HOL-CPO, terms are not assumed but proved to be
continuous functions. Due to the notation for typable
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terms, implemented by the type checker, such proofs
are usually automatic and do not impose a burden on
the user.

5. NATURAL NUMBERS

In LCF, natural numbers are introduced as a recursive
datatype where a constant 0 and a strict successor func-
tion SUCC are the constructors (Paulson, 1987, Sec-
tion 10.1). New constant names for the constructors
are declared, then axioms about the constants are pos-
tulated. The axioms specify the partial ordering on
natural numbers and state strictness and definedness
of the constructors. The exhaustion (or cases) axiom
is also postulated. It states that any natural number
either equals bottom, zero or the successor of some nat-
ural number. Distinctness of the constructors and the
structural induction rule are then derived from these
axioms and fixed point induction. The axiomatization
is performed automatically by a few ML functions.

It is also easy to define a cpo of natural numbers in
HOL, though the method is very different. Instead of
introducing a new recursive cpo, we exploit the built-
in natural numbers using the discrete construction. If
the natural numbers were not built-in we would use the
type definition package (Melham, 1989) to define a new
recursive type first.

We already defined the cpo of natural numbers called
Nat above (Section 3.2.). Using lifting, we obtain the
pointed cpo lift Nat which corresponds to the recursive
type of natural numbers in LCF. The zero element of
lift Nat is Lift0 and a strict successor is defined using
the built-in successor SUC and function extension:

k Suc = Ext(\p € Nat. Lift(SUCp)).

The right-hand' side fits within the notation for ty-
pable terms (we assume the extensions presented in Sec-
tion 3.3.). Hence, the type checker can prove that Suc is
a continuous function on lift Nat, and this fact can then
be used to extend the type checker itself, by extending
the notation for typable terms.

In LCF, a strict addition on the type of natural num-
bers is axiomatized using the eliminator functional:

NAT WHENzfl=1
NAT_WHENz fO0=z
Vm.m# L => NAT_WHENz f(SUCCm)=fm

This is useful for defining continuous functions on nat-
ural numbers by cases. Note that NAT.WHEN must
assume the argument of the strict LCF successor is de-
fined, otherwise there would be a conflict with the bot-
tom case. A consequence of this is that most theorems
stated about NAT_WHEN, and in turn addition, in-
herit this assumption. Such definedness assumptions
make reasoning about strict functions in LCF tedious
and difficult (Paulson, 1984b).

In HOL-CPO, the easiest approach is to define a func-
tion in the set theoretic HOL world of natural numbers

-first, and then extend this to a strict function using Ext.

Since addition is a built-in operation, it is particularly
easy to introduce a strict addition:

F Add = Ext(\p € Nat. Ext(\g € Nat. Lift(p + g))).

Since the right-hand side fits within the notation for
typable terms, the type checker automatically proves it
is a continuous operation on the lifted natural numbers:

I Add € cf(lift Nat, cf(lift Nat, lift Nat))).

From the axiom for addition a number of recur-
sion equations matching the cases in definition of
NAT_WHEN are derived by proof. These are important
in proofs of properties of addition, which are conductedo
by natural number induction.

The LCF recursion equations for addition have beenm
proved in HOL but a reduction theorem is more useful:®

F (Vn. AddBtn = Bt) A
(Vn. AddnBt =Bt) A
(Vpq. Add(Lift p)(Lift g) = Lift(p + ¢))-

It states that addition is strict in both arguments a.nd°
behaves as the built-in addition on lifted arguments.® )
Statements about Add can then be reduce to s;ta.tementx&xO
about the built-in addition. g

For instance, the reduction theorem is used to prove3
the following two theorems stating that strict addition3:
is associative and commutative:

F Vkmn. Add(Add k m)n = Add k(Addmn)
F VYmn. Addmn = Addnm.

UMo

Eoe//:sd)y woly pap

o/

Z/8€ /o101 |ulwo

numbers, which are equal to either Bt or Lift p for some=
p € Nat, the reduction theorem is applied to reduce the®
statements into properties of the built-in addition:

F¥Ymnp.m+(n+p)=(m+n)+p
FYmn.m+n=n+m.

Such reductions by cases could be automated easily.
The set theoretic statements can be proved by induc-jo>
tion on the natural numbers in HOL; though, in thisS
particular example, the statements are built-in facts.
In LCF, the statements about strict addition areX®
proved directly by structural induction. Compared to
HOL induction proofs, such inductions have an extra
case, dealing with the bottom element of the type of
LCF natural numbers. Furthermore, treating strictness
of addition is done in the induction proof, whereas this
is a separate (and trivial) part of the proof in HOL-CPO.

6
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6. LAZY SEQUENCES

In the previous section, we showed how to reason about
finite-valued types like natural numbers in HOL-CPO,
by mixing set and domain theoretic reasoning to ad-
vantage. In such applications, we eliminate most of
the reasoning about bottom elements which is painful
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in LCF. In this section, we show how HOL-CPO extends
HOL by supporting LCF reasoning about infinite-valued
types like lazy sequences.

The LCF datatype of lazy sequences is introduced
axiomatically like the natural numbers, using the same
ML functions in fact. Developing a cpo of lazy sequences
in HOL-CPO was difficult and time-consuming, though
we could have axiomatized the cpo as in LCF.

A purely definitional development of a theory of lazy
sequences is presented in (Agerholm, 1994c). It pro-
vides a constructor seq for pointed cpos of partial and
infinite sequences of data. Hence, if D is a cpo then
seq D is a pointed cpo.

The bottom sequence is called Bt_seqp, and the lazy
constructor function is called Cons_seq D. The latter
is a continuous function and can therefore be used to
extend the notation of typable terms. They satisfy the
following cases theorem:

FVDs.
s€seqD =
(s = Btseqp) V
(3zs'. € DA €seqD A (s = Cons_seqz 8')).

Furthermore, they are distinct and Cons_seq is one-one.
A theorem for “structural induction” on lazy sequences
has also been derived, from fixed point induction as
in (Paulson, 1984a). Structural induction is used to
show an inclusive property holds of all partial (finite)
sequences, and the inclusiveness ensures that it holds
also of the infinite sequences.

There is an eliminator functional called Seq_when
which can be used to write continuous functions on se-
quences by cases. It is itself continuous and extends
the notation of typable terms. The following reduction
theorem specifies the eliminator:

[z € D;s € seq D; h € cf(D, cf(seq D, E))]
F (Seq-when h Bt_seq, = botg) A
(Seq-when h(Cons_seqz s) = hz s).

Definitions and theorems of this theory of lazy se-
quences are presented in (Agerholm, 1994c).

A mapping functional for lazy sequences can be de-
fined using the eliminator and the fixed point operator:

FVDE.
Maps(D, E) =
Fix
(Ag € cf(cf(D, E), cf(seq D, seq E)).
Af € f(D, E).
As € seqD.
Seq_when
(Az € D. A\t € seq D. Consseq(f z)(g ft))s)-

The type checker automatically proves that Maps is con-
tinuous:
FVDE.
cpoD = cpoE =
Maps(D, E) € cf(cf(D, E), cf(seq D, seq E)).

This theorem can be used to extend the notation of ty-
pable terms. Using the reduction theorem for Seq_when
and the fact that Fix yields a fixed point of a continuous
function on a pointed cpo, we can prove the following
reduction equations for Maps easily:

[z € D;s €seqD; f € cf(D, E)]
F (Maps f Btseq, = Btseqg) A
(Maps f(Cons_seq z 8) = Cons_seq(f z)(Maps f s)).

A tactic which takes such reduction theorems as argu-
ments can be used to reduce octurrences of Maps and
other function constructors, using the type checker to
prove the assumptions automatically.

We can prove that the mapping functional preserves
functional composition:

[f € cf(D2, D3); g € cf(D1, Dy))
t Maps(Comp(f, g)) = Comp(Maps f, Maps g).

The constant Comp is defined as a determined version
of the built-in functional composition. It is continuous
as expected, which must be proved manually, and we
assume it is in the notation of typable terms.

The proof of the above equality is conducted by ob-
serving that the two continuous functions are equal iff
they are equal for all sequences of values in D, i.e. iff
the following term holds: '

Vs. s €seqD; =
(Maps(Comp(f, g))s = Comp(Maps f, Maps g)s).

Then we employ an induction tactic based on the struc-
tural induction theorem for lazy sequences. This tactic
uses the various provers behind the scenes, in particular
the inclusive prover to prove the statement is inclusive
(seq D, is non-empty since it is a pointed cpo). The
proof is finished off using the reduction tactic with the-
orems for Maps and Comp .

Finally, we present a functional Seqof which given a
continuous function f and any starting point value z
generates an infinite sequence of the form

Cons_seq z(Cons_seq(f z)(Cons_seq(f(f z))...)),

or written in a more readable way |[z; f z; f(fz);...).
The function Seqof is defined as a fixed point as follows:

FVD.
Seqof =
Fix
(Ag € cf(cf(D, D), cf(D, seq D)).
Af € f(D, D). Az € D. Cons_seqz(g f(f z))).

The type checker then proves
FVD. cpo D = Seqof € cf(cf(D, D), cf(D, seq D)),

which allows us to extend the notation of typable terms.
The following statement can be proved to relate Maps
and Seqof:

[f € cf(D, D);cpo D]
FVz. z € D = (Seqof f(f z) = Maps f(Seqof f z)).
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Informally, the two sequences are equal since they are
- both equal to a term corresponding to [f z; f(f z);.. ]
The proof of the theorem is conducted by fixed point
induction on both occurrences of Seqof; inclusiveness
and other side conditions are proved behind the scenes
(a case analysis is made on whether or not D is empty).

The recursive functions of this section could not have
been defined easily in HOL, which has no support for
non-primitive recursive functions. However, using do-
main theory in HOL-CPO, we were able to define and
reason about general recursive partial functions as in
LCF.

7. THE UNIFICATION ALGORITHM

The problem of finding a common instance of two ex-
pressions is called wunification. The unification algo-
rithm generates a substitution to yield this instance,
and returns a failure if a common instance does not ex-
ist. Expressions, also called terms, can be constants,
variables and applications of one expression to another:

term ::= Const name | Var name | Comb term term.

Variables are regarded as empty slots for which expres-
sions can be substituted. A substitution is a set of pairs
of variables and expressions that specifies which expres-
sions should be substituted for which variables in an
expression.

Manna and Waldinger synthesized a unification al-
gorithm by hand using their deductive tableau system
(Manna et al., 1981) and Paulson made an attempt to
translate their proof of correctness to LCF (Paulson,
1985). Paulson did not deduce the algorithm from the
proof as Manna and Waldinger did; he stated the algo-
rithm first and then proved it was correct.

A version of Paulson’s proof has been conducted in
HOL-CPO. In this section we shall not go into the details
of this proof but mainly discuss a few points made by
Paulson on the LCF proof. The details are presented in
(Agerholm, 1994c¢).

Although this example is considerably larger than the
examples above it does not require deeper insights into
domain theory. In fact, domain theory is used very little
and only in the last stages of the proof. But the formal-
ization is exploited in an essential way. The unification
algorithm is recursive but not also primitive recursive.
Therefore, HOL does not support its definition. How-
ever, it can be-defined as a fixed point in HOL-CPO
easily.

Once we have proved that the unification algorithm
defined in domain theory always terminates—this proof
is conducted by well-founded induction—we can de-
fine a pure set theoretic HOL function. This approach
provides a method for defining non-primitive recur-
sive functions by well-founded induction in HOL. The
method could (probably) be automated in such a way
that no domain theory constructs appear to the user.

Paulson says that LCF does not provide an ideal logic
for verifying the unification algorithm since it clutters
up everything with the bottom element. For instance,
the syntax type of terms and the type of constant and
variable names must contain a bottom element, just like
all other LCF types. Hence, definedness assertions of
the form ¢t # 1 occur everywhere because constructor
functions for terms are only defined if their arguments
are (strictness). To indicate the influence of this prob-
lem on the complexity of statements and proofs, we
show the LCF definitional properties for substitution:

1 SUBSTs= L
Ve.c# L = (CONST ¢) SUBST s = CONST ¢
Yo.v#E L=
(VARv) SUBST s = ASSOC (VARv)vs
Vit 1 Z L=t 1L =
(COMBt,t;) SUBST s =
COMB(t, SUBST s)(t2 SUBST s).

In HOL, substitution is introduced by a primitive rec
sive deﬁmtlon

F (Ves. (Const ¢) subst s = Const c) A
(Vvs. (Varv) subst s = assoc(Varv)v s) A
(thtzs.
(Combt, t2) substs =
Comb(t, subst s)(t; subst 3)).

Note that this is pure HOL; it is not necessary to use
domain theory to define a type (or cpo) of terms nﬁr
to define substitution. Further, we avoid LCF’s exphcfit
statements of totality for functions which are obwou@
total, such as SUBST

Vis.t#L=>3#Z 1L =tSUBSTs# L,
since HOL functions are always total.

O/uJocrdnoogujepeoey:s&;m woJj papeojumoq

EA689€/LZ L1/

=
1
g
B
8
:
B
3
'E
:
:
§

fication itself, can be defined by primitive recursion like
subst above. Hence, we can do the set theoretic develo%—
ments first and then turn to domain theory later wh€n
it becomes necessary. In this way, we eliminate essen-
tially all reasoning about bottom which makes the LCF
proof painful and messy. Moreover, it is easy to shift £
domain theory, by exploiting the discrete constructiéh
on cpos as in the natural number example above. ®

The unification algorithm is defined as a fixed point of
a certain functional. A number of recursion equations,
stated without the use of Fix, are then derived from the
fixed point property. The type checker automatically
proves continuity:

F unify € cf(Term, cf(Term, lift Attempt)).

The cpo of terms Term is just the discrete universal cpo
of all HOL terms of type term, which can be introduced
by the above specification. The cpo of attempts is the
sum cpo of two discrete universal cpo with underlying
type one and a discrete universal cpo with underlying
type (name x term)list, corresponding to the type of
substitutions. The first component of the sum can be
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interpreted as failure and the second as success. The
correctness and totality of unify is stated as the theorem:

F Vtu. Ja. (unify tu = Lift a) A best_unify_try(a, t, u).

The first conjunct states unify is total and the second
states that it yields the best (most general and idem-
potent) unifier in a certain sense if a unifier exists, oth-
erwise it yields a failure. The predicate best_unify_try is
defined in pure HOL; no domain theory is used.

The unification algorithm is recursive on terms but
it is not primitive recursive. In order to unify two com-
binations Comb ¢, t; and Combu; ug the algorithm first
attempts to unify ¢; and u; and if it succeeds with the
substitution s as a result it attempts to unify to substs
and ugsubsts. The latter two terms may not be sub-
terms of the original combinations and therefore a prim-
itive recursive definition does not work. However, when
this is the case then the total number of variables in
the terms are reduced. This argument induces a well-
founded relation which can be used to prove termi-
nation. It is a kind of lexicographic combination of
a proper subset ordering on sets of variables and an
‘occurs-in’ ordering.

A theory of well-founded induction has been devel-
oped in HOL (Agerholm, 1992) but never in LCF; it is
not clear whether this is possible or not. Therefore,
well-founded induction is translated to two structural
inductions in LCF, one on natural numbers and one on
terms. This makes certain statements more complicated
than necessary and makes the proof less elegant as well.

Since we have proved unify is total, it defines a HOL
function:

F Vtu. Unifytu = (ea. unifytu = Lifta)

Here, the choice operator (see Section 2.) is used to
choose the attempt that we know exists by the correct-
ness theorem above. From this definition, we can then
prove the recursion equations which states how Unify
behaves on various kinds of term arguments. These de-
fine Unify without any domain theory. Furthermore, we
can prove Unify yields a best unifier for terms of type
term:

F Vtu. best_unify_try(Unify t u, t, u).

This approach supports non-primitive recursive defini-
tions by well-founded induction in HOL. Probably, the
domain theory constructs could be hidden completely
from the user, by an automated tool which does the
domain theoretic reasoning behind the scenes and just
need theorems from the user for the well-founded in-
duction.

8. CONCLUSION

A contribution of this work is a comparison of two sys-
tems supporting domain theoretic reasoning, namely,
LCF and HOL-CPO. Using examples we show how HOL-
CPO supports the best of the domain theoretic LCF and

the set theoretic HOL worlds, by allowing set and do-
main theoretic reasoning to be mixed.

We presented the mechanization of a number of ex-
amples in HOL-CPO which have already been done in
LCF by Paulson. The natural number example illus-
trates how we can mix set and domain theoretic rea-
soning and thereby ease reasoning about finite-valued
LCF types and strict functions. The example on lazy
sequences presents fixed point definitions of recursive
nonterminating functions and illustrates that we can
conduct LCF proofs by fixed point induction and struc-
tural induction on infinite-valued recursive datatype
cpos. This kind of reasoning is not easy in ‘pure’ HOL,
since it is not directly supported.

The unification example shows that we can eliminate
essentially all reasoning about the bottom element that
infests the proof in LCF. In HOL, most of the verifica-
tion is conducted in the set theoretic HOL world, and it
is only at a very late stage of the proof that domain the-
ory constructs are introduced, in order to give a fixed
point definition of the unification algorithm which is
not primitive recursive and therefore cannot be defined
easily in HOL. Moreover, domain theory is only intro-
duced temporarily, since once we have proved the algo-
rithm always terminates we can define a total unifica-
tion function in HOL and forget about domain theory.
This method of defining functions via domain theory
and a proof of termination could (probably) be auto-
mated to extend the present tools for recursive function
definitions in HOL.

Further, the example shows that we are not restricted
to use fixed point induction for reasoning about recur-
sive functions. The proof of termination of the unifi-
cation algorithm is conducted by well-founded induc-
tion, but the LCF proof uses two nested structural in-
ductions derived from fixed point induction to simu-
late well-founded induction. This makes the proof more
complicated, and less elegant too.

Some disadvantages of the embedding of domain the-
ory in HOL have also been mentioned. As a negative
consequence of being an embedding rather than a direct
implementation of a logic (as in LCF), side conditions
on domain theoretic properties appear everywhere in
HOL-CPO. However, in most cases these are proved au-
tomatically by proof functions implementing syntactic
notations of cpos and typable terms.

One main problem is that it is time-consuming and
not at all straightforward to introduce new recursive
datatype cpos like lazy sequences. Recursive datatypes
are just axiomatized in LCF, but axiomatic extensions
are against the tradition of a purely definitional ap-
proach in the HOL community. Further, a standard
method like the inverse limit construction for solving
recursive domain equations (Smyth et al., 1982) is not
easily formalized in HOL, since it requires the presence
of dependent products over different types, which can-
not be defined in HOL (this requires an encoding in a
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‘large’ type). However, as demonstrated in (Agerholm,
1994b), its formalization is straightforward in HOL-ST,
an experimental extension of HOL with a ZF-like set
theory (Gordon, 1994).

Another problem is that due to the need for the de-
pendent lambda abstraction, function constructors be-
come parameterized by (the free variables of) the do-
mains on which they work. This inconvenience is han-
dled by an interface in most cases but the problem also
affects the convenience of proofs, since arguments of
functions must be proved to be in the right cpos. This
is automated in most cases by the type checker, which
implements the notation of typable terms.

One may compare the problems in LCF due to bottom
to the problems in HOL-CPO due to the parameters on
some function constructors. An interface could also be
implemented in LCF to hide bottom in many cases, but
it would always appear in proofs. Quite often, we avoid
parameters in HOL-CPO because we work in higher or-
der logic or with concrete cpos like natural numbers.

HOL-CPO is a semantic embedding of domain the-
ory in a powerful theorem prover. It was an impor-
tant goal of this embedding to preserve a direct corre-
spondence between elements of domains and elements
of HOL types. This allows us to exploit the types and
tools of HOL directly and hence, to benefit from mixing
domain and set theoretic reasoning as discussed above.
A semantic embedding does not always have this prop-
erty. The formalization of Pw (Petersen, 1993) builds
a separate Pw world inside HOL so there is no direct
relationship between, for instance, natural numbers in
the Pw model and in the HOL system. The same thing
would be true about a formalization of information sys-
tems (Winskel, 1993), if it was done. On the other hand,
formalizations of Pw and information systems would al-
low recursive domain equations to be solved fairly easily
using a fixed point operator.
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