A Mechanically Verified
Verification Condition Generator

PETER V. HOMEIER AND DAvID F. MARTIN

Computer Science Department, University of California, Los Angeles 90024 USA
homeier@cs.ucla.edu and dmartin@cs.ucla.edu

Verification Condition Generator (VCG) tools have been effective in simplifying
the task of proving programs correct. However, in the past these VCG tools have
in general not themselves been mechanically proven, so any proof using and de-
pending on these VCGs might not be sound. In our work, we define and rigorously
prove correct a VCG tool within the HOL theorem proving system, for a standard
while-loop language, with one new feature not usually treated: expressions with
side effects. Starting from a structural operational semantics of this programming
language, we prove as theorems the axioms and rules of inference of a Hoare-style
axiomatic semantics, verifying their soundness. This axiomatic semantics is then
used to define and prove correct a VCG tool for this language. Finally, this verified
VCG is applied to an example program to verify its correctness.

1. INTRODUCTION

The most common technique used today to produce
quality software without errors is testing. However,
even repeated testing cannot reliably eliminate all er-
rors, and hence is incomplete. To achieve a higher
level of reliability and trust, programmers may con-
struct proofs of correctness, verifying that the program
satisfies a formal specification. This need be done only
once, and eliminates whole classes of errors. However,
these proofs are complex, full of details, and difficult
to construct by hand, and thus may themselves contain
errors, which reduces trust in the program so proved.
Mechanical proofs are more secure, but even more de-
tailed and difficult.

One solution to this difficulty is partially automating
the construction of the proof by a tool called a Ver-
ification Condition Generator (VCG). This VCG tool
writes the proof of the program, modulo a set of formu-
las called verification conditions which are left to the
programmer to prove. These verification conditions do
not contain any references to programming language
phrases, but only deal with the logics of the underlying
data types. This twice simplifies the programmer’s bur-
den, reducing the volume of proof and level of proof, and
makes the process more effective. However, in the past
these VCG tools have not in general themselves been
Proven, meaning that the trust of a program’s proof
Tested on the trust of an unproven VCG tool.

In this work we define and rigorously prove correct
a8 VCG within the Higher Order Logic (HOL) theorem
Proving system [Gordon 93], for a standard while-loop
language that has a feature not usually treated: ex-
Pressions with side effects. Expressions with side ef-

fects occur in the programming languages C and C++,
and are therefore of practical interest. We prove that

the truth of the verification conditions returned by the

VCG suffice to verify the asserted program submitted to
the VCG. This theorem stating the VCG’s correctness
then supports the use of the VCG in proving the cor-
rectness of individual programs with complete sound-
ness assured. The VCG automates much of the work
and detail involved, relieving the programmer of all but
the essential task of proving the verification conditions.
This enables proofs of programs which are both effective
and trustworthy.

2. PREVIOUS WORK

In this paper, we define a “verified” verification condi-
tion generator as one which has been proven to correctly
produce, for any input program and specification, a set
of verification conditions whose truth implies the con-
sistency of the program with its specification. Prefer-
ably, this verification of the VCG will be mechanically
checked for soundness, because of the many details and
deep issues that arise. Many VCGs have been written
but not verified; there is then no assurance that the
verification conditions produced are properly related to
the original program, and hence no security that after
proving the verification conditions, the correctness of
the program follows. Gordon’s work below is an ex-
ception in that the security is maintained by the HOL
system itself.

In 1973 Larry Ragland verified a verification condi-
tion generator written in Nucleus, a language Ragland
invented to both express a VCG and be verifiable
[Ragland 73]. This was a remarkable piece of work,

THE COMPUTER JOURNAL,

Vor. 38, No. 2, 1995

20z Iidy 01 uo 1senb Aq $8689¢/1€ L/2/8€/I01E/|UlWOD /W00 dNo"olWapEDE//:SdRY WOl PSPEOJUMOC

132 PETER V. HOMEIER AND DAvID F. MARTIN

well ahead of its time. The VCG system consisted of -

203 procedures, nearly all of which were less than one
page long, which gave rise to approximately 4000 ver-
ification conditions. The proof of the generator used
an unverified VCG written in Snobold. The verifica-
tion conditions it generated were proven by hand, not
mechanically, but substantially verified the VCG.

In 1975 Igarashi, London, and Luckham gave an ax-
iomatic semantics for a subset of Pascal, and described
a VCG they had written in MLISP2 {Igarashi 75]. The
soundness of the axiomatic semantics was verified by
hand proof, but the correctness of the VCG was not
rigorously proven. The only mechanized part of this
work was the VCG itself.

Michael Gordon in 1989 did the original work of con-
structing within HOL a framework for proving the cor-
rectness of programs [Gordon 89]. He introduced new
constants in the HOL logic to represent each program
construct, defining them as functions directly denoting
the construct’s semantic meaning. This is known as a
“gshallow” embedding of the programming language in
the HOL logic. The work included defining verification
condition generators for both partial and total correct-
ness as tactics. This approach yielded tools which could
be used to soundly verify individual programs. How-
ever, the VCG tactic he defined was not itself proven.
If it succeeded, the resulting subgoals were soundly re-
lated to the original correctness goal by the security of
HOL itself. Fundamentally, there were certain limita-
tions to the expressiveness and proven conclusions of
this approach, as Gordon himself recognized:

P[E/V] (substitution) is a meta notation and
consequently the assignment axiom can only be
stated as a meta theorem. This elementary point
is nevertheless quite subtle. In order to prove the
assignment axiom as a theorem within higher or-
der logic it would be necessary to have types in
the logic corresponding to formulae, variables and
terms. One could then prove something like:

F VPEYV. Spec (Truth (Subst (P, E, V),
Assign (V, Value E), Truth P)

It is clear that working out the details of this
would be a lot of work. [Gordon 89)

In 1991, Sten Agerholm [Agerholm 92] used a similar
shallow embedding to define the weakest preconditions
of a small while-loop language, including unbounded
nondeterminism and blocks. The semantics was de-
signed to avoid syntactic notions like substitution. Sim-
ilar to Gordon’s work, Agerholm defined a verification
condition generator for total correctness specifications
as an HOL tactic. This tactic needed additional infor-
mation to handle sequences of commands and the while
command, to be supplied by the user.

This paper explores the alternative approach de-
scribed but not investigated by Gordon. It yields great

expressiveness and control in stating and proving as the-
orems within HOL concepts which previously were only
describable as meta-theorems outside HOL. For exam-
ple, we have proven the assignment axiom described
above:
FVgze.{ga[z:=¢€]} z:=e {q}

where ¢ [z := €] is a substituted version of ¢, described
later.

To achieve this expressiveness, it is necessary to cre-
ate a deeper foundation than that used previously. In-
stead of using an extension of the HOL Object Lan-
guage as the programming language, we create an en-
tirely new set of datatypes within the Object Language
to represent constructs of the programming language
and the associated assertion language. This is known
as a “deep” embedding, as opposed to the shallow efir-
bedding developed by Gordon. This allows a signif-
icant difference in the way that the semantics of the
programming language is defined. Instead of defininga
construct as its semantic meaning, we define the cén-
struct as simply a syntactic constructor of phras&'uz:m
the programming language, and then separately defﬁle
the semantics of each construct in a structural ope@-
tional semantics [Winskel 93]. This separation meaTis
that we can now decompose and analyze syntactic pfo-
gram phrases at the HOL Object Language level, aid
thus reason within HOL about the semantics of purély
syntactic manipulations, such as substitution or ve
cation condition generation, since they exist within @e
HOL logic.

This has definite advantages because syntactic nia-
nipulations, when semantically correct, are simpler aid
easier to calculate. They encapsulate a level of detmﬁd
semantic reasoning that then only needs to be proﬁan
once, instead of having to be repeatedly proven for ev@y
occurrence of that manipulation. This will be a recur-
ring pattern in this paper, where repeatedly a syntac%ic
manipulation is defined, and then its semantics is @-
scribed and proven correct within HOL.

[o14

3. HIGHER ORDER LOGIC

Higher Order Logic (HOL) [Gordon 93] is a versmng)f
predicate calculus that allows variables to range ovér
functions and predicates. Thus denotable values may
be functions of any higher order. Strong typing ensures
the consistency and proper meaning of all expressions.
The power of this logic is similar to set theory, and it is
sufficient for expressing most mathematical theories.

HOL is also a mechanical proof development system.
It is secure in that only true theorems can be proved.
Rather than attempting to automatically prove theo-
rems, HOL acts as a supportive assistant, mechanically
checking the validity of each step attempted by the user.
It provides tools to define within the logic new types
and constants, including primitive recursive functions,
functions specified by properties, and relations defined
by rule induction.

judy Q| uoy

THE COMPUTER JOURNAL,

Vor. 38, No. 2, 1995

A MECHANICALLY VERIFIED VERIFICATION CONDITION GENERATOR 133

The primary interface to HOL is the polymorphic
functional programming language ML (“Meta Lan-
guage”) [Cousineau 86); commands to HOL are expres-
sions in ML. Within ML is a second language OL (“Ob-
ject Language”), representing terms and theorems by
ML abstract datatypes term and thm. A shallow em-
bedding represents program constructs by new OL func-
tions to combine the semantics of the constituents to
produce the semantics of the combination. Our ap-
proach is to define a third level of language, contained
within OL as concrete recursive datatypes, to represent
the constructs of the programming language PL being
studied and its associated assertion language AL. We
begin with the definition of variables.

4. VARIABLES AND VARIANTS

A variable is represented by a new concrete type var,
with one constructor, VAR:string->num->var. We
define two deconstructor functions, Base (VAR str n)
= str and Indez (VAR str n) = n. The number at-
tribute eases the creation of variants of a variable, which
are made by (possibly) increasing the number.

All possible variables are considered predeclared of
type num (nonnegative integers). In future versions, we
hope to treat other data types. Some languages distin-
guish between program variables and logical variables,
which cannot be changed by program control. In this
simple language, this is unnecessary. Our recent work
with procedure calls supports logical variables.

The variant function has type var~>(var)set->var.
variant T s returns a variable which is a variant of z,
which is guaranteed not to be in the “exclusion” set s.
If £ is not in the set s, then it is its own variant. This
is used in defining proper substitution on quantified ex-
pressions.

The definition of variant is somewhat deeper than it
might originally appear. To have a constructive func-
tion for making variants in particular instances, we
wanted

(xy variant z s

= (z € 8 => variant (mk_variant z 1) s | z)

where mk_variant (VAR str n) k = VAR str (n+k).
For any finite set s, this definition of variant will termi-
nate, but unfortunately, it is not primitive recursive. As
a substitute, we wanted to define the variant function
by specifying its properties, as

1) (variant z s) is_variant z;

2) ~ (variantz s € 3);

3) Vz.if (z is.variant) A ~ (2 € 8)

then Indez (variant z s) < Indez z,

where we define

yisvariant ¢

= (Base y = Base z A Indez z < Indez y) .

But the above specification did not easily support
the proof of the existence theorem, that such a variant
existed for any z and s, because the set of values for z
Satisfying the third property’s antecedent is infinite; we

work strictly with finite sets. The solution was to intro-
duce the function variant_set, where variant_set z n
returns the set of the first n variants of z, all different
from each other, so CARD (variant_set z n) = n. Its
definition is

variant_set £ 0= { };

variant_set = (n + 1)

= {mk_variant z n} U (variant_set = n).

Then by the pigeonhole principle, we are guaranteed
that variant_set z ((CARD s) + 1) must contain at
least one variable which is not in the set s. This leads to
the needed existence theorem. We then defined variant
with properties

1') (variant z s) € variant_set z ((CARD s) + 1);

2') ~ (variantz s € s);

3') Vz.if z € variant_set z ((CARD s) + 1)

A ~(z€3)
then Indez (variant z s) < Indez z.

From this definition, we then proved both the original
set of properties (1)-(3), and also the constructive func-
tion definition (*) given above, as theorems.

5. PROGRAMMING AND ASSERTION
LANGUAGES

The syntax of the programming language PL is

exp: ex=n|z|++z|e +er]| e —ey
bexp: b12=61=63|61<62|b1/\b2|b1\/b2|~b
cnd: cu=skip| abort | z:=e€| ¢1; 2

| if b then c; else c;
| assert a while bdo c

Table 1: Programming Language Syntax

Most of these constructs are standard. n is an un-
signed integer; z is a variable; ++ is the increment
operator; abort causes an immediate abnormal termi-
nation; the while loop requires an invariant assertion
to be supplied. The notation used above is for ease of
reading; each phrase is actually formed by a constructor
function, e.g., ASSIGN:var->exp->cnd for assignment.

The syntax of the associated assertion language AL
is

vexp: vu=n|z|vi+va|vi—va]|v*rg

aexp: a:u=true| false| v; =v3| v1 <vg
|0.1/\(13| a1Va2|~a
| a3 = az| a1=az| a1 => a3l a3
| closea| Vz.a| 3z.a

Table 2: Assertion Language Syntax

Again, most of these expressions are standard.
a1 => a3 | a3 is a conditional expression, yielding the

THE COMPUTER JOURNAL,

Vor. 38, No. 2, 1995

¥202 Iudy 01 uo 3senb Aq ¥8689€/LE L/Z/8E/e11e/|ulWwoo/woo dno-olwepeoe//:sdiy wolj peapeojumoq

134 PETER V. HOMEIER AND DAvID F. MARTIN

value of az or a3 depending on the value of a;. close a
forms the universal closure of a, which is true when a
is true for all possible assignments to its free variables.
The constructor function AVAR:var->vexp creates a
vexp from a variable. We overload the same operator in
different languages, asking the reader to disambiguate
by context.

6. OPERATIONAL SEMANTICS

The semantics of the programming language is ex-
pressed by the following three relations. The values
of all variables are in num so a state is represented by a
mapping from variables to num.

F e 31 n 83 : numeric expression e: exp evaluated
in state s; yields numeric value
n:num and state s;.

Bbs;tsy: boolean expression b:bexp evaluated
in state sy yields truth value t:bool

and state s;.

command c: cmd evaluated in state s,
yields state s;.

Ccsysg:

Table 3 gives the structural operational semantics
[Winskel 93] of the programming language PL, given
as rules inductively defining the three relations E, B,
and C. These relations are defined within HOL us-
ing Tom Melham’s excellent rule induction package
[Camilleri 92,Melham 92]. The notation s[v/z] indi-
cates the state s updated so that (s[v/z])(z) = v. This
definition is straightforward, and is easy to read and
analyze once the notation is understood.

Table 4 gives the semantics of the assertion language
AL by recursive functions defined on the structure of
the construct, in a directly denotational fashion.

V v 8: numeric expression v:vexp evaluated

in state 8 yields a numeric value in num.
Aas: boolean expression a:aexp evaluated
in state s yields a truth value in bool.

7. SUBSTITUTION

We define proper substitution on assertion language ex-
pressions using the technique of simultaneous substitu-
tions, following Stoughton [Stoughton 88]. The usual
definition of proper substitution is a fully recursive func-
tion. Unfortunately, HOL only supports primitive re-
cursive definitions. To overcome this, we use simulta-
neous substitutions, which are represented by functions
of type subst = var->vexp. This describes a family of
substitutions, all of which are considered to take place
simultaneously. This family is in principle infinite, but
in practice all but a finite number of the substitutions
are the identity substitution ¢. The virtue of this ap-
proach is that the application of a simultaneous sub-

stitution to an assertion language expression may be
defined using only primitive recursion, not full recur-
sion, and then the normal single substitution operation
of [v/z] may be defined as a special case:
[v/z)=Ay.(y=z=>v| AVARY).

We apply a substitution by the infix operator «.
Thus, a < ss denotes the application of the simulta-
neous substitution ss to the expression a, where a can
be either vexp or aexp. Therefore a < [v/z] denotes
the single substitution of the expression v for the vari-
able £ wherever z appears free in a. Finally, there is a
dual notion of applying a simultaneous substitution to a
state, instead of to an expression; this is called semantic
substitution, and is defined as s <1 83 = Ay. (V (ss y)

Most of the cases of the definition of the applica-
tion of a substitution to an expression are simply thke
distribution of the substitution across the immediafe
subexpressions. The interesting cases of the definitign
of a < ss are where a is a quantified expression, fér
example:

(Vz.a) a4 38 =let free = FV,(ss 2) it
z2€(FVya)—{z}
let y = variant z free in
Vy. (a < (ss|(AVAR y) /))).

Here FV, and FV, are functions that return the s@t
of free variables in an aexp or vexp expression, a%d
vartant free is a function that yields a new variable
as a variant of z, guaranteed not to be in the set fré

Once we have defined substitution as a syntactic ma-

"olwapesegsdpy

E
o
=N
o
=
(=}
=]
4
®
o+
=g
®
=]
e
3
2
®
o+
=g
®
o)
=
g
=]
g
(=
5‘

1]

rems about the semantics of substitution:

FVvsss. V(vadss)s=Vu(sd ss)

FVasss. A(adss)s=Aa(s<ss).
This is our statement of the Substitution Lemma
logic, and essentially says that syntactic substitution
equivalent to semantic substitution.

gIe|EL/C/8E/PID

8. TRANSLATION

1senb Aq 186

Expressions have typically not been treated in previotis
work on verification; there are some exceptions, notably
Sokolowski [Sokolowski 84]. Expressions with side &f
fects have been particularly excluded. Since expressions
did not have side effects, they were often considered
be a sublanguage, common to both the programming
language and the assertion language. Thus one would
commonly see expressions such as p A b, where p was
an assertion and b was a boolean expression from the
programming language.

One of the key realizations of this work was the need
to carefully distinguish these two languages, and not
confuse their expression sublanguages. This then re-
quires us to translate programming language expres
sions into the assertion language before the two may
be combined as above. In fact, since we allow expres-
sions to have side effects, there are actually two results

of translating a programming language expression e:

THE COMPUTER JOURNAL,

VoL. 38, No. 2, 1995

A MECHANICALLY VERIFIED VERIFICATION CONDITION GENERATOR

135.

Number : Variable :

Increment :
Exs;nss

E(n)sns E (z)ss(z) s
Addition :

Eel 81 My 82, ECQ 82 N2 83

E (e1 +e2) 81 (ny +1n3) s3

E (++z) 81 (n+1) s2[(n+ 1)/2]
Subtraction :

E €1 81 N 83, E €2 82 N2 83
E (e; —e2) 31 (n1 —ng) 83

Equality :

E ey syny 89, Fegsong sy

B (e1 =¢€2) 91 (n1 =n2) 83

Less Than:

,Eelslnlsg, E6282ﬂ233
E (61 < 82) S1 (n1 < ng) 83

Conjunction : Disjunction : Negation :
B by s t; 83, Bbysgtys Bbysjty 82, Bbysatgs Bbsytsy
1 A 81 (t1 At2) 83 B (byVby) sy (t1Vig) ss B (~b)s1 (~1)s2
Skip : Conditional ;
Bbs; Tsy, Cocy 8283
Cskip s s C (if b then c, else c3) 3; 33
Abort :
Bbsy Fsy, Ccasass
(no rules) C (if b then c’1 else c3) 51 33
Assignment : Iteration :
BbSlTSQ, CC82 83
Ees;nsy C (assert a while bdo ¢) 33 34

C (z :=e) 81 82[n/z]
Sequence :

Cq 81 82, CCQ 82 83
C (c1; c2) 81 83

C (assert a while bdo c) s; 34

Bbsi F sg
C (assert a while b do ¢) s; 32

Table 3: Programming Language Structural Operational Semantics

Vns=n
V|Vzs=s(z)

Vini+w)s=(Vwvs8+Vwvys) (—,=*treated analogously)

Atrues="T
Afalses="F

Alri=wn)s=(Vvys=Vuvs) (< treated analogously)

A(aiNaz)s=(Aa1 sANAazs)
(V,~,=>,a1 = az, a; => az | a3 treated analogously)
A (close a) s = (Vs;.Aa s;)
A (Vz.a) s = (Vn. A a s[n/z])
A (3z.a) s = (In. Aa s[n/z])

Table 4: Assertion Language Denotational Semantics

THE COMPUTER JOURNAL, VoL. 38, No. 2, 1995

20z 1dy 0} U 1senB Aq $8689€/LE L/Z/8E/BI01E/|UlWOo /W0 dNo"dlWepEo.//:Sdy WOy PapEojumoq

136 PETER V. HOMEIER AND DAvID F. MARTIN

e an assertion language expression, representing
the value of e in the state “before” evaluation;
¢ a simultaneous substitution, representing the
change in state from “before” evaluating e to
“after” evaluating e.
For example, the translator for numeric expressions is
defined using a helper function VE1: exp -> subst ->
(aexp # subst) (where # denotes Cartesian product):

VE1 (n) ss = n,s8s (% makes a pair)
VE1 (z) ss = (sszx), 88

VEl (++z)ss = (ssz)+1,ss[((ssz)+1)/z]
VEl (e1+e3)ss = (VEle

— /\1.)1. (VE]. €2

— Avg 832. (V1 + v2, 982))) 88
(VE]. 53]

— >\‘U1. (VEl €2

— Avg 88g. (V1 —

VEl (e; —e3) 88 =

vq, 8832))) 88

where — is a “translator continuation” operator, de-
fined as

(fok)ss=let (v, 88)=fssinkvss.
Then define

VE e=fst (VEleu)

VE _state e = snd (VEl e t)
where ¢ is the identity substitution and “fst” and “snd”
select the elements of a pair. We can then prove that
these translation functions, as syntactic manipulations,
are semantically correct, according to the following the-
orem:

FVesinsa. (Eesynsa)

=(n=V (VEe) s A sy =381 d(VE_state €))) .

Similar functions are used to translate boolean expres-
sions. We define the helper function AB1 and the main
translation functions AB and A B_state, and prove their
correctness as

+ VbSl 1 82. ((B b 81 t 32)

=(t=A(AB b) 81 ANs2=384d (AB_.state b))) .

These theorems mean that every evaluation of a pro-
gramming language expression has its semantics com-
pletely captured by the two translation functions for its
type. These are essentially small compiler correctness
proofs.

As a byproduct, we may now define the simultaneous
substitution that corresponds to an assignment state-
ment, overriding the expression’s state change with the
change of the assignment:

[z :=¢] = (VE_state e)[(VE €) [z] .

9. AXIOMATIC SEMANTICS

The semantics of Floyd/Hoare partial correctness for-
mulae is defined in Table 5.

Given these formulae, we can now express the ax-
iomatic semantics of the programming language (Table
6), and prove each rule as a theorem from the previous
structural operational semantics.

The most interesting of these proofs was that of the
while-loop rule. It was necessary to prove a subsidiary

lemma first, by the strong version of rule induction for
command semantics provided by Tom Melham'’s rule ip-
duction package. Strong induction allowed as inductive
hypotheses instances of the command semantic relation
C for “lower levels” in the relation built up by rule
induction, as well as inductive hypotheses that those
tuples satisfied the lemma.

Although we did prove analogous theorems as an ax-
iomatic semantics for both the numeric and boolean ex-
pressions in the programming language, it turned out
that there was a better way to handle them provided
through the translation functions. Using these trans-
lation functions, we may define functions to compute
the appropriate precondition to an expression, given tlm
postcondition, as

ae.pre e a = a < (VE_state €)
abpreba =a < (AB_state b)
We may now prove the condensed axiomatic semantigs
for expressions given in Table 7.

These precondition functions now allow us to revge
the rules of inference for conditionals and loops, as glven
in Table 8.

PapPEOJUMO

yuw

10. VERIFICATION CONDITION GENE
ATOR

o’a’tjoodn@)!wepeo

We now define a verification condition generator
this programming language. To begin, we first deﬁge
a helper function vcgl, of type cmd->aexp->(aexp§#
(aexp)list). This function takes a command andza
postcondition, and returns a precondition and a list g)f
verification conditions that must be proved in order %o
verify that command with respect to the preconditign
and postcondition. This function does most of the woﬂ(
of calculating verification conditions.

vcgl is called by the main verification condition ge‘ﬁ-
erator function, vcg, with type aexp->cmd->aexp<>
(aexp)list. wvcg takes a precondition, a commmgi
and a postcondition, and returns a list of the verifi-
cation conditions for that command. vegl and vcg ate
defined in Table 9, in which (] denotes the empty list
and ampersand (&) is an infix version of HOL’s A?
PEND operator to join two lists.

The correctness of the VCG functions defined in '15\)&-
ble 9 is established by proving the following theorems
from the axioms and rules of inference of the axiomatic
semantics:

VCG1_THM:
FVegq.let (p,h) =vecgl cqin
(every close h = {p}c{q})
VCG_THM:
F Vpcgq. every close (vcg p c q) = {p}c{q}

every P Ist is defined in HOL as being true when for
every element z in the list lst, the predicate P is true
when applied to z. Accordingly, every close h means
that the universal closure of every verification condition
in h is true.

THE COMPUTER JOURNAL,

VoL. 38, No. 2, 1995

A MECHANICALLY VERIFIED VERIFICATION CONDITION GENERATOR 137

aexp: {a}=closea=Vs.Aas
exp: {ple{q} =Vns1s;.ApsyAEes; ns;=>Aqs,

bexp: {p}b{q}=Vts152.ApsiABbs ts; = Aqsy

cmd: {p}c{q}=Vs152.Aps1ACcs;s3=>Aqs;

Table 5: Floyd/Hoare Partial Correctness Semantics

Skip : Abort :
{q} skip {q} {true} abort {q}
Assignment : Sequence :
a{r}, {r}eca{q
{gafz:=cl}z:=e{q} Pt c2\g
Conditional : Iteration :
{pAAB(b)}b{r1} {a A AB(b)} b{p}
{p A~ AB(b)} b{rs} {a A~ AB(b)}b{q}
{ritei{q}, {ra}ca{q} {p}c{a}

{p}if bthen ¢, else c2 {q} {a} assert & while b do ¢ {g}

Table 6: Programming Language Axiomatic Semantics

Numeric expression precondition: Boolean expression precondition:
{aepreegle{q} {abpre b g} b{q}

Table 7: Programming Language Expression Axiomatic Semantics

Conditional : Iteration :

{a A AB(b) = ab_pre b p}
{a A ~ AB(b) = ab_pre b ¢}

{ri}ci{q}, {ra}cs{q} {p}c{a}
{ABb=>abprebr; Tabprebry}if bthency elsec;{q] {a}assert a while bdo c{q}

Table 8: Programming Language Axiomatic Semantics (revisions)

THE COMPUTER JOURNAL, VoL. 38, No. 2, 1995

20z 1dy 0 uo 1s8NB Aq $8689E/LE L/Z/SE/I0IE/|UlWOo/Woo"dNO"olWapeD.//:SdRY WOl PaPEo|uMOq

138 PETER V. HOMEIER AND DAvVID F. MARTIN

vegl

vegl (skip) ¢ =g, (]
vegl (abort) g = true, ||
vegl (z:=e€)g=q< [z:=¢], (]
vegl (e ¢2) g =let (r,h2) =vcgl ¢z ¢ in
let (p,h1) =veglc rin
b, (hl & h2)
vegl (if b then c; else ¢z) g =
let (r1,h1) =vegl ¢ gin
let (r2,h2) =vcgl ez ¢ in
(AB b=>abprebri|abprebry), (hy & hy)
vcgl (assert a whilebdoc) ¢ =
let (p,h) =vcgl cain
a, [aAABb= abprebp;
A~ (ABb) = abprebql&h

vcg |vegpecg=1let (r,h)=veglcginjp=>rj&h

Table 9: Verification Condition Generator

These theorems are proven from the axiomatic se-
mantics by induction on the structure of the command
involved. This verifies the VCG. It shows that the vcg
function is sound, that the correctness of the verifica-
tion conditions it produces suffice to establish the cor-
rectness of the annotated program. This does not show
that the vcg function is complete, that if a program
is correct, then the vcg function will produce a set of
verification conditions sufficient to prove the program
correct from the axiomatic semantics [Cook 78]. How-
ever, this soundness result is quite useful, in that we
may directly apply these theorems in order to prove in-
dividual programs partially correct within HOL, as seen
in the next section.

11. EXAMPLE PROGRAMS

Given the vcg function defined in the last section and
its associated correctness theorem, proofs of program
correctness may now be partially automated with se-
curity. This has been implemented in an HOL tactic,
called VCG_TAC, which transforms a given program cor-
rectness goal to be proved into a set of subgoals which
are the verification conditions returned by the vcg func-
tion. These subgoals are then proved within the HOL
theorem proving system, using all the power and re-
sources of that theorem prover, directed by the user’s
ingenuity.

As an example, we will take the quotient/remainder
algorithm for integer division by repeated subtraction.
The program to be verified, with the annotations of the
loop invariant and pre- and postconditions, is shown in
Table 10.

Since z0 and y0 do not appear in the program text,

'cgoo!ujapeoe//:sduq woJ) papeojumoq

their values cannot be altered by the program. T
specification means that if the program terminates, the
final value of ¢ must be the quotient of the division %
z0 by 90, and r the remainder. 3

A transcript of the application of VCG_TAC to th\%
problem is shown in Table 11. We have written a parser
for the subject language, using the parser library it
HOL, invoked using the delimiters “[[” and “]]”. Tlfg
partial correctness goal is parsed and converted into thg
abstract syntax form used internally. VCG_TAC then cons
verts that goal into verification conditions in the Ob_]e@
Language of HOL.

These verification conditions are now each solved é
a subgoal by normal HOL theorem proving techmquegi

The Object Language variables involved in these ve2
ification conditions are constructed to have names sing
ilar to the original program variable names; if there 135
non-zero variant number, it is appended to the vanabh:a;
name. Thus, if program variable £ were changed to g
in the example of Table 11, the verification conditions
would be the same but with the OL variable z in place
of z.

The VCG_TAC tactic first applies the theorem VCG_THN
to reason backwards from the program correctness
statement to a goal invoking the vcg function. By the
theorem, the proof of these verification conditions will
establish the proof of the original program correctness
statement.

The next step of VCG_TAC is to “execute” the various
syntactic manipulation functions mentioned in the cur-
rent goal by symbolically rewriting the goal using the
definitions of the functions, including vcg, vegl, trans
lations, substitutions, and substitution application. Be-

THE COMPUTER JOURNAL,

VoL. 38, No. 2, 1995

A MECHANICALLY VERIFIED VERIFICATION CONDITION GENERATOR

139

{z0=z A y0 =1y}
ri=o1,;
q:=0;

assert 20 =q*xy0+r Ayl =y
while ~ (r < y) do
TI=r-—Y;
q:=++q
od
{z0=qxy0+1 A r < y0}

Table 10: Quotient/Remainder Algorithm

#g [[{x0 = x /\ y0 = y}

r := Xx;

q := 0;

asgert x0 = q*y0o +r /\ y0O =y
while ~ (r < y) do

r:=r-y;

q = +4q

od

{x0 = q * y0 + r /\ r < y0}
115,

#e(VCG_TAC) ;;

OK..

3 subgoals

"1x0 q yO r y.

((x0=(q*xy0) +1) /\ (JO=y)) /\r <y ==>
(x0 = (q * yOO +) /\ r < yO*

"Ix0 qy0Ory.
(x0=(q*y0) +xr) /A (3O=y)) /\ ~T <y ==>
(x0 = ((q+1) * yO) + (r - y)) /\ (yO = y)"

"1x0 x yO y.
(x0 = x) /\ (yO0 =y) ==> (x0 = (0 * y0O) + x) /\ (yO = y)"

(0O : void
Run time: 80.3s
Intermediate theorems generated: 5643

Table 11: Transcript of Application of VGC_TAC to Q/R Algorithm

THE COMPUTER JOURNAL, VoL. 38, No. 2, 1995

¥202 I4dy 01 uo 3senb Aq ¥8689€/LE L/Z/8E/e11e/|ulloo/woo dno-olwepeoe//:sdiy Woij papeojumod

140 PETER V. HOMEIER AND DAvVID F. MARTIN

cause the rewriting process is done symbolically, instead
of actually executing a program, it is relatively slow,
but complete soundness is assured. This “execution”
converts the invocation of the vcg function on the an-
notated program into the actual set of verification con-
ditions that the vcg function returns.

Afterwards, the goal is left as a set of “constant” ver-
ification conditions in the assertion language. VCG_TAC
then uses the definitions of the semantics of the asser-
tion language to rewrite these verification conditions
into equivalent statements in the Object Language of
HOL, using the definitions of close, A, and V. In
particular, all references to assertion language variables
within program states are converted to references to
similarly-named OL variables. These verification con-
ditions are then presented to the user as the necessary
subgoals that need to be solved in order to complete the
proof of the program originally presented.

12. FUTURE WORK

We are currently extending this work to include several
more language features, principally mutually recursive
procedures and concurrency. In addition, we are work-
ing on VCGs for total correctness.

We have completed the extension of the work re-
ported in this paper to include total correctness, us-
ing the same semantic specification style and requiring
additions to the invariant assertions for while loops.
Work on mutually recursive procedures requires many
new concepts and techniques to define the semantics
and perform verification condition generator proofs.
These include declarations of procedures, their collec-
tion into environments, their verification independent
of actual use of the procedures, well-formedness con-
ditions on programs, and the delicate issue of param-
eter passing. We have completed, in HOL, a mecha-
nized proof of correctness of a partial correctness VCG
for a language that includes mutually recursive proce-
dures. This work used the semantic specification style
of this paper, and required suitable assertions in proce-
dure headings. Work is proceeding toward formulating
and mechanically verifying a total correctness VCG for
the same language.

In future versions we hope to treat other datatypes
by embedding a type system within our programming
language, and by introducing a more complex state and
a static semantics for the language which performs type-
checking. This would use HOL’s built-in datatypes to
support booleans, strings, lists, etc.

Concurrency raises a whole host of new issues, rang-
ing from the level of structural operational semantics
(“big-step” versus “small-step”), to dealing with asser-
tions describing temporal sequences of states instead of
single states, to issues of fairness. We believe that a
proper treatment of concurrency will exhibit qualities
of modularity and compositionality. Modularity means
that a specification for a process should state both (&)

- the assumptions under which it should operate, and (b)

the task (or commitment) which it should meet, given
those assumptions. Compositionality means that the
specification of a system of processes should be veri-
fiable in terms of the specifications of the individual
constituent processes.

13. SUMMARY AND CONCLUSIONS

The fundamental contribution of this work is the ex-
hibition of a tool to ease the task of proving programs
which is itself proven to be sound. This verification con-
dition generator tool performs an automatic, syntactic
transformation of the annotated program into a set of
verification conditions. The verification conditions pr&
duced are themselves proven within HOL, establishing
the correctness of the program within the same systex&
wherein the VCG was verified.

This proof of the correctness of the VCG may be coxi-
sidered as an instance of a compiler correctness proof
with the VCG translating from annotated programs to
lists of verification conditions. Each of these has i
semantics defined, and the VCG correctness theoreff
closes the commutative diagram, showing that the tru
of the verification conditions implies the truth of the m%
notated program.

The programming language and its associated asseﬁ
tion language are represented by new concrete recursng
datatypes. This implies that they are completely mdé
pendent of other data types and operations existing m
the HOL system, without any hidden associations th@
might affect the validity of proof. This requires su%
stantial work in defining their semantics and in proving
the axioms and rules of inference of the axiomatic sg
mantics from the operational semantics. However, th@
deeply embedded approach yields great expressiveness;
ductility, and the ability to prove as theorems withia
HOL the correctness of various syntactic manipulations,
which could only be stated as meta-theorems beforg.
These theorems encapsulate a level of reasoning whicil
now does not need to be repeated every time a progra@
is verified, raising the level of proof from the semanti
level to the syntactic. But the most important part df
this work is the degree of trustworthiness of this syntac-
tic reasoning. Verification condition generators are not
new, but we are not aware of any other proofs of their
correctness to this level of rigor. This enables program
proofs which are both trustworthy and effective.

REFERENCES

Agerholm 92: S. Agerholm, Mechanizing Program Verifica-
tion in HOL. In Proc. of the 1991 International Work-
shop on the HOL Theorem Proving System and its Ap-
plications, pp. 208-222, M. Archer, J. J. Joyce, K. N.
Levitt, and P. J. Windley (eds.), IEEE Computer So-
ciety Press (1992).

Camilleri 92: J. Camilleri and T. Melham, Reasoning with
Inductively Defined Relations in the HOL Theorem

THE COMPUTER JOURNAL,

Vou. 38, No. 2, 1995

A MECHANICALLY VERIFIED VERIFICATION CONDITION GENERATOR 141

Prover. Technical Report No. 265, University of Cam-
bridge Computer Laboratory, (1992).

Cook 78: S. A. Cook, Soundness and Completeness of an
Axiom System for Program Verification. SIAM Journal
on Computing, 7, pp. 70-90, (1978).

Cousineau 86: G. Cousineau, M. Gordon, G. Huet, R. Mil-
ner, L. Paulson, and C. Wadsworth, The ML Handbook,
INRIA (1986).

Gordon 89: M. J. C. Gordon, Mechanizing Programming
Logics in Higher Order Logic. In Current Trends in
Hardware Verification and Automated Theorem Prov-
ing, pp. 387-489, P. A. Subrahmanyam and G.
Birtwistle (eds.), Springer-Verlag, New York (1989).

Gordon 93: M. J. C. Gordon and T. F. Melham, Introduc-
tion to HOL, Cambridge University Press, Cambridge
(1993).

Igarashi 75: S. Igarashi, R. L. London, and D. C. Luckham,
Automatic Program Verification I: A Logical Basis and
its Implementation. ACTA Informatica, 4, pp. 145-182
(1975).

Melham 92: T. Melham, A Package for Inductive Relation
Definitions in HOL. In Proc. of the 1991 International
Workshop on the HOL Theorem Proving System and
its Applications, pp. 350-357, M. Archer, J. J. Joyce,
K. N. Levitt, and P. J. Windley (eds.), IEEE Computer
Society Press (1992).

Ragland 73: L. C. Ragland, A Verified Program Verifier.
Technical Report No. 18, Department of Computer Sci-
ences, University of Texas at Austin (1973).

Sokolowski 84: S. Sokolowski, Partial Correctness: The
Term-Wise Approach. Science of Computer Program-
ming, 4, pp. 141-157 (1984).

Stoughton 88: A. Stoughton, Substitution Revisited. Theo-
retical Computer Science, 59, pp. 317-325, (1988).
Winskel 93: G. Winskel, The Formal Semantics of Pro-
gramming Languages, An Introduction. The MIT Press,

Cambridge, (1993).

THE COMPUTER JOURNAL,

VoL. 38, No. 2, 1995

20z 1dy 01 U 1s8NB Aq $8689E/LE L/Z/8E/BI0IE/|UlWO0/WO0d"dNODlWapEDE//:SA]Y WOl PAPEOJUMOQ

